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Abstract
This paper studies the problem of RGB-D object
recognition. Inspired by the great success of deep
convolutional neural networks (DCNN) in AI, re-
searchers have tried to apply it to improve the
performance of RGB-D object recognition. How-
ever, DCNN always requires a large-scale anno-
tated dataset to supervise its training. Manually
labeling such a large RGB-D dataset is expensive
and time consuming, which prevents DCNN from
quickly promoting this research area. To address
this problem, we propose a semi-supervised mul-
timodal deep learning framework to train DCNN
effectively based on very limited labeled data and
massive unlabeled data. The core of our frame-
work is a novel diversity preserving co-training al-
gorithm, which can successfully guide DCNN to
learn from the unlabeled RGB-D data by making
full use of the complementary cues of the RGB and
depth data in object representation. Experiments
on the benchmark RGB-D dataset demonstrate that,
with only 5% labeled training data, our approach
achieves competitive performance for object recog-
nition compared with those state-of-the-art results
reported by fully-supervised methods.

1 Introduction
Recent years have witnessed RGB-D object recognition be-
coming a very active research area in computer vision and
robotics with the rapid development of commodity depth
cameras. Such off-the-shelf sensors, e.g., Microsoft Kinect
and Intel RealSense, are capable of providing high quality
synchronized RGB and depth information, to depict multi-
modal characteristics of an object. Specifically, the RGB
modality captures rich colors and textures, while the depth
modality provides pure geometry and shape cues which are
robust to lighting and color variations. It represents an op-
portunity to dramatically improve the performance of object
recognition by combining the two complementary cues.

Remarkable efforts have been invested for RGB-D object
recognition in the last few years. Most existing work falls
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into two kinds. One is about feature representation, includ-
ing handcrafted features [Lai et al., 2011a; Bo et al., 2011a;
R.C. et al., 2012] and learning-based features [Blum et al.,
2012; Bo et al., 2012; Socher et al., 2012; Jhuo et al.,
2015]. The other one is about RGB-D fusion, like straight-
forward concatenation of RGB and depth features as well
as learning-based fusion [Lai et al., 2011b; Cheng et al.,
2015a]. Towards building a unified solution for feature learn-
ing and RGB-D fusion, a promising trend is to devise an
end-to-end deep learning system via convolutional neural
networks (DCNN) [Gupta et al., 2014; Eitel et al., 2015;
Wang et al., 2015], such as the one shown in Fig. 1 (a). Such
ideas were inspired by the great success of deep learning for
image classification (only RGB data). It should be noticed
that DCNN models always require a large-scale dataset for
supervised training, e.g., ImageNet with millions of anno-
tated images [Deng et al., 2009]. However, labeling such a
large dataset for the emerging RGB-D object recognition task
is still expensive and time consuming. This prevents DCNN
from quickly promoting this research area. Thus it is neces-
sary to develop a new effective training framework for deep
learning to benefit from the massive unlabeled RGB-D data,
which is often cheap and easily available.

To handle the aforementioned problem, a natural idea is to
incorporate the conventional semi-supervised learning meth-
ods into the deep learning framework. Although many suc-
cessful semi-supervised methods exist in the literature [Zhu,
2005], we are particularly interested in the co-training algo-
rithm due to its unique advantage over the multimodal data.
Theoretical proofs have been given in [Blum and Mitchell,
1998; Balcan et al., 2004] to guarantee the success of co-
training in learning from the unlabeled data on condition that:
1) each example contains two views, either of which is able
to depict the example well; and 2) the two views should not
be highly correlated. RGB-D data matches the two condi-
tions well by providing two complementary cues of objects
(i.e., RGB and depth). Therefore, the goal of this paper is to
develop a semi-supervised multimodal deep learning frame-
work based on co-training, as shown in Fig. 1 (b).

The pipeline of the framework can be summarized as fol-
lows. First, the RGB- and depth-DCNN models are trained
on the given labeled data of the respective views. Then each
model is applied to predict the unlabeled pool and label the
most confident examples for the other model, for which these
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examples are random and informative to increase its capabil-
ity through the next round training. The two steps are re-
peated until no confident examples can be chosen for each
other. Finally, we add a fusion layer to combine the two
stream networks for recognition and jointly train the whole
model.

