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Abstract

This paper studies the problem of improving objec-
t recognition using the novel RGB-D data. To address the
problem, a new convolutional Fisher Kernels (CFK) method
is proposed to represent RGB-D objects powerfully yet ef-
ficiently. The core idea of our approach is to integrate the
both advantages of the convolutional neural networks (CN-
N) and Fisher Kernel encoding (FK): CNN model is flexible
to adapt to new data sources, but requires for large amounts
of training data with significant computational resources
for good generalization; In comparison, FK encoding is
able to represent objects powerfully and efficiently with s-
mall training data, however, its success highly depends on
the well-designed SIFT features in literature, which may not
be suitable for the new depth data. CFK can be interpret-
ed as a two-layer feature learning structure to bridge the
two models. The first layer employs a single-layer CNN to
learn low-level translationally invariant features for both
RGB and depth data efficiently. The second layer aggre-
gates the convolutional responses by FK encoding. Here 2D
and 3D spatial pyramids are applied to further improve the
Fisher vector representation of each modality. Experiments
on RGB-D object recognition benchmarks demonstrate that
our approach can achieve the state-of-the-art results.

1. Introduction

The past several years have witnessed the rapidly in-
creasing popularity of object recognition by fusing the RGB
and depth (RGB-D) data [19, 8, 3, 5, 20, 4, 7, 30, 26, 27, 27,
10]. Such a booming application of the novel RGB-D data
mainly attributes to recent depth cameras, such as Kinect,
which are able to record high quality frames of both color
and depth information synchronously. Another remarkable

trend is that these advanced depth cameras are being inte-
grated into mobile devices like Google Tango [1] and Mi-
crosoft HoloLens [2], which further promote the researches
of RGB-D object recognition.

Although the captured RGB-D data provides rich multi-
modal information to depict an object, such as color, tex-
ture, appearance (RGB modality) as well as shape and
geometry information (depth modality), how to effective-
ly represent each modality and combine the both to im-
prove object recognition remains an open problem. Much
progress has been made in the past few years, from bag-of-
words model with handcrafted features [19, 8, 26, 33] and
efficient match kernels with kernel features [5] to feature
learning approaches [4, 7, 30].

Motivated by the great success of Fisher Kernel encoding
(FK [24, 25]) and deep convolutional neural networks (CN-
N [18]) in visual object recognition such as Pascal VOC
Challenge [14] and ImageNet Challenge [13], this paper
proposes a new feature learning method for RGB-D objec-
t recognition, termed convolutional Fisher Kernels (CFK).
CFK is developed to learn features from the raw RGB and
depth data powerfully and efficiently by combining the u-
nique advantages of FK and CNN model. Towards FK, it is
a generic framework to combine the benefits of generative
and discriminative approaches. In the context of image clas-
sification, it has yielded clearly superior results on a variety
of image benchmarks than the popular bag-of-words (BoW)
model based on other feature encoding methods such as LL-
C [32], super vector encoding [34], etc. (see [9, 16] for a
survey). Another major advantage of FK is that a very s-
mall codebook size and linear classifiers are sufficient for
these impressive results, i.e., computing FK feature vec-
tors and learning classifiers are very efficient in practice.
However, in literature, the success of FK for image recogni-
tion [24, 25] is highly dependent on the well-designed SIFT
features, which are not suitable for the novel depth data as
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Figure 1. Overview of the CFK framework for RGB-D object recognition. Best viewed in color.

shown in [5, 8]. To get rid of this drawback, a single-layer
CNN model (It can be extended to multi-layer architecture
easily, however, we empirically find that a single layer is
sufficient for CFK to achieve the state of the art result on
RGB-D object recognition benchmarks [19, 8] whilst being
efficient.) is employed in this paper to learn low-level trans-
lationally invariant features from the raw RGB and depth
data, respectively. Finally, in analogy to spatial pyramid
matching in BoW model [21], 2D and 3D spatial pyramid-
s are exploited separately for the two modalities to further
improve the performance of the FK representation. To the
best of our knowledge, this is the first work to combine con-
volutional neural networks and Fisher Kernel encoding for
RGB-D object recognition. Experimental results demon-
strate that our approach can significantly outperforms the
existing state-of-the-art methods.

The rest of this paper is organized as follows. Section 2
briefly reviews related work. Section 3 introduce the pro-
posed CFK approach for RGB-D object recognition. Ex-
tensive experimental results are reported in Section 4 and
conclusion is drawn in Section 5.

