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Abstract— This paper proposes two robot-assisted exercise
training methods for knee rehabilitation based on a practical
EMG-driven model, aiming to beneficially exploit the patient’s
ability through neurorehabilitation process. The EMG-driven
model is a simplified representation of the musculoskeletal
system, with acceptable accuracies to predict the muscle forces
and active torque of knee joint. Thus the patient’s voluntary
contribution can be introduced to the control loop through
admittance controller. Preliminary experiments verify that the
model prediction performance is able to reflect the subjects’
motion intention in real-time and assist the subjects to perform
exercise training with a lower limb rehabilitation robot. The
information recorded during exercise training could be useful
to understand the process of recovery and make quantitative
evaluations to the patient’s motor abilities.

I. INTRODUCTION

The quality of a person’s life can be greatly compromised
following a neurological disorder disease such as stroke
or spinal cord injury (SCI). Rehabilitation devices show
great potential for aiding people with movement disabilities
in their recovery [1]. Rehabilitation robots can not only
execute intensive tasks continuously with precision, but also
present various rehabilitation therapies that were formerly u-
navailable. Increased motivation can be achieved via human-
machine interactive environments. The sensors integrated
within the robots could obtain patient’s motion parameters
and provide a quantitative evaluation on the recovery process
objectively.

Surface electromyography (sEMG) signal reflects degree
of activity in specific muscle and can be detected ahead of
movement (about 30-100 ms [2]), making it promising as
the human-machine interface (HMI) to control rehabilitation
robots or assistive devices.

Torque estimation using sEMG signals is a widely research
method to control robots or assistive devices. Many EMG-
based models are built based on machine learning algorithms,
such as neural network [3] and regression method [4]. These
approaches focus on model accuracy without considering the
relationship between the EMG signals and internal muscle
forces. However, knowledge of internal forces and torques
during movements can be used to understand the body
status and rehabilitation progress of the patients. Establishing
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EMG-driven musculoskeletal models can overcome above-
mentioned deficiency [5], [6]. Nonetheless, muscle parame-
ters vary among individuals, and too many related parameters
need to be optimized. This process is time consuming [7] and
may cause its estimation performance in various conditions
to be poor, which may confine the practicability of EMG-
driven model. Based on an opinion that a rough estimate of
torque may be enough to perform the robot-assisted exercise
training, we have proposed a simplified representation of
the musculoskeletal system to simulate knee-joint move-
ments [8]. Dual population genetic algorithm (DPGA) [9]
is applied to optimize the model parameters. This EMG-
driven model can reduce the model complexity and time
cost for parameter optimization process, while maintaining
a relatively high accuracy.

The goal of the research presented herein is to develop
robot-assisted exercise training methods for knee rehabil-
itation based on the proposed EMG-driven model. The
developed training methods hope to provide assistance in the
rehabilitation of three major neurological populations: people
who have survived a stroke, traumatic brain injury (TBI), or
incomplete SCI.

II. METHODS

We use the iLeg rehabilitation robot (see Section II-
A) to perform the rehabilitative exercise training. The EMG-
driven model (see Section II-C) is used to estimate muscle
forces and active torque of knee joint from EMG signals.
Then the admittance controller (see Section II-D) is used to
transform the active torque to the robot control signal, so as
to implement the conversion from motion intention to actual
motion.

A. iLeg Platform

The data acquisition and exercise training experiments
were conducted on iLeg−a horizontal exoskeleton for low-
er limb rehabilitation developed at our laboratory, whose
mechanical structure is shown in Fig. 1. Joints 1, 2 and
3 correspond to the hip, knee and ankle joints of human
limbs respectively. A torque sensor, an absolute encoder and
a relative encoder are installed at each joint.