Although the proposed framework looks quite straightfor-
ward, it is not a trivial task to make it work. In fact, starting
the framework directly doesn’t show any inspiring results in
our experiments. There are two obstacles during the train-
ing of the framework. One is about the initial phase. Such
a limited labeled set is hard to provide a good deep learning
model for either the RGB or the depth modality due to over-
fitting, even though each model can be pretrained based on
other datasets like ImageNet and then finetuned on the RGB-
D object recognition task. The other is about the co-training
phase. Since each DCNN model selects those most confident
examples from every predicted class, it is prone to result in
a biased distribution over each category in the labeled pool
along with co-training, e.g., almost all “apples” will be red
but few are green, and the “cups” with handles will be dom-
inant compared to those without handles, meaning that the
intra-class diversity of each category is fading. As a result,
the final DCNN models trained on the imbalanced labeled
set have poor generalization ability for category-level object
recognition on the unseen data.

Two strategies are proposed in this paper to address the
involved problems. First, we devise two reconstruction net-
works to better initialize the RGB- and depth-DCNN mod-
els for object recognition separately. The reconstruction net-
works make use of both the labeled and unlabeled data for
unsupervised feature learning, which can help to relieve the
over-fitting problem effectively. Second, we introduce a di-
versity preserving co-training algorithm to balance the added
samples from the unlabeled pool. To this end, we adopt
the convex clustering [Lashkari and Golland, 2007] to au-
tomatically discover various intra-class attributes over each
category, and then keep the added samples to uniformly
cover every attribute of every category during the iterations.
Such informative and balanced samples can boost the RGB-
and depth-DCNN models during every round training. We
demonstrate the effectiveness of the two strategies in the ex-
periments.

The rest of this paper is organized as follows. Section 2
briefly reviews related work. Section 3 introduces the pro-
posed semi-supervised multimodal deep learning framework.
Experimental results and detailed analysis are reported in
Section 4. In Section 5, we finally draw our conclusions.

2 Related Work
RGB-D Object Recognition. Many successful methods
have been proposed for RGB-D object recognition in recent
years. Here we review those state-of-the-art supervised as
well as semi-supervised approaches evaluated on the bench-
mark RGB-D datasets.

Supervised Methods. Early work can be divided into
two groups. One was focused on feature extraction of the
novel RGB-D data, including handcrafted features [Lai et al.,
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Figure 1: The structures of (a) supervised and (b) semi-
supervised multimodal deep learning for RGB-D object
recognition. Both (a) and (b) jointly learn the features and
classifiers in an end-to-end fashion.

2011a] (such as SIFT and spin images), a series of appearance
and shape kernel descriptors [Bo et al., 2011a], and automati-
cally learning features via successful machine learning meth-
ods [Blum et al., 2012; Bo et al., 2012; Socher et al., 2012;
Jhuo et al., 2015]. The other tried to explore a more ef-
fective way for RGB and depth fusion [Lai et al., 2011b;
Cheng et al., 2015a] instead of a direct feature concatenation
in the first group. Both the two groups of work were followed
by SVM or random forest classifier, fully supervised by all
the training data for better object recognition. Very recently,
researches began to jointly learn the features, classifiers and
RGB-D fusion using end-to-end deep learning [Gupta et al.,
2014; Eitel et al., 2015; Wang et al., 2015]. Due to the lack
of a large scale annotated RGB-D object dataset, they spared
no efforts to augment the data, e.g., synthesizing objects via
CAD rendering, as well as generating new samples via geo-
metrical transformations. Compared to the real data, the arti-
ficial data inevitably has a different distribution, and is hard to
provide the same rich information to depict object categories.
Thus the potential of deep learning to improve RGB-D object
recognition is limited.

