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Abstract. In this paper, we propose an unsupervised approach for
learning the three factors of the topology of a non-overlapping multi-
camera network, which are nodes, links, and transition time distributions.
It is a cross-correlation based method. Different from previous methods,
the proposed method can deal with large amounts of data without con-
sidering the size of time window. The connectivity between nodes is
estimated based on the N-neighbor accumulated cross-correlations, as
well as the transition time distribution for each link. Furthermore, inte-
grated with similarity cues, the proposed method can be extended into
weighted cross-correlation models for better performance. Experimental
results both on simulated and real-life datasets demonstrate the effec-
tiveness of the proposed method.
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1 Introduction

As the number of cameras used in the wide area video surveillance increases,
multi-camera object tracking plays a more important role in understanding and
analyzing the scenes. It is a challenging problem. Especially when cameras have
non-overlapping views among them, the observations of the same object under
different cameras are often widely separated in time and space. Thus lack of
spatio-temporal cues between cameras makes it different from single camera
object tracking or overlapping multi-camera object tracking.

To compensate for lack of spatio-temporal cues across cameras, various
strategies are proposed to recover the topology graph of the non-overlapping
multi-camera network. Figure 1 shows a topology graph of a non-overlapping
multi-camera network. The topology graph usually has three main factors: firstly,
the nodes, from which objects enter or exit; secondly, the links between nodes,
indicating the connectivity of each two nodes and corresponding to the real paths
in the environment which can be followed by objects; thirdly, the transition time
distribution for each link across cameras, demonstrating the probability of tran-
sition time of an object moving from one node to another. If we observe an object
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Fig. 1. The topology graph of a non-overlapping multi-camera network. Nodes are
entry/exit zones labeled by different numbers. The green solid arrows denote visible
paths within the field of view (FoV) of each camera, which can be detected by single
camera tracking. The red dotted arrows represent valid links between nodes across
cameras, which depend on methods of recovering the topology to estimate the existence
and corresponding transition time distributions.

leaves the field of view of a camera at a moment, we can predict the object’s
re-appearance after some time under certain cameras using the knowledge of
topology.

2 Related Work and Contributions

Generally, the nodes are defined as entry/exit zones in the FoVs of cameras,
which can be learned by clustering the starting or ending points of trajectories
observed by single camera tracking [1–3], or defined as single cameras [4]. To
estimate the existence of link between two nodes, and the transition time dis-
tribution for each link, the methods can be put into two categories. The first
one is based on solving the correspondence problem [2, 5, 6] or object tracking
[7]. Javed, O. et al [5] use Parzen windows to estimate the inter-camera space-
time probabilities from training data, assuming the correspondences are known.
These methods usually have good estimations of the transition time distribu-
tions, however, solving the problem of correspondences or object tracking itself
is complicated and challenging.

The second one does not require establishing correspondences between ob-
servations or object tracking [1, 3, 8, 9]. Makris, D. et al [8] calculate a cross-
correlation function of two signals which represent the arrival event sequence
observed at one node and the departure event sequence observed at the other
node in a time window. Ideally if a link exists, then the cross-correlation has
a clear peak around the most popular transition time. However, in most cases,
the peak is not so clear due to the large variance of transition time of true
correspondences and a large number of false correspondences which result from
a large traffic flow or a long time window. To make the peak sharp, methods
[3, 9] add similarity in appearance to weight the cross-correlation model. These



106 X. Chen, K. Huang, and T. Tan

methods are usually easy to be implemented, however, few of them consider
the estimation of transition time distributions. To estimate the transition time
distribution, Zou, X. et al [9] fit K Gaussian functions to a normalized cross-
correlation using the EM algorithm, which is not proper for considering both
true and false correspondences.

Based on cross-correlation function, our method focuses on decreasing the
large variance of transition time of true correspondences, which can compensate
for the influence caused by large-scale false correspondences to a certain degree.
Thus, the proposed method can deal with large amounts of data or a long time
window. Based on an iteration, our method can estimate the transition time
distribution for each valid link, which is different from other cross-correlation
based methods. In addition, the proposed method avoids solving the problem of
establishing correspondences between non-overlapping views, making it easy to
be implemented.