B. EMG Processing

EMG signals were recorded with a gain of 1000 and
filtered by a bandpass filter of 20 to 200 Hz and a notch
filter of 50 Hz. Then the signals were digitized with a
sampling frequency fc = 2048 Hz and a 12-bit quantiza-
tion (Art TechnologyCo., Inc., China). We have integrated
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Fig. 1. Mechanical structure of iLeg platform.

these components to an 8-channel EMG acquisition device
shown in Fig. 1.

The digitalized EMG signals were post-processed to obtain
the linear envelopes (LEs), which provide rough estimates
of the exerted forces. The LEs were obtained online through
full-wave rectification of the digitalized EMG signals and
then filtered by a second-order lowpass Butterworth filter
with a 3 Hz cutoff frequency to perform the smoothness of
the signals [10].

Finally, the LEs were normalized with the resting state
value and maximum voluntary contraction (MVC) of EMG.
The EMG processing can be described as follows:
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Fig. 2. Flowchart of the procedures for EMG processing.

The normalized LEs give an indication to the muscle
activation levels and are input to the EMG-driven muscu-
loskeletal model to compute the muscle forces and active
torque of knee joint.

C. EMG-Driven Musculoskeletal Model

Briefly, the EMG-driven model consists of two main
modules: a muscle tendon model to compute the muscle
force of each muscle group, and a proposed musculoskeletal
model. The muscle tendon model is built based on the work
by R. Riener and T. Fuhr [11]. The muscle force is calculated
using following equation:

F = LEemg · Fmax · ffl · ffv (1)

where LEemg is the normalized output from EMG pro-
cessing; Fmax is the maximum isometric force; ffl and ffv

describe the force-length and force-velocity relations respec-
tively, which can be described as follows:

ffl = exp

[
−
(
l̄ − 1

ε

)2
]

(2)

ffv = 0.54 arctan(5.69v̄ + 0.51) + 0.745 (3)

where l̄ is the normalized muscle length; ε is a shape factor;
v̄ is the normalized muscle velocity (see [11] for details).

The musculoskeletal model simulates the knee joint with
a union of simplified muscle and bone structures, which is
shown in Fig. 3. Three main muscle groups are considered
in this study: the quadriceps femoris (Qf) muscle, which
causes knee extension; the hamstrings (Ha) and gastrocne-
mius (Ga) muscles, which cause knee flexion. The red arrows
show the main forces generated by the three muscle groups,
which are represented as FQf, FHa and FGa respectively. The
moment arms for torque calculation are labeled as MAQf,
MAHa and MAGa.
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Fig. 3. Musculoskeletal model of the knee joint.

Considering knee flexion as the positive direction, the
active torque of knee joint is given by

Tact = KHa · FHa ·MAHa +KGa · FGa ·MAGa

−KQf · FQf ·MAQf +Φ(θ1, θ2)
(4)

where KHa, KGa and KQf are correction constants due to the
simplification of model. Φ is an correction function consid-
ering the changes in joint angles, which is approximated by
gravitational torque of the shank:

Φ(θ1, θ2) = 0.02Mweight · g · Lshank · cos(θ1 + θ2) (5)

where Mweight is the body weight (kg) ; g = 9.8m/s2 is the
constant of gravitational acceleration.

The musculoskeletal model has totally 6 parameters to
be further optimized. DPGA is employed to determine ideal
values for these 6 model parameters. The details for the es-
tablishment of the EMG-driven model and DPGA algorithm
can be found in [8].

D. Control System for Robot-Assisted Exercise Training

The control program was realized in C# using Windows
operating system, whose structure is shown in Fig. 4. The
raw EMG signals recorded from three muscle groups are
input to the muscle tendon model to calculate muscle force
for each muscle group after the EMG processing procedure
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Fig. 4. Control structure for robot-assisted exercise training.

(see Section II-B). Then the muscle forces are input to
the musculoskeletal model to estimate the active torque
Tact. Finally, the admittance controller is used to transform
the active torque Tact to the robot control signal and a
commercial PID controller (Copley Controls Corp., USA)
is used to achieve position control. Therefore, this training
strategy could be called “patient-driven voluntary exercise
training”.

