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Abstract—Multichannel electromyography (EMG) signals 

have been used as human-machine interface (HMI) for the 

control of pattern-recognition based prosthetic system in recent 

years. This paper is a feasibility analysis of using recently 

proposed NeuCube spiking neural network (SNN) architecture 

for a 6-class recognition problem of hand motions. NeuCube is an 

integrated environment, which uses SNN reservoir and dynamic 

evolving SNN classifier. NeuCbube has the advantage of 

processing complex spatio-temporal data. The preliminary 

experiments show that Neucube is more efficient for EMG 

classification than commonly used machine learning techniques 

since it achieves better accuracy as well as consistent 

classification outcomes. The performance of NeuCube combined 

with TD features reaches up to 95.33% accuracy after a careful 

selection of the features. This paper demonstrates that NeuCube 

has the potential to be employed in practical applications of 

myoelectric control.  
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I.  INTRODUCTION  

The EMG signals, resulting from motor neuron impulses 
that activate the muscle fibers, can be correlated with the force 
produced by muscles [1]. The use of EMG signals is not only 
beneficial in medical diagnoses, but can also be helpful in 
controlling robot systems or prostheses.  

To control multifunction prostheses, it is necessary to map 
the representative features extracted from the surface EMG to 
classes that represent different motions. This control strategy is 
mostly based on the pattern recognition approach. The feature 
extraction and classification portions of the pattern recognition 
system have been the subject of extensive research.  

Some commonly investigated features include time-domain 
(TD) features [2], autoregressive (AR) coefficients [3], 
concatenated TD and AR (TD+AR) features [4], the short-time 
Fourier transform (STFT) [5], the wavelet transform (WT) [6], 
and the wavelet packet transform (WPT) [7]. Most modern 
classification methods also have been investigated such as 

Bayesian classifiers [8], artificial neural networks [3], Gaussian 
mixture models [9], hidden Markov models [10], fuzzy logic 
[11], multilayer perceptron (MLP) [12], and support vector 
machine [13].  

However, current classifiers can only process temporal data, 
without considering the spatial structure of the data. Raw data 
usually need to remove noise firstly to achieve better accuracy. 
NeuCube is a 3-D spiking neural network (SNN) reservoir that 
specifically deals with spatio-temporal data proposed by N. 
Kasabov [14], [15]. It is an approximate map of human brain 
with its neurons assigned to particular locations based on brain 
coordinate systems. A SNN reservoir of 1000 (10 x 10 x 10) 
neurons is shown in Fig. 1. The size of the SNN reservoir can 
vary depending on the task and the data. It is capable of 
learning noisy data either on-line or with low amounts of 
training. These two main advantages make it useful to 
classification problems. 

 

Fig. 1. A spiking neural network reservoir of 1000 neurons. [16] 

In this study, the spatial structure of EMG data is 
considered, which is very different from previous work. As the 
EMG signals are generated from motor neuron impulses that 
activate the muscle fibers, it can be investigated whether 
connections between motor neurons are strengthened or 
weakened, and how the connections as well as neuron spiking 
activities change from random initialization to a stable pattern 
during training on a particular dataset through NeuCube. 
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The accuracy of EMG recognition algorithm is also 
affected by the selection of EMG features. The features used in 
this study include both TD features and frequency-domain (FD) 
features. The performance of NeuCube combined with TD 
features reaches up to 95.33% accuracy after a careful selection 
of the features. 

The remainder of this paper is organized as follows: 
Section II describes the structure of EMG acquisition device 
and experimental protocol. In Section III, the algorithms for 
EMG pattern recognition are proposed, including EMG signal 
processing, feature extraction, and the classifier description. In 
Section IV, the experimental results show that NeuCube has a 
good performance for EMG pattern recognition. Finally, 
Section V draws the conclusion and gives some future work. 

II. EXPERIMENTAL PROTOCOL 

An eight-channel EMG acquisition device has been 
developed at our laboratory, whose structure is indicated in Fig. 
2. It consists of an amplifier, a linear isolation circuit and an 
analog/digital (A/D) converter. The amplifier employs 
differential-mode input with differential-mode amplification of 
1000. The linear isolation circuit is used to achieve electrical 
isolation between the amplifier and the A/D converter. The 
analog EMG signal is sampled at 2048Hz and digitized with 
12-bit conversion resolution using the A/D converter. The 
effective frequency band of EMG signal is distributed within 
10-500 Hz, mostly within the range of 50-150 Hz. This device 
has designed with a 50 Hz notch filter and a 20-200 Hz band-
pass filter in hardware, so as to remove most of the signal 
artifacts while retaining the information within the signals. 
After converted to digital signals, the raw EMG signals are 
transmitted to a PC for the following signal processing for 
pattern recognition. 
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Fig. 2. Structure of EMG Acquisition Device. 