3 Proposed Method

In this paper, we represent the entry/exit zones in the FoVs of cameras as nodes
in the topology, and estimate the locations of nodes by clustering the starting or
ending points of trajectories observed by single camera tracking, similar to the
node estimation in [1–3]. As we mentioned before, directly estimating the topol-
ogy from cross-correlations suffers from large-scale false correspondences and
the large variance of transition time of true correspondences. We assume that
the transition time of true correspondences is within a restricted range of some
popular transition time while transition time caused by false correspondences
is irregular and widespread in the whole time axis. Based on this reasonable
assumption, we compute an N-neighbor accumulated cross-correlation function
for every two nodes across cameras to reduce the influence caused by large vari-
ance of transition time of true correspondences, which makes the peak clear and
sharp.

Given node i and node j from two cameras, we observe objects departing
at node i and arriving at node j within a time window which is long enough.
Let Di(t) and Aj(t) denotes the departure time sequence at node i and arrival
time sequence at node j respectively. Then the N-neighbor accumulated cross-
correlation function of Di(t) and Aj(t) is computed as follows:

Ri,j
n (τn) =

τn+n∑

τ0=τn−n

Ri,j
0 (τ0)

=

τn+n∑

τ0=τn−n

E[Di(t)·Aj(t+ τ0)]

=

τn+n∑

τ0=τn−n

+∞∑

t=−∞
Di(t)·Aj(t+ τ0), τn≥n

(1)

where Ri,j
0 (τ0) represents the cross-correlation function of Di(t) and Aj(t).
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Algorithm 1. The estimation of valid links and transition time distributions

1: input: Di(t), Aj(t)
2: Initialize Link = False, MaxList(τ ) = 0, where τ≥0.
3: for n from 1 to M1 do
4: Compute Ri,j

n (τn) according to Eq.1.
5: find τ∗

n = argmax
τn

Ri,j
n (τn)

MaxList(τ∗
n)←MaxList(τ∗

n) + 1
6: if n≥M2 then

7: StepMaxList(τ ′) =
τ ′+T2∑

τ=τ ′−T2

MaxList(τ ),τ ′≥T2

8: ratio = max(StepMaxList)/Σ(MaxList)
9: if ratio≥T1 then
10: Link = True, break
11: end if
12: end if
13: end for
14: output: N(τ∗

n , n), when Link = True

Considering the application that tracking pedestrians across non-overlapping
cameras, we only deal with one traffic pattern (pedestrians), assuming that the
transition time between each two nodes across cameras follows a normal dis-
tribution. We process an iteration to estimate the connectivity for each pair of
nodes, and the parameters of the transition time distribution as well. The main
idea of this iteration is to find the most steady and frequent peak in Ri,j

n (τn)
rather than a very clear peak in the cross-correlation. The details of the pro-
posed method are summarized in Algorithm 1, where M1 and M2 set the upper
and lower limits of n respectively. T1 is a threshold above which a valid link is
believed to exist. The parameter T2 allows a small fluctuation of the average
transition time. N(τ∗n , n) is the estimated transition time distribution for a valid
link, where τ∗n demonstrates the average transition time.

Figure 2 gives an example using the proposed method to detect a valid link
under the condition that the pedestrian flow is large and the time window is very
long (far longer than the average transition time 885), while general cross correla-
tion [8] fails. There are two clear peaks in the cross-correlation using the method
[8], while neither of them is around actual average transition time. Estimating
transition time distributions by the EM algorithm based on the cross-correlations
is improper because of so much noise, while using the proposed method, the tran-
sition time distribution of this link is estimated to be N(898, 139), very close to
the ground truth N(885, 148).

Combined with similarity cues, the proposed method can be applied to the
weighted cross-correlation model [3, 9], by transforming the computation of
Ri,j

n (τn) from Eq.1 to Eq.2:

Ri,j
n (τn) =

τn+n∑

τ0=τn−n

+∞∑

t=−∞
Sim(Oi(t), Oj(t+ τ0)), τn≥n (2)
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(a)

(b)

Fig. 2. The estimated cross-correlations. (a) By the method in [8]; (b) By our method
without similarity cues (R2,3

n (τn), n = 139).

where Oi(t) and Oj(t) denotes the departure object sequence at node i and
arrival object sequence at node j respectively. Sim(∗, ∗) measures the similar-
ity between each object in Oi(t) and each object in Oj(t). For this similarity
measurement, any effective feature can be used.