Semi-Supervised Methods. The most similar work to ours
is that of [Cheng et al., 2014; 2015c], who also employed co-
training for RGB-D object recognition to reduce the depen-
dence on large annotated training sets. However, they only
adopted co-training to retrain the RGB and depth SVM clas-
sifiers based on the features extracted in advance. Different
from them, this paper proposes a powerful semi-supervised
deep learning method, which can jointly learn the features,
classifiers and RGB-D fusion by making use of the unlabeled
data. Experimental results show that our method achieves
much better performance.
Semi-Supervised Deep Learning. [Weston et al., 2012] pro-
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Figure 2: Overview of our semi-supervised multimodal deep learning framework for RGB-D object recognition. The training
of the framework mainly contains two iterative steps: 1) Training the RGB- and depth-DCNN models over the respective data
based on the labeled pool (indicated as solid lines); 2) Applying each model to predict the unlabeled pool and select the most
confident samples over each category for the other, whilst keeping these newly labeled examples to preserve intra-class diversity
(indicated as dashed lines. See details in the text.). After all iterations are completed, we add a fusion classification layer and
optimize the entire model end-to-end. Note that all the classifiers are implemented with a hingeloss layer. Best viewed in color.

posed a semi-supervised deep learning method for the single-
modal data by embedding a pairwise loss in the middle layer.
However, they required extra information about whether a
pair of unlabeled images belong to the same class, which were
hard to obtain in reality. Differently, we focus on the multi-
modal RGB-D object recognition, and propose a more ex-
plicit semi-supervised deep learning framework to learn from
the unlabeled data via diversity preserving co-training.

3 Our Approach
3.1 Overview
We target on learning a powerful semi-supervised mul-
timodal deep learning model for RGB-D object recogni-
tion based on limited labeled data and massive unlabeled
data. To be specific, we have a small labeled pool L =

{(I1,D1, y1), · · · , (IM ,DM, y

M

)} with M pairwise RGB-
D objects , where I

i

and D
i

denote the corresponding RGB
and depth modalities of the i-th example with the category
label y

i

2 {1, · · · , C}. Meanwhile, we have a large-scale
unlabeled RGB-D dataset U = {(I1,D1), · · · , (IN ,DN)}
with similar data distribution of the labeled pool. The pro-
posed framework in this paper is shown in Fig. 2, for which
a diversity preserving co-training algorithm is introduced to
learn from the unlabeled RGB-D data. Now we detail three
important phases of the framework.

Initialization. A well trained RGB- as well as depth-
DCNN model before co-training is the first prerequisite of
the whole system. This paper adopts the architecture of
AlexNet [Krizhevsky et al., 2012] to represent both the RGB
and depth data. However, the small labeled set L is infeasi-
ble to supervise the training of such deep learning models for
object recognition. To address this problem, we devise two
reconstruction networks (Section 3.2) to initialize the convo-
lution layer parameters (i.e., conv1, ...,conv5) of RGB- and
depth-DCNN models, respectively. Each reconstruction net-
work tries to encode and decode its inputs, taking advantage
of all the labeled and unlabeled data to learn meaningful fea-
tures. After pretrained by the corresponding reconstruction

network, the RGB- and depth-DCNN models finetuned on L
can generalize well for object recognition.

Training. The training of the semi-supervised deep learn-
ing framework mainly involves two iterative steps, including
training each DCNN model and updating the labeled pool as
illustrated in Fig. 2. For clarity, we denote the state of the
system at the t-th iteration as L

t

, U
t

. To select an informative
and balanced set H

t

= {HRGB

t

,Hdepth

t

} = {(I
i

,D
i

, ỹ

i

)}
(ỹ

i

is the predicted category label) from U
t

to update the next
round train of the deep learning models effectively, a diversity
preserving co-training algorithm (Section 3.3) is introduced.