2. Related Work

In this section, we discuss the relevant prior work with
focus on (1) methods for RGB-D object recognition and (2)
approaches that attempt to bridge FK and CNN model.

Methods for RGB-D Object Recognition. Most of re-
search efforts focused on feature extraction. Lai et al. [19]
extracted handcrafted features such as SIFT [23], texton his-
tograms [22] and spin images [17] over the color and depth
frames individually, followed by a concatenation of all these
features to depict each object. In view of the specificity of

the depth information, quantized 3D SURF local descrip-
tors with selective 3D spatial pyramids [26] and depth k-
ernel features [5] were designed to represent the depth cue
more effectively. Another line of work [4, 7, 30] exploited
very successful machine learning methods to learn power-
ful features from the raw RGB-D data, and obtained very
promising results for object recognition. Instead of feature
extraction, Lai et al. [20] paid attention to RGB and depth
fusion by defining a view-to-object distance via sparse dis-
tance metric learning, and Cheng et al. [10, 11] proposed a
semi-supervised framework to make use of both the labeled
and unlabeled RGB-D data, which benefited a lot from the
complementarity between the RGB and depth cues. In this
paper, the proposed CFK approach belongs to the family of
feature learning methods.

Deep Fisher Networks. There have been attempts to
bridge FK and CNN for visual object recognition. Si-
monyan et al. [29] stacked FK encoding recursively in mul-
tiple layers analogous to the deep architecture of CNN mod-
el. It achieved competitive results with CNN at a smaller
computational cost. Very recently, Sydorov et al. [31] pro-
posed to train Fisher Kernel SVMs in a deep way, of which
the classifier parameters and GMM parameters are learned
and optimized jointly from training data. Indeed, both of the
two work tried to construct the deep Fisher networks like C-
NN model to represent objects more powerfully. However,
they still depended on the well-designed SIFT features to
obtain the feature responses of the first layer. SIFT feature
are popular to characterize the contents in color or grayscale
images, but are not suitable to new data sources like depth
frames. To address the problem, the proposed CFK in this
paper is a more explicit way to combine the CNN model and
the FK encoding, which can learn powerful features from



the raw RGB and depth data, whilst being efficient.

3. Convolutional Fisher Kernels

3.1. Overview

Fig. 1 illustrates the overview of the CFK framework
for RGB-D object recognition. Given the RGB or depth
modality of an object, we first learn its convolutional feature
maps via the pretrained filters. Then PCA decorrelation is
applied and lower-dimensional convolutional responses are
obtained. After that, Gaussian mixture models are utilized
to model the distribution of these convolutional feature vec-
tors, and 2D or 3D spatial pyramids are introduced to con-
sider the rough geometry structure information of an object.
Finally, Fisher Kernel encoding is exploited to compute the
gradient of the log-likelihood of the distribution probability
density function and generate the image-level feature vec-
tor. A linear SVM classifier is trained for each modality,
and the combined scores are used to predict the category
label of a new object It:

category(It) = argmax
ci∈C

γSciRGB + (1− γ)Scidepth, (1)

where 0 ≤ γ ≤ 1 is the coefficient for score fusion and
C denotes the label set of all the categories. Details of the
process are given below.

3.2. Single-Layer Convolutional Neural Networks

Derived from the deep learning structures, a single CNN
layer with the state-of-the-art preprocessing [12] is demon-
strated to be powerful yet efficient to learn low-level fea-
tures from the raw data. This paper applies it for RGB and
depth modality, respectively. The procedure of single-layer
CNN mainly consists of two steps: (1) pretraining the fil-
ters by k-means clustering over the randomly sampled and
preprocessed image patches; and (2) convolving the filters
over the whole image to generate the feature responses.

Pretraining The Filters. For RGB or depth modality,
we first sample a set of squared sub-patches from the train-
ing image set. According to [12], each sub-patch is normal-
ized by subtracting the mean and then divided by the stan-
dard deviation of its elements. In addition, ZCA whitening
is performed to de-correlate pixels and remove redundan-
t features from raw images. Note that these preprocessing
steps are crucial, especially for the depth modality, since the
absolute depth values can be confused to depict the geom-
etry and shape cues of an object. Finally, k-means cluster-
ing is used to learn the filters over these preprocessed sub-
patches. Fig. 2 shows the resulted RGB and depth filters.
We can see that both RGB and depth filters are sensitive
to edge structures of objects, while RGB filters are able to
capture additional color cues.

Figure 2. The RGB filters (left) and the depth filters (right)
learned by k-means clustering on the Washington RGB-D object
dataset [19]. Best viewed in color.