4 Experimental Results

We evaluate the performance of the proposed method both on simulated data
and real-life data.

4.1 Simulated Experiments

The simulation is based on a multi-camera network shown in Figure 3 (a). In
the network, the nodes in a closed dotted curve belong to the same camera. The
departure time of 1000 moving objects follows a uniform distribution U(0, 1500),
and the transition time between nodes follows a normal distribution N(300, 20).
Each object is equally likely to arrive at any connected node after leaving any
node(in the same camera or a different camera). M1 and M2 is set to 100 and
10 respectively in this case. The threshold T1 is set to 0.98, and T2 is set to 20.
First, the proposed method is compared with a benchmark method [8]. In our
experiments, the parameter ω in method [8] is set to 2, which controls the peak
detection threshold. Then, we extend the proposed method into the weighted
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(a) (b)

Fig. 3. Experimental setups. (a) The network topology; (b) The Gaussian models of
similarity. The green area demonstrates the possibility of failures in object matching,
which is true to fact.

cross-correlation model according to Eq.2, and compare it with the method [3].
The similarity between the same objects and between two different objects fol-
lows N(0.7, 0.1) and N(0.4, 0.1) respectively, shown in Figure 3 (b).

Figure 4 shows the recovered topology graphs using different methods. Since
we focus on estimating the connectivity between every two nodes across cam-
eras, the links within the same FoVs are neglected. Previous methods [3, 8] have
bad performance, due to the large amounts of traffic data and a long time win-
dow. Extended to the weighted cross-correlation model, the proposed method
fully recovers the topology of the simulated network, as shown in Figure 4 (d).
Our method also recovers the transition time distribution, not only an average
transition time for each valid link. Estimated cross-correlations for the link from
node 2 to node 1 are shown in Figure 5. Only our method successfully detects
this valid link, and returns the average transition time after the nth iteration.
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Fig. 4. The recovered topology graphs. (a) By the method in [8]; (b) By our method
without similarity cues; (c) By the method in [3]; (d) By our method with similarity
cues.

4.2 Real-Life Experiments

The real-life experimental setup of the network is shown in Figure 6. The network
has three non-overlapping cameras, containing two, two and four entry/exit zones
respectively. We use two-hour-long videos to recover the topology of the network.
Gaussian Mixture Model is used to detect every pedestrian entering or leaving
each node and the corresponding arrival time or departure time is also recorded.
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(a) (b)

(c) (d)

Fig. 5. The estimated cross-correlations. (a) By the method in [8]; (b) By our method
without similarity cues (R2,1

n (τn), n = 22); (c) By the method in [3]; (d) By our method
with similarity cues (R2,1

n (τn), n = 15).

(a)

(b)

Fig. 6. (a) The layout of a non-overlapping multi-camera network; (b) The correspond-
ing topology graph
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Fig. 7. The recovered topology graph. The ground truth (red) is estimated by the EM
algorithm based on only true correspondences labeled by hand.
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We do not set limits for the size of time window, so all the departure events and
arrival events happened in the videos are used to recover the topology. M1 and
M2 is set to 1000 and 10 respectively in this case. The threshold T1 is set to 0.9,
and T2 is set to 50.

The recovered topology is shown in Figure 7. The learned transition time
distributions (black) provide good estimates of the ground truth. Although there
is a real path from node 5 to node 4, the proposed method fails to detect this
valid link because there are only two pedestrians walking from node 5 to node 4
among the 53 departure events detected in node 5 and 100 arrival events detected
in node 4 in the whole videos. It is very difficult to detect this valid link based
on so few true correspondences. Estimated cross-correlations for the link from
node 2 to node 3 using the proposed method and the method [8] are shown in
Figure 2.

5 Conclusions

In this paper, we have presented a solution for automatically recovering the three
factors of the topology of a non-overlapping camera network. Unlike previous
cross-correlation based work, the proposed method can deal with large amounts
of data without considering the size of time window. The connectivity for each
pair of nodes is estimated based on the stability and frequency of peaks in the N-
neighbor accumulated cross-correlations, which is more robust. Combined with
similarity cues, the proposed method can be applied to weighted cross-correlation
models, which improves the performance. Future work will focus on extending
the proposed method to large-scale multi-camera networks.
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