The goal of the diversity preserving algorithm is to make
sure that H

t

captures as diverse intra-class attributes as pos-
sible for each category of each modality. To this end, the
convex clustering [Lashkari and Golland, 2007] is utilized to
discover latent attributes over each category of each modality
based on L

t

, and then gives a RGB as well as a depth attribute
tag for each object, i.e., the labeled pool can be recorded as
L
t

= {(I
i

, z

RGB

i

,D
i

, z

depth

i

, y

i

)}, where the attribute tag
z

RGB

i

2 {1, · · · , ��ZRGB

��}, z

depth

i

2 {1, · · · , ��Zdepth

��}.
Note that ZRGB (or Zdepth) is an attribute set integrating
all the generated attributes over all categories of the RGB
(or depth) modality. Compared to those non-convex cluster-
ing methods like k-means, convex clustering is guaranteed
to converge to the global minimum and automatically finds
the optimal number of clusters given a temperature-like pa-
rameter. Such a characteristic is important for our method
to search for the unknown representative attributes for each
category. Now we train an extra attribute classifier for each
modality, which can help the category classifier to select a
diversity preserving confident set H

t

, consisting of uniform
samples over each attribute of each category. It is noted that
all the classifiers in Fig. 2 are implemented with a hingeloss
layer.

When no confident examples can be selected from U
t

, the
iteration stops. Finally, we add a fusion layer and train the
whole network end-to-end based on the resulting model of
the last iteration.
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Figure 3: The reconstruction network for the RGB modality,
which is the same for the depth modality (We compute 3-
channel surface normals to represent the depth data).

Inference. Given an unseen RGB-D object, we utilize the
final RGB model, depth model, and the fusion model to pre-
dict the category label, respectively. In the experiments, we
compare the performance of our method with the state of the
arts evaluated on each modality as well as the both.

3.2 Reconstruction Networks for Pretraining
The architecture of our reconstruction network for each
modality is shown in Fig. 3, which consists of 5 convolutional
layers (with the same structure of the convolutional layers in
Fig. 2) and 12 fully connected layers to decode each channel
of the inputs. It is noted that the depth data is represented as
3-channel surface normals in this paper, since researches [Bo
et al., 2012; Cheng et al., 2015c] have demonstrated that sur-
face normals can capture more robust geometry cues of object
than the original depth data. For simplicity, we still use the
term “depth” instead of the surface normals in this paper.

Both the labeled and unlabeled data are utilized to train
the reconstruction network of each modality. Specifically,
the input of the network is a rescaled RGB or depth im-
age x 2 R148⇥148⇥3. The corresponding output is a recon-
structed map R(x) 2 R64⇥64⇥3 with downsampled resolu-
tion due to memory and computational loss. We train the
network by minimizing the mean square reconstruction error

Loss

v

R

=

1

M +N

X

x2{Lv
,Uv}

3X

ch=1

��
x̃

ch �R

ch

(x)

��2
, (1)

where M , N is the size of the labeled and unlabeled pool in
the beginning, ch denotes the channel index of the input, and
the modality v represents RGB or depth data. x̃ 2 R64⇥64⇥3

is the ground truth by resizing x via bilinear interpolation.
We use the standard back-propagation algorithm based

on stochastic gradient descent (SGD) to optimize the re-
construction network. When the network of each modality
achieves convergence, the parameters of the convolutional
layers (conv1, ..., conv5 in Fig. 3) are utilized to initialize the
corresponding convolutional layers of each modality in the
proposed framework of Fig. 2. The experiments will show
that such a pretraining strategy is able to largely improve the
generalization ability of RGB- and depth-DCNN models for
object recognition, even though very limited labeled samples
in L are available to supervise the training.

3.3 Diversity Preserving Co-Training
The goal of the diversity preserving co-training algorithm is
to select highly confident examples with predicted labels from

Convex Clustering
Convex Clustering

RG
B-CNN

Depth-CNN

(a) (b) (c) (d)

Figure 4: A sketch map illustrates the convex clustering over
the category “coffee mug” in the labeled pool. For RGB
modality, it finds 5 latent attributes, while 3 attributes for the
depth modality (fc7 features are used for convex clustering).

the unlabeled pool, whilst keeping these examples uniformly
cover each category, as well as each intra-class attribute for
each category. Such newly labeled examples by one DCNN
model can greatly boost the performance of the other one in
the next round training. Now we introduce the three main
components of the iterative algorithm. For clarity, sometimes
we omit the iteration number t in equations below.