The admittance control strategy could be considered the
opposite of impedance control. In this study, the admittance
control is applied to establish a dynamic relationship from
the interaction force to the position deviation in the joint
space, defined as:

Tact = M(θ̈ − θ̈0) +B(θ̇ − θ̇0) +K(θ − θ0) (6)

where Tact is the active torque of knee joint exerted on
the robot by human, θ is the actual position of knee joint,
and θ0 is the desired position of knee joint. The admittance
control parameters, i.e. inertia M , damping B and stiffness
K, are set to 5, 62, 80 respectively. These typical values
meet the equality B = 3.1

√
M ·K, which could reduce the

robot system oscillation effectively [12]. The positive and
negative amplitudes of output signal θ0 are limited to some
predetermined value by a limiter, above which the peaks
become flattened. The limiter guarantees smooth movement
of the robot system because patients usually perform the
rehabilitation training with a relatively low speed.

Since patient’s muscle activity degree and muscle weak-
ness should be improved through neurorehabilitation process,
they may need to re-learn how to activate different muscles.
On the basis of the training strategy described above, anoth-
er training strategy called “muscle-triggered patient-driven
voluntary exercise training” is proposed to enhance muscle

performance, which allows specific muscle(s) to trigger the
robot action to perform the first training strategy. The infor-
mation recorded during the training, such as whether selected
muscle(s) could trigger the robot action and how long does
it take, could be useful to provide an objective evaluation to
the muscle performance.

III. DATA ACQUISITION AND MODEL TUNING

Three healthy subjects (males, 27-28 yrs) took part in
the data acquisition and the following experiments. The
study was approved by the Institutional Review Board of
China Rehabilitation Center, Beijing, China. All subjects
gave their informed consent before participation. Two types
of movements were performed to calibrate the EMG-driven
model since a varied range of dynamic contractile conditions
may enhance the robustness of the tuned model.

The end-point reference trajectory of the first movement
was a back-and-forth pedaling movement in a straight path,
with the start point at [0.52 0.05], the midpoint at [0.62 0.1]
and the motion period as T = 10 s (Cartesian coordinate
system shown in Fig. 3), which is represented as:{

x = −0.1 cos(0.2πt) + 0.62

y = −0.05 cos(0.2πt) + 0.1,
(7)

The end-point reference trajectory of the second move-
ment was a cycling movement in clockwise direction that
commonly used for rehabilitation exercise, with the center
at [0.62 0], the radius as r = 0.15 m and the motion period
as T = 10 s, which is represented as:{

x = 0.1 cos(0.2πt) + 0.62

y = −0.1 sin(0.2πt),
(8)



EMG signals were acquired by Ag/AgCl bipolar surface
electrodes, which are separated from each other by 2 cm over
the muscle belly [13]. Before data acquisition, the resting
state value and MVC of EMG were recorded for normaliza-
tion of the LEs. During data acquisition, the subject’s right
leg was drived by the robotic leg to perform these two types
of movements individually, which is shown in Fig. 1. The
subjects were asked to exert their voluntary effort randomly
during the movement and perform several periodic trajecto-
ries at each trial with their own willingness. Three trials of
cycling movement and one trial of straight movement were
completed by each subject, with no resting period between
consecutive trials. Since the torque sensor installed at knee
joint can obtain the actuating torque generated by robot, the
active torque Tact was obtained online through a dynamic
parameter identification method (see [14]).

The acquired data, which are normalized LEs, joint kine-
matics and active torque Tact, were used to tune the EMG-
driven model. The model was tuned by the first half data of
each trial, then the tuned model was used to predict the active
torque of the second half of that trial through EMG and joint
kinematics. The identification result of model parameters by
DPGA is shown in Table I. Root-mean-square error (RMSE)
was used as the criterion to show the prediction performance
of tuned EMG-driven model (Table II).