One intact-limbed subject (male; 26 yrs) participates in the 
experiment. The experiment focuses on 6-class patterns shown 
in Fig. 3, which are hand grasp, hand open, wrist flexion, wrist 
extension, ulnar deviation, and radial deviation.  

 

Fig. 3. The six classes of motion used in the experiment. 

In this study, EMG signals are acquired from four muscles 
after a careful selection of relevant muscles coherently with the 
intended motions, which are flexor carpi radialis, extensor 
carpi ulnaris, extensor pollicis brevis, and flexor digitorum 
superficialis. 

Most previous researches did a preparation work before 
placing electrodes, such as shaving and cleaning the skin 
surface, to reduce the input resistance and the external 
disturbance [17, 18]. Although this preparation work is 
beneficial to data acquisition, it confines the practicability of 
the classification method. So in this study, the electrodes are 
adhered to muscle surface directly without any disposal. Four 
pairs of Ag/AgCl electrodes are employed to measure the 
analog EMG signals. At each recording site, the electrodes are 
arranged in a differential configuration over the muscle belly 
and separated from each other by 2cm [19]. 

In the experimental session, the subject is instructed to 
perform 50 contractions per class. Each contraction is 2 s in 
duration, with a 2 s resting period between consecutive 
contractions. Stationary signals are acquired during each 
contraction. The order of motions is randomized and 300 
contractions are performed by each subject totally. 

III. PATTERN RECOGNITION METHODOLOGY 

A. System flow chart 

Fig. 4 shows the main steps of the pattern recognition 
system. The data processing, feature extraction and 
classification portions of the pattern recognition system have 
been the subject of extensive research. These three portions 
will be described in detail below. 
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Fig. 4. Flowchart of the procedure for motion pattern recognition. 

B. EMG signal processing 

The raw EMG signal processing includes eliminating the 
signal offset and data windowing. Smoothing is not applied in 
this study so as to reduce the delay of signals. Before data 
windowing, the signal offset is subtracted from the signal in 
each channel. The offset is approximate equal to the resting 
state value of the baseline signal.  

In order to perform a continuous classification, the 
classifier acts upon a sliding window of data, producing a class 
decision (an estimate of the intended motion) from each 



window. In this study, a 128-sample data analysis window 
(corresponding to 62.5 ms) is employed to extract features. 
Consequently, the offset-removed data are segmented in 128-
sample windows, with an overlap of 64 samples between two 
consecutive windows. Hence, there is a 64-sample delay 
between two consecutive windows. The classification is 
performed for each window. These choices make the response 
time much less than 300 ms, which is widely used as an 
acceptable delay for a real-time myoelectric control system 
[20]. 

C. TD and FD feature extraction 

TD and FD features were both employed in this study. 
These features were extracted within the 128-sample data 
analysis window. TD features include the mean absolute value 
(MAV), waveform length (WL), variance (VAR), and AR 
coefficients. FD features include the power spectrum (PS) and 
WT coefficients.  

MAV represents the absolute mean amplitude of EMG 
signal and it is a direct reflection of muscle contraction level. 
WL provides a measure of the complexity of the signal. It is 
defined as the cumulative length of the EMG signal within the 
analysis window. VAR is the measure of the EMG signal's 
power, which uses the mean value of the square of the 
deviation of that variable in statistics. Mathematical definitions 
of these features are given by 
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where 
kx  is the kth sample of EMG signals in the analysis 

window, N  is the length of the data analysis window.  

The AR feature models individual EMG signals as a linear 
autoregressive time series and provides information about the 
muscle’s contraction state [21]. It is defined as 
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where 
i  represents autoregressive coefficients,   is the AR 

model order, and 
k  is the residual white noise [22]. A 4th-

order AR model is employed in this study to extract AR 
coefficients. 