Learning Convolutional Feature Maps. For each
modality of each object, we convolve the correspond-
ing filters over the whole image and obtain the convo-
lutional feature maps X(RGB), X(depth) ∈ Rw×h×k,
where w × h denotes the size of each feature map, and
k is the number of feature maps (equal to the number of
the filters). It is worth noting that both X(RGB) and
X(depth) are post-processed by rectification with abso-
lute values and local normalization for the convolutional
feature responses, which is empirically shown to be im-
portant for recognition [12]. Finally, PCA reduction is
performed to de-correlate convolutional feature maps of
each modality, and generates the reduced feature respons-
es X ′(RGB), X ′(depth) ∈ Rw×h×d, where d < k.

3.3. Fisher Kernel Encoding

FK is first introduced by [24] to visual image classi-
fication, and then significantly improved by [25]. This
paper applies it to new RGB-D object recognition. Tak-
ing the convolutional feature responses X ′ of each modal-
ity of each object as a set of input feature vectors χ =
{x1, x2, ..., xN} ∈ Rd×N (N = w × h), the target of CFK
is to construct the image-level feature vector G ∈ RD by
characterizing χ via Gaussian mixture models. The above
process is called Fisher Kernel encoding, and note that it is
separate for RGB and depth modality.

Fisher Kernel encoding mainly consists of three mod-
ules. First, Gaussian mixture models (GMMs) are learned
to describe the probability density distribution of the con-
volutional feature vectors. The parameters of GMMs are
denoted as θ = {(wm, µm,Σm)}m=M

m=1 , where wm, µm
and Σm mean the weight, the mean vector and the covari-
ance matrix of the mth Gaussian model. According to [25],
we train the GMMs by using the Maximum Likelihood cri-
terion via a standard Expectation-Maximization algorithm.
Second, assume that the convolutional feature vectors χ ex-
tracted from an object (RGB or depth modality) are inde-
pendent each other, then the object can be described by the
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Figure 3. 3D spatial pyramids with Level 0, Level 1, and Level 2
(from left to right).

following gradient vector:

L(χ|θ) =
1

N

n=N∑
n=1

∂ log p(xn|θ)
∂θ

, (2)

where p(xn|θ) is the probability density function of GMMs.
Using the Fisher information matrix [24]

Fθ = Ex∼θ[
∂ log p(x|θ)

∂θ
× (

∂ log p(x|θ)
∂θ

)′], (3)

the Fisher vector is represented as the normalized gradient
vector

Gχθ = F
−1/2
θ L(χ|θ). (4)

Following [24], the diagonal closed-form approximation is
used for the Fisher information matrix, and the above Fisher
vector can be computed as follows:

Gχθ = [Gχµ,i;G
χ
Σ,i], i = 1, . . . ,M,

Gχµ,i = 1
N
√
wi

N∑
n=1

ϕn(i)Σ
−1/2
i (xn − µn),

GχΣ,i = 1
N
√

2wi

N∑
n=1

ϕn(i)[Σ−1
i (xn − µn)

2 − 1],

ϕn(i) = wip(xn|θi)∑M
j=1 wjp(xn|θj)

.

(5)

Here ϕn(i) denotes the soft voting of descriptor xn to Gaus-
sian i. According to [25], the gradient Gχw,i to w is dis-
carded as it brings little additional information. Therefor,
the Fisher vector for the holistic image is constructed by
the concatenation of Gχµ,i and GχΣ,i for all the Gaussians.
The generated Fisher vector is Gχθ ∈ R2Md (without spatial
pyramids). Finally, 2D and 3D spatial pyramids are applied
for RGB and depth modality individually, which are to take
into account the rough spatial geometry information of the
object for FK encoding. Details are given in the next sec-
tion.

3.4. 2D/3D Spatial Pyramids

Lazebnik et al. [21] demonstrated that the weak spatial
geometry information by 2D spatial pyramids can signifi-
cantly improve the performance of BoW models for visu-
al object/scene recognition. Similarly, Perronnin et al. [25]

applied 2D spatial pyramids to improve FK encoding for vi-
sual data representation. In analogy to the 2D spatial pyra-
mids, 3D spatial pyramids are utilized for the depth modal-
ity in our approach.