Convex Clustering. We apply convex clustering [Lashkari
and Golland, 2007] to discover the diverse intra-class at-
tributes for each category of each modality independently
based on the labeled pool L. Convex clustering solve the clus-
tering problem by maximizing the following log-likelihood
function

l({q
x

};Lv

c

) =

1
|Lv

c |
P

x2Lv
c

log[

P
x

02Lv
c

q

x

0
e

��d�(x,x
0)
]

s.t.

P
x2Lv

c

q

x

= 1, q

x

� 0

(2)

where the category c 2 {1, · · · , C}, the modality v denotes
the RGB or depth data, and d

�

(x, x

0
) = ||�(x) � �(x

0
)||2 is

the Euclidean distance between the DCNN features of two
examples (fc7 is used). The scalar weight q

x

denotes the
representative degree of exemplar x, while � is a positive
temperature-like parameter that controls the sparseness of
{q

x

} (q
x

> 0 indicates that x is a cluster center, and q

x

= 0

denotes an exemplar). Given �, we follow [Lashkari and
Golland, 2007] to optimize the likelihood function for each
category of each modality individually. Due to space limits,
please refer [Lashkari and Golland, 2007] for more details.
As a result, we obtain two cluster sets

ZRGB

= {ZRGB

1 , · · · ,ZRGB

C

}
Zdepth

= {Zdepth

1 , · · · ,Zdepth

C

}, (3)

where Zv

c

is a subset that contains all the clusters generated
on category c of modality v. Fig. 4 illustrates how convex
clustering is applied to discover latent attributes for the cate-
gory “coffee mug” for example.

Multitask Learning. For each modality, we define each
cluster as an attribute, and assign every exemplar to its clos-
est cluster to tag the same attribute label. Now we train the
DCNN model for both category and attribute recognition, as
shown in Fig. 2. The loss function of the multitask learning
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for each modality is

Loss

v

MT

=

P
x2Lv

max(0, 1� y'

v

cat

(x))+

�

P
x2Lv

max(0, 1� z'

v

attr

(x)),

(4)

where y, z denote the ground truth category label and attribute
label for exemplar x of modality v, while '

v

cat

, 'v

attr

are the
corresponding predicted probabilities of the DCNN model.
We fix the coefficient � = 1 in the experiments.

Co-Training. Finally, the two well-trained attribute
DCNN models are utilized to predict the unlabeled pool U
over the respective modalities. A highly confident set Hv for
RGB or depth data can be selected as follows:

Hv

=

[
z2Zv

{(x, z)|scorev
attr

(z|x) > ⌧, x 2 Uv}, (5)

where score

v

attr

(z|x) = f('

v

attr

(z|x)) is the predicted score
for x carrying the attribute z via a softmax function f , and
⌧ is a score threshold. To further keep the data balance and
accuracy, we only reserve the top K examples with highest
scores for each attribute in Hv . Then for each remaining ex-
emplar x 2 Hv , we are easy to obtain its category label y
based on the predicted attribute label z according to Eq.(3).
Now we attach both the RGB and depth data to x and update
the labeled pool as

L
t+1 = L

t

[
HRGB

[
Hdepth

, (6)

where every exemplar in L
t+1 still contains pairwise RGB-D

data with a category label (the attribute labels will be updated
by the next round convex clustering). During the next round
training, HRGB can greatly improve the depth-DCNN model
as they are new and informative labeled samples, which is the
same to Hdepth for RGB-DCNN.

4 Experiments
4.1 Experimental Setup
Dataset. We perform our experiments on the Washington
RGB-D dataset [Lai et al., 2011a] captured by Microsoft
Kinect. The dataset consists of 300 household objects,
grouped into 51 categories. Each object is imaged from 3
vertical angles as well as multiple horizontal angles, result-
ing roughly 600 images per object. We subsample every 5th
frame from each instance and obtain around 41,877 images
in total for category recognition.

To evaluate our semi-supervised learning, we first utilize
one of the 10 random splits provided by [Lai et al., 2011a]
to divide the dataset into a training set and a testing set. For
any split, there are around 35,000 examples for training and
around 6,877 for testing. Then we randomly labeled 5% sam-
ples (around 1750) of the training set, and remain the rest
unlabeled (around 33,250). Finally, we train our model based
on both the labeled and unlabeled data in the training set, and
evaluate its performance on the testing set.