The choice of the mother wavelet is critical in signal 
processing, and several standard wavelets are tested to 
determine which wavelet produces best detection result. In 
preliminary studies, the Daubechies wavelet shows a better 
result amongst the Daubechies, Coiflet and Symmlet wavelets, 
and thus it is selected as the mother wavelet. The 
“approximation” coefficients of wavelet decomposition retain 

the important signal characteristics and store the main energy 
of the signal, which is used as the frequency-domain (FD) 
feature in this study using Daubechies wavelet of order 5 at 
level 3. 

D. Classifier description 

Each neuron in NeuCube belongs to a specific functional 
and structural area as in a human brain according to its (x, y, z) 
coordinates. NeuCube was initially for processing brain data 
such as EEG data and functional magnetic resonance imaging 
(fMRI) data. While EMG data are generated from motor 
neuron impulses, the connections of relevant motor neurons 
during hand motions may be strengthened or weakened. 
NeuCube maybe can explore how the connections change from 
random initialization to a stable pattern. 

Fig. 5(a) shows the location of EMG acquisition sites in 
NeuCube. Fig. 5(b) shows the connections between neurons 
and the weight adjustment during training. This is very 
different from traditional methods, which offers facilities to 
trace the learning process for the sake of data understanding. 
After training, the SNN reservoir has captured spatial and 
temporal relationships from the data. 

 

(a) 

 

   

                                         (b) 

Fig. 5. Snapshots from a dynamic visualization of a SNN reservoir: (a) 

Initialization of neuron states; (b) Neuron connections change during training. 



IV. RESULTS AND DISCUSSION 

Classification accuracy is used as the main index to show 
the performance of EMG pattern recognition. 

The 3-fold cross-validation procedure is applied to each 
combination of feature set and classifier. Original EMG 
datasets are randomly partitioned into 3 equal size sub-datasets. 
In each fold, a single sub-dataset is retained as testing data and 
the remaining 2 sub-datasets are used as training data for the 
classification model. Each classification accuracy is produced 
by averaging across the cross-validation results. 

Table I shows the classification accuracy ranging from 
68.7-95.3%. It is clear from the results that the (MAV+WL) 
features performed significantly better than the other features 
with the highest overall accuracy. Moreover, MAV and WL are 
both time-domain features and they are easily real-time 
processed with lower time-consumption. 

TABLE I.  COMPARISON OF OVERALL ACCURACY USING 

DIFFERENT FEATURES WITH NEUCUBE 

 Features Overall Accuracy (%) 

Time-Domain 

Raw Data 68.7 

MAV 90.7 

WL 91.3 

VAR 78.7 

AR 88.6 

MAV+WL 95.3 

Frequency-Domain 
PS 76.0 

WT 78.0 

 

In terms of the comparison with other classification 
approaches, NeuCube is compared to some popular machine 
learning methods: multiple linear regression (MLR), support 
vector machine (SVM), and multilayer perceptron (MLP). The 
SVM method uses a polynomial kernel; the MLP method uses 
30 hidden nodes with 1000 iterations for training. The overall 
accuracy of each method with the MAV feature is shown in Fig. 
6. 

 

Fig. 6. Comparison of different classifiers when using MAV feature. 

It can be determined that NeuCube achieves the highest 
overall accuracy of 90.7% when using MAV feature for the 6-
class recognition problem of hand motions. While the closest 
competitor is SVM with the second highest accuracy of 88.1%. 
MLP is the poorest performing with an overall accuracy of 
85.6%. In summary, the performance of NeuCube is superior to 
other three classification methods with better accuracy as well 
as consistent classification outcomes, which has potential 
applications in EMG pattern recognition. 

Major factor that prevents high technology from 
intervening into rehabilitation practice is cost. Though the 
EMG acquisition devices commonly used in research and 
clinical situations have better performance, they are expensive 
and unlikely to be widely available to patients. A relatively 
cheap and accessible EMG acquisition device may serve to 
improve the current situation, which is beneficial to the 
extensive adoption of high technology. 

V. CONCLUSION 

The results of this study support the premise that NeuCube 
is feasible to use in EMG pattern recognition. Additionally, the 
abilities of NeuCube to both spatially and temporally represent 
data and provide visualization of the data could be useful in 
future applications. The large number of parameters that need 
to be optimized limits the extensive application of NeuCube. 
Efficient parameter optimization algorithm remains to be 
investigated. Future work will concentrate on the implement of 
prosthetic system based on NeuCube. 
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