As illustrated in Fig. 3, the depth frame is first
projected to the three-dimensional space (aka 3D
point clouds), and then a three-level spatial pyramid
{1× 1× 1, 1× 2× 2, 1× 1× 3} are designed. Instead of
subdividing the depth frame uniformly, we fine-tune the
parting plane to make sure that each sub-region contains the
approximately same number of depth pixels. It is necessary
since the uniform subdivision can suffer from the problem
that some subregions may have few depth pixels and cause
noisy representation. With the rectified 3D spatial pyramid,
we extract a robust Fisher vector for each sub-region as
Section 3.3, and concatenate all the Fisher vectors to
represent the depth cue, i.e., with spatial pyramids, the
dimension of the image-level feature representation Gχθ is
16Md (There are 8 bins in total for the three-level spatial
pyramid in Fig. 3). It is worth noting that a similar yet
more complex 3D spatial pyramid is also applied to design
a new handcrafted depth feature in [26]. Towards the 2D
spatial pyramid for the RGB modality, this paper inherits
the three-level partitions {1× 1, 2× 2, 1× 3}, which are
adopted by [21, 25].

Following [25], the Fisher vector of each bin is post-
processed individually with a two-step normalization: pow-
er normalization and L2 normalization:

f (1) = sign(Gχθ )|Gχθ |
α
,

f (2) = f (1)

/√∥∥f (1)
∥∥2

2
,

(6)

where 0 ≤ α ≤ 1. Then the normalized Fisher vector of
each bin are concatenated [f

(2)
bin1; f

(2)
bin2; ...; f

(2)
bin8] to repre-

sent the holistic object. Such a normalization is crucial for
object recognition with a linear classifier.

4. Experiments
This paper evaluates CFK for RGB-D object recognition

on the challenging Washington RGB-D object dataset [19]
and the 2D3D dataset [8], with comparison to the existing
state-of-the-art methods.

4.1. Experimental Setup

CFK Feature Representation. Towards the single-layer
CNN, the size of each modality of each object is first scaled
to 148 × 148, and then 128 filters with size 9 × 9 × R
(R denotes the number of channels for the correspond-
ing modality) are pretrained on these scaled images. The
resulted convolutional feature response for each modality
are 140 × 140 × 128-dimensional. After PCA reduction,
we generate 140× 140× 80-dimensional feature response.



Methods Depth RGB Combine

Linear SVM [19] 53.1± 1.7 74.3± 3.3 81.9± 2.8

Kernel SVM [19] 64.7± 2.2 74.5± 3.1 83.8± 3.5

Random Forest [19] 66.8± 2.5 74.7± 3.6 79.6± 4.0

IDL [20] 70.2± 2.0 78.6± 3.1 85.4± 3.2

3D SPMK [26] 67.8 – –

KDES [5] 78.8± 2.7 77.7± 1.9 86.2± 2.1

CKM [4] – – 86.4± 2.3

HMP [6] 70.3± 2.2 74.7± 2.5 82.1± 3.3

SP-HMP [7] 81.2± 2.3 82.4± 3.1 87.5± 2.9

CNN-RNN [30] 78.9± 3.8 80.8± 4.2 86.8± 3.3

CNN-RNN+CT [10] 77.7± 1.4 81.8± 1.9 87.2± 1.1

CNN-SPM-RNN+CT [11] 83.6± 2.3 85.2± 1.2 90.7± 1.1

CNN-only baseline 78.1± 1.3 82.7± 1.2 87.5± 1.1

CFK 85.8 ± 2.3 86.8 ± 2.2 91.2± 1.5

Table 1. Comparison of recent results on the Washington RGB-D
object database.

For the large-scale Washington RGB-D dataset, we train
M = 256 Gaussians based on the reduced convolutional
feature vectors, while M = 128 for the relatively small-
scale 2D3D dataset. Towards the two-step normalization,
we fix α = 0.5 as [25].

Linear SVM Classifiers. For each modality, a linear
SVM classifier with a hinge loss is trained based on the
training set. We learn the classifier by the primal formu-
lation and a Stochastic Gradient Descent algorithm [28].
Similar to [7], another two modalities, the grayscale image
(derived from the RGB modality) and the surface normal-
s (derived from the depth modality) are used in this paper.
Given an object, the score SRGB of the RGB modality is
actually averaged by the RGB and grayscale scores, and the
score Sdepth is averaged by the depth and normal scores.
The coefficient γ is also simply set to 0.5 in Eqn. 1.

4.2. Washington RGB-D Dataset

Dataset. The Washington RGB-D object dataset [19]
is a large-scale and multi-view object dataset captured by
the Microsoft Kinect. It collects 300 household objects,
grouped into 51 categories. Each object instance is imaged
from 3 vertical angles as well as multiple horizontal angles,
resulting roughly 600 images per instance. There are a to-
tal of around 207,920 color and depth images, which are
subsampled every 5th frame from each instance and give
around 41,877 images for category recognition.