Besides semi-supervised methods, we also compare our
approach to those existing powerful supervised methods, for
which all the objects in the training set are manually labeled
to train their classifiers. All the experiments are repeated 10

Table 1: Comparison of recent results on the Washington
RGB-D object database for category recognition.

Supervised Methods Depth RGB Combine
[Lai et al., 2011a]linear svm 53.1± 1.7 74.3± 3.3 81.9± 2.8
[Lai et al., 2011a]kernel svm 64.7± 2.2 74.5± 3.1 83.8± 3.5
[Lai et al., 2011a]random forest 66.8± 2.5 74.7± 3.6 79.6± 4.0
[Lai et al., 2011b]IDL 70.2± 2.0 78.6± 3.1 85.4± 3.2
[R.C. et al., 2012]3D SPMK 67.8 – –
[Bo et al., 2011a]KDES 78.8± 2.7 77.7± 1.9 86.2± 2.1
[Blum et al., 2012]CKM – – 86.4± 2.3
[Bo et al., 2011b]HMP 70.3± 2.2 74.7± 2.5 82.1± 3.3
[Bo et al., 2012]SP�HMP 81.2± 2.3 82.4± 3.1 87.5± 2.9
[Socher et al., 2012]CNNRNN 78.9± 3.8 80.8± 4.2 86.8± 3.3
[Schwarz et al., 2015]CNN – 83.1± 2.0 89.4± 1.3

[Jhuo et al., 2015]R2ICA 83.9± 2.8 85.7± 2.7 89.6± 3.8
[Eitel et al., 2015]FusCNN(HHA) 83.0± 2.7 84.1± 2.7 91.0± 1.9
[Eitel et al., 2015]FusCNN(jet) 83.8± 2.7 84.1± 2.7 91.3± 1.4
[Cheng et al., 2015a]warping – – 92.7 ± 1.0
[Wang et al., 2015]NMSS 75.6± 2.7 74.6± 2.9 88.5± 2.2
[Cheng et al., 2015b]CFK 85.8 ± 2.3 86.8 ± 2.2 91.2± 1.5

Semi-Supervised Methods Depth RGB Combine
[Cheng et al., 2014]CT+SVM1 71.8± 0.8 77.1± 2.3 81.6± 1.4
[Cheng et al., 2015c]CT+SVM2 75.4± 2.4 78.7± 1.4 83.7± 1.3

our approach 82.6± 2.3 85.5± 2.0 89.2± 1.3

times based on the given 10 splits, and the average accuracies
are reported for comparison.
Parameter Setting of Our Approach. We fix ⌧ = 0.5,
K = 20, � = 1 for our semi-supervised learning method,
although dynamically finetuning each parameter could result
in a better performance. For the reconstruction network of
each modality, we use a mini-batch b = 128 of images and
initial learning rate ⌘ = 10

�5, multiplying the learning rate
by 0.1 at every s = 4000 iterations. Towards the training
of the RGB- and depth-DCNN models for recognition during
every iteration, we set b = 128, ⌘ = 10

�7, and s = 3000.
It is noted that we only apply convex clustering for the first
5 iterations in consideration of efficiency, and then keep the
attribute labels unchanged for the rest iterations (around 400
attributes for RGB, and 280 attributes for depth at last).

4.2 Overall Performance
Table 1 presents the recognition accuracies of all recent meth-
ods. We can find that: 1) with only 5% labeled data, our
method can achieve very promising result on each modal-
ity (depth: 82.6%, RGB: 85.5%, both: 89.2%), demonstrat-
ing the effectiveness of the proposed semi-supervised multi-
modal deep learning framework based on diversity preserving
co-training algorithm; 2) Compared to other semi-supervised
methods [Cheng et al., 2014; 2015c], which adopted the co-
training algorithm directly to retrain the RGB- and depth-
SVM classifiers iteratively based on the extracted features in
advance, our end-to-end deep learning system shows a large
improvement (nearly 7% increase over each modality) for ob-
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Figure 5: Performance analysis of the semi-supervised multimodal deep learning framework. See details in the text.

ject recognition; 3) Our method is comparable to all state-of-
the-art supervised methods, except for the one of [Cheng et
al., 2015a], who employed dense matching to obtain a query
adaptive similarity measure for RGB-D object recognition.
Despite of the best performance, their algorithm is very time-
consuming due to plentiful dense matching required for one
query object, restricting their potentials in practical use. Our
method is efficient in testing, since the recognition only needs
one forward propagation of the network.