TABLE I
IDENTIFICATION RESULT OF MODEL PARAMETERS FOR EACH SUBJECT

Subject UQf (m) UHa (m) UGa (m) KQf KHa KGa

1 0.026 0.024 0.006 0.896 0.737 0.909
2 0.028 0.018 0.007 0.830 0.983 0.969
3 0.021 0.019 0.008 1.194 0.808 0.956

TABLE II
RMSE OF THE TUNED MODEL TO PREDICT ACTIVE TORQUE OF KNEE

JOINT (NM).

Subject Cycling1 Cycling2 Cycling3 Pedaling1 Mean ± SD

1 4.19 6.08 6.85 3.60 5.18± 1.54

2 6.61 5.40 5.90 4.63 5.64± 0.83

3 5.90 7.31 6.08 4.90 6.05± 0.99

Figure 5 shows one trial of torque prediction result using
the tuned model for subject 3. It can be seen that the predic-
tion performance could reflect the human motion intention
in real-time.

IV. EXPERIMENTS AND RESULTS

Voluntary exercise is considered to be an essential factor
to improve functional performance of patients with neu-
rological injury. It was confirmed that voluntary exercise
induces neurogenesis in the adult CNS [15] and enhances the
neuroplasticity [16], [17]. Two different voluntary exercises
were conducted. Only knee joint was considered in this study,
so the hip and ankle joints of iLeg were set to be fixed angles.

Fig. 5. One trial of torque prediction result using the tuned EMG-driven
model. RMSE = 7.31 Nm.

A. Experiment I: Patient-Driven Voluntary Exercise Training

Three subjects participated in this experiment and they all
were able to complete robot-assisted voluntary exercise of
knee joint. No target was provided to the participants and
they just performed the training at their free will. Fig. 6
shows a typical recording from subject 2. It is indicated
that the angle of knee joint is entirely controlled by the
active torque exerted by that subject. The knee joint performs
an extension movement when the value of active torque
is greater than 0, otherwise performs a flexion movement.
When the subject relaxes during the time period labelled as
“A”, the knee joint remains still.
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Fig. 6. A typical recording of experiment I.

The aim of this exercise training is: the movement is driven
by the voluntary effort of the patient’s paralyzed limb, rather



than imposing a fixed reference trajectory. Thus, patient’s
ability could be beneficially exploit to allow a patient to
actuate the human-machine system dynamics. Different lev-
els of intensive training could be implemented by adjusting
the admittance parameters. This method could inspire the
enthusiasm of patients to perform rehabilitation training and
may increase the functionality of the paralyzed limb through
motor learning.

B. Experiment II: Muscle-Triggered Patient-Driven Volun-
tary Exercise Training

A subject’s attempt to trigger the onset of the robot action
is detected by monitoring muscle force(s) computed by the
muscle tendon model. The single-threshold detector was
applied in this experiment, and multiple-threshold detector
could be realized through the logical OR (or AND) operator
similarly. Fig. 7 shows a typical recording from subject 1
when the calculated Qf muscle force is greater than 800 N
(threshold) to trigger the robot motion. The threshold could
be adjusted according to the patient’s training needs.
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Fig. 7. A typical recording of experiment II.

The muscle-triggered exercise training may provide the
following advantages: it could be used to train specific
muscle(s) of the patient based on customized rehabilitation
requirements to enhance muscle performance; the informa-
tion, such as trigger time and changes of the selected muscle
force(s), could be useful to make quantitative evaluations to
the patient’s motor abilities.

V. CONCLUSION

Two robot-assisted exercise training methods for knee
rehabilitation based on a proposed EMG-driven model have
been developed and tested on healthy subjects in this study.
In such voluntary exercise training patterns, the patient
is able to influence and control the trajectory of human-
robot system. Thus, the patient’s voluntary contribution is
introduced to the control loop, known as “patient-centered”
controller, which is opposed to the “robot-centered” con-
troller. The long term goal of this work is to expand the
practical EMG-driven model to other joints and implement
multi-joint coordinated rehabilitation training with iLeg.
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