Following the same setting of the work [19], we uti-
lize the provided 10 trials to average the accuracies. For
each train/test trial, one object instance is randomly select-
ed from each category for testing, and the remaining object
instances are for training.

Results. Table 1 shows the comparison of the recogni-
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tion results on the Washington RGB-D object dataset. In-
stead of using handcrafted features, SP-HMP method [7]
designed a two-layer hierarchical matching pursuit via s-
parse coding to learn powerful feature from the raw RGB-
D data, which achieved sizable performance gains. CNN-
RNN [30] proposed a deeper feature learning model by
combining the convolutional neural networks and recursive
neural networks. However, it behaved a litter worse than
SP-HMP, for which the main reason is probable that the
simplified fixed-tree RNNs used in [30] can limit the learn-
ing ability of the CNN-RNN model a lot. In addition, we
show the result of the popular AlexNet [18] as the CNN-
only baseline, which exploits RGB-D data following the
method [15]. The CNN-only baseline may suffer from over-
fitting, as most test instances are unseen in the training set
for this challenging dataset. The work [10, 11] proposed a
co-training method to fuse RGB and depth modality effec-
tively and achieved the state of the art together with CNN-
SPM-RNN features. Our CFK approach can clearly outper-
form all these methods over each modality as well as the
both. Note that all the results of CFK is based on a linear
SVM classifier, which is efficient for practice.

Parameter Analysis. The performance of the proposed
CFK approach is closely related to the sizeM of the GMM-
s as well as the spatial pyramid matching. Each of them
is analysed individually by keeping the other one the same
with the default setting (i.e., M = 256 with 2D/3D spatial
pyramids).

(1) The effect of M . As shown in Fig. 4, the recognition
accuracy of CFK can rise gradually as M increases. This
is because that more Gaussian mixture models can model
the distribution of the convolutional feature vectors better,
and then more powerful feature representation can be gen-
erated by the FK encoding. Note that even a small size, e.g.
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M = 16, can guarantee a superior result for CKF to the
previous methods. When M > 128, it converges to a sta-
ble state with a high accuracy, since very limited additional
information can be further attained to the added Gaussians.
In this paper, we fix M = 256 for the Washington RGB-D
dataset.

(2) The effect of the 2D/3D spatial pyramid matching.
Fig. 5 compares the recognition accuracies of CFK with
and without SPM. For the depth modality, the introduced
3D spatial pyramid can yield a 1.72% improvement. Mean-
while, the 2D spatial pyramid can improve RGB-based ob-
ject recognition by 1.96%. The final combined result with
spatial pyramids is 91.15% accuracy, superior to the one
without SPM (89.23% accuracy). The results demonstrate
that the rough spatial geometry information (mainly the lo-
cation of object parts) can be useful for object representa-
tion.

Error Analysis. Fig. 6 shows the confusion matrix of
CFK over the 51 testing categories of the Washington RGB-
D dataset. We can observe that most categories can be cor-
rectly classified, which demonstrate the effectiveness of our
approach as well. However, there are some easily confused
categories such as pitchers, balls, mushrooms and peaches,
which can have nearly the same shape, appearance or even
both with other categories from the certain viewing angles.
Some examples are shown in Fig. 7.

4.3. 2D3D Dataset

Dataset. The 2D3D object dataset [8] collects objects
from typical household and office environments. It consists
of 156 object instances organized into 14 categories. Each
object instance is recorded every 10◦ around the vertical ax-
is on a turntable, yielding 36 views per instance. There are
a total of 5,616 RGB-D images. Following the same setting
of [8] for category recognition, we first sample 18 views of
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Figure 6. Confusion matrix of CFK on the Washington RGB-D
dataset (best viewed in the magnified color image). The y-axis in-
dicates the ground true labels of the testing objects, and the x-axis
indicates the predicted labels. Most categories can be recognized
correctly, except pitchers, balls, mushrooms and peaches, exam-
ples of which are shown in Fig. 7.

pitcher coffee mug ball garlic

garlicgarlicmushroom peach

Figure 7. Examples from the often misclassified categories by
CFK. The pitcher is classified as the the coffee mug due to their
similar shape, and the ball, the mushroom and the peach can be
misclassified as one instance of the category garlic because they
nearly own the same colors and shapes.

each instance and reduce the size of the database to 2,808
RGB-D images. Then the database is randomly split into
training and testing set, where 82 object instances with a
total of 1476 views are for training, and the remaining 74
object instances with 1,332 views are for testing. Note that
each object instance can only appear in the training set or
the testing set. We also repeat the evaluation for 10 times
and report the average results.