Furthermore, we also run our method on the fully su-
pervised training data, and the average results are 84.0%

accuracy for depth, 86.3% for RGB, and 91.3% for both,
which is a little superior to our method based on only 5%
labeled data. The results further demonstrate that our semi-
supervised learning approach is able to make use of the unla-
beled data very effectively. Readers may doubt why the deep
learning model does not surpass the traditional methods like
fisher kernel encoding [Cheng et al., 2015b] and the dense
matching methods [Cheng et al., 2014]. We think the main
reason is the scale of the Washington dataset, which is rela-
tively very small compared to ImageNet [Deng et al., 2009].
If given more labeled or unlabeled RGB-D data, we believe
our method can achieve much higher performance for object
recognition.

4.3 Detailed Analysis
In this section, we analyze the effects of the reconstruction
networks, the score threshold ⌧ , the diversity preserving co-
training and the initial labeled size to the performance of our
semi-supervised multimodal deep learning framework. Note
that we evaluate each of them by keeping others the same to
the experimental settings in Section 4.1.

The effect of the reconstruction networks. To demon-
strate the effectiveness of our reconstruction networks for
pretraining, we compare it with a popular pretraining skill,
which utilizes the AlexNet model [Krizhevsky et al., 2012]
pretrained on imageNet to initialize the parameters of both
the RGB- and depth-DCNN models. As shown in Fig. 5 (a),
the reconstruction networks can better boost the performance
of our semi-supervised learning. We explain that, compared
to the knowledge learned from other domains like ImageNet,
the reconstruction network trained on the RGB-D data is able
to learn more proper cues for RGB-D object representation.

The effect of the score threshold ⌧ . As shown in

Fig. 5 (b), our semi-supervised learning is robust to ⌧ when
0.3 < ⌧ < 0.7. Such a characteristic is very important in
practical usage since a wide range of ⌧ can keep the algo-
rithm successful. When ⌧ is smaller than 0.3, it drops a little
because some unconfident examples (probably with wrongly
predicted labels) can be involved to distract the next round su-
pervised training. When ⌧ is larger than 0.7, the performance
of our method begins to drop quickly. It is reasonable, since
very few examples can be added to the labeled pool to benefit
the network training. Note that we always constrain that the
added confident examples of each attribute is no more than
K = 20 for balance and accuracy, whatever the value of ⌧ is
set.

The effect of the diversity preserving co-training. As
shown in Fig. 5 (c), our diversity preserving co-training algo-
rithm can significantly increase the capability of each DCNN
model along with iterations. When we employ the conven-
tional co-training algorithm without diversity preserving con-
straint, the improvements are much inferior, as shown in
Fig. 5 (d). We explain that the conventional co-training is
prone to result in a biased labeled pool, which limits the po-
tential of each DCNN model a lot.

The effect of the initial labeled size. When the initial
labeled size of the training set is changed from 1% to 10%,
the recognition accuracies of our method are increased from
(68.3%, 79.3%, 84.4%) to (83.8%, 86.1%, 91.2%). Adding
more labeled examples do not show obvious improvements,
as 10% labeled data is already sufficient for our method to
learn from the unlabeled data successfully.

5 Conclusion

This paper proposes a semi-supervised multimodal deep
learning framework for RGB-D object recognition, which is
capable of reducing the dependence of deep learning method
on large-scale manually labeled RGB-D data. The key to the
framework are two parts: 1) the reconstruction networks for
good initialization and 2) the diversity preserving co-training
algorithm for effective semi-supervised learning. Experi-
mental results on the Washington RGB-D benchmark dataset
demonstrate the effectiveness of our approach.
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