Results. The comparison of the results on the 2D3D
dataset is shown in Table 2. On this dataset, the improve-
ments of our approach are more remarkable. Towards the
depth modality-based object recognition, CFK exceeds the
previous state-of-the-art SP-HMP with 5.0% (from 87.6%
accuracy to 92.6% accuracy). Meanwhile, CFK outper-
forms SP-HMP by 6.2% (from 86.3% to 92.5%) for the
RGB modality-based object recognition. When combining
the both modality, CFK also achieves the best result with
94.6% accuracy.



Methods Depth RGB Combine

MLP [8] 74.6 66.6 82.8

SP-HMP [7] 87.6 86.3 91.0

CFK 92.6 ± 1.6 92.5 ± 1.3 94.6 ± 2.0

Table 2. Comparison of results on the 2D3D object database.
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Figure 8. Effect of the GMMs size (M ) to the performance of
CFK on the 2D3D dataset (2D and 3D spatial pyramids are ap-
plied here).

Parameter Analysis. Similarly, we analyze the effects
of the GMMs size M and the spatial pyramid matching in-
dividually to the performance of CFK on the 2D3D dataset.

(1) The effect of M . Overall, CFK can keep a high
recognition accuracy stably when M increases from 16 to
256, as shown in Fig. 8. More detailedly, the larger GMM-
s size can achieve a few performance gains on this dataset
as well, e.g., when GMMs size increases from M = 16 to
M = 32, the corresponding recognition accuracy can be
promoted from 93.84% to 94.36%. It is worth noting that
even a small size of GMMs, e.g. M = 16, are sufficient for
CFK to win the best result, compared to all previous meth-
ods. This paper fixes M = 128 of GMMs on this dataset.

(2) The effect of the 2D/3D spatial pyramid matching.
Fig. 9 demonstrates that the 2D SPM (for RGB modality)
and the 3D SPM (for depth modality) can clearly improve
the recognition performance of CFK, respectively. We con-
clude that CFK can benefit a lot from the rough spatial
structure information to represent an object, including the
appearance information of the RGB modality and the shape
cue of the depth modality, which agrees with the conclusion
of our first experiment as well as the work [25].

Error Analysis. The confusion matrix of CFK over
the 14 testing categories of 2D3D dataset is illustrated in
Fig. 10. CFK can recognize almost all the categories accu-
rately, but fail to distinguish a few extremely tough exam-
ples, as shown in Fig. 11. These misclassified examples are
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Figure 9. Effect of spatial pyramid matching to the performance of
CFK on the 2D3D dataset (M = 128).

hard to distinguish because of their easily confused appear-
ance, shape or both with the training examples from other
categories. Take the cans for instance, humans are hard to
distinguish its appearance from the drink cartoon, if the text
labels are ignored.

5. Conclusion and Future Work
This paper proposes a simple yet powerful feature learn-

ing method for the novel RGB-D object recognition. We
empirically demonstrate that the Fisher Kernel encoding e-
quipped with single-layer convolutional neural networks are
sufficient for our CFK approach to achieve the state-of-the-
art results on the RGB-D object benchmarks.

Instead of single-layer networks, it is straightforward
to stack multiple-layer convolutional neural networks to
learn middle level features for each modality of each ob-
ject (e.g., analogous to the construction of the first layer
in Section 3.2, we can build the second layer as well as
other layers through learning new filters by sampling the
prior convolutional responses. Indeed, such a process has
been employed in [7], which proved the hierarchical learn-
ing structure were more effective for object representation),
and then aggregate them to image-level feature representa-
tion by Fisher Kernel encoding with the introduced 2D/3D
spatial pyramids. It is worth noting that the proposed CFK
approach in this paper belongs to the unsupervised feature
learning pipeline. To make use of the labeled data to further
improve the performance of CFK, an alternative way is to
learn the parameters of CFK in a supervised way. We leave
it for future work.
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Figure 10. Confusion matrix of CFK on the 2D3D dataset (best
viewed in color). Almost all the categories can be recognized cor-
rectly, except some very tough examples shown in Fig. 11.

cans drink cartoon

bottle dish liquidsilverwarebookcoffee port scissors
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as the book, the silverware and the dish liquid mainly due to their
similar shapes.
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