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Abstract—sEMG (surface electromyography) signals have
been used as human-machine interface to control robots or
prostheses in recent years. sEMG-based torque estimation is a
widely research methodology to obtain human motion intention.
Most researches focus on improving the accuracy of sEMG-
torque models, which often makes them complicated and confined
in the laboratory research. However, an accurate estimation of
muscle torque could be unnecessary to perform the robot-assisted
rehabilitation training. This paper proposes a practical method to
estimate the net muscle torques of lower limbs using sEMG, which
can be used to implement a real-time coordinated active training
with iLeg−a horizontal exoskeleton for lower limb rehabilitation
developed at our laboratory. Two three-layer back propagation
(BP) neural networks are built to estimate the net muscle torques
at hip and knee joints respectively. Experimental results show
that the well-trained neural networks estimate the user’s motion
intention in real-time, and can assist the user to perform an active
training with iLeg.

I. INTRODUCTION

Robot-assisted devices aim to help users move their limbs
and restore limb functionalities through rehabilitative processes
[1]. The sEMG signals, resulting from motor neuron impulses
that activate the muscle fibers, can be correlated with the force
produced by muscles [2]. The sEMG signals are 30-100ms
prior to body motion and therefore reflect motion intention in
advance.

Recently, sEMG has been widely used as human-machine
interface. A widely research methodology to obtain human
motion intention is based on sEMG-torque model. [3], [4].
Many different approaches have been proposed to estimate
joint torques, such as Hill-based models [5], [6], neural net-
works (black box models) [7] and regression methods [8].

Unfortunately, sEMG signals have the feature of change-
ability, which makes it very difficult to obtain the same sEMG
signals because of time variation, muscle fatigue, sweating,
electrode shifting or other changes. To produce an accurate
and reliable model, time consuming and algorithm complexity
are increased [9]. For these reasons, most estimation methods
are confined in the laboratory research.

Additionally, sEMG is rarely used in torque estimation of
lower limbs because the signals are weaker than the signals
of upper limbs. Posture-varying and torque-varying are the
most complicated conditions in sEMG-based torque estima-
tion problems, which represent unconstrained motion. But the
existing studies are often constrained to single-joint motion

[10]. So these methods are not applicable to the multi-joint
active training.

We recently achieved two single-joint active training s-
trategies using sEMG and experiments were conducted with
iLeg. We used the normalized sEMG difference between
two muscles to control the extension and flexion of knee
joint. However, the multi-joint coordinated active training is
a complicated motion and the sEMG difference cannot reflect
the complex relationship.

The aim of this study is to perform a real-time coordinated
active training of lower limbs using sEMG-torque model. A
rough estimate of muscle torques is enough to provide effective
movement assistance to users, which ensures the stability of
control system and also makes the model easy to use.

The remainder of the paper is organized as follows. Sec-
tion II introduces dynamic parameter identification of robot
system, experimental setup and data processing. Section III
demonstrates the details of model development and shows the
results. The last section comes up with the conclusion and
discussion.

II. METHODS

A. Dynamic Parameter Identification of Robot System
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Fig. 1. Mechanical structure of iLeg for lower limb rehabilitation

In this study, the sEMG samples and joint information
(actuating torques of hip and knee joints generated by robot,
joint angles and angular velocities) were acquired with iLeg



[11], whose mechanical structure is shown in Fig. 1. It consists
of two 3-DOF (degree of freedom) robotic legs. Joints 1, 2 and
3 correspond to the hip, knee and ankle joints of human limbs
respectively. Only hip and knee joints are considered in this
study, so the ankle joint is set to be a fixed angle. A torque
sensor, an absolute encoder and a relative encoder are installed
at each joint, so we can obtain the actuating torques generated
by robot, joint angles and angular velocities of hip and knee
joints through these components.

The dynamic parameter identification of robot system is
aimed at obtaining the net muscle torques in human-robot
hybrid system. [12], [13]. The dynamics of hybrid system is
expressed as a linear equation with respect to the undetermined
dynamic parameters φ, written as follows:

Y (q, q̇, q̈)φ = τr + τh (1)

where q is the vector of joint angles; q̇ is the vector of joint
angular velocities; q̈ is the vector of joint angular accelerations;
τr is the vector of joint actuating torques generated by the
robot; τh is the vector of net muscle torques.

Before the identification, lower limbs are carried by the
robot to perform the motion of exciting trajectory [12] while
the subject is required not to generate any active effort, i.e.
τh = 0. Then the least square estimation method is employed
to identify the parameters φ, given by

φ = (Y TY )−1Y T τr (2)

Therefore, the net muscle torques can be obtained by

τh = Y (q, q̇, q̈)φ − τr (3)

The identification experiment was conducted on one
healthy subject (male, 27 years old). The result shown in Fig. 2
indicates the parameters φ can be used to calculate the net
muscle torques.
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Fig. 2. Joint actuating torque estimation using identified parameters. The blue
solid line shows the measurement torques and the red dash line represents the
estimation torques. The root-mean-square error is 0.67 Nm for hip torque
estimation and 0.37 Nm for knee torque estimation.

B. Experimental Setup

It is well-known that each muscle can act on more than
one joint, and several agonist and antagonist muscle groups
are needed to power each joint. In this study, sEMG samples
are acquired from eight muscles after a careful selection of
relevant muscles coherently with the intended motion shown in
Fig. 3, which are gluteus maximus (GM), iliopsoas (IL), rectus
femoris (RF), vastus lateralis (VL), vastus medialis (VM),
biceps femoris (BF), semitendinosus (SE) and gastrocnemius
(GA). iLeg has integrated an eight-channel sEMG acquisition
device self-made at our laboratory, so we can obtain sEMG
samples and joint information at the same time.

Fig. 3. Muscles used to acquire sEMG signals.

Most previous researches did a preparation work before
placing electrodes, such as shaving and cleaning the skin
surface, to reduce the input resistance and the external dis-
turbance [14]. Although this preparation work is beneficial to
data acquisition, it confines the practicability of the estimation
method. So in this study, the electrodes were adhered to
muscle surface directly without any disposal. Eight pairs of
Ag/Agcl electrodes were employed to measure the analog
sEMG signals. At each recording site, the electrodes were
arranged in a differential configuration over the muscle belly
and separated from each other by 2cm [15].

Before acquisition of data, the subject was asked to perform
the motion of exciting trajectory [12] to identify the subject’s
dynamic parameters φ. Then, the subject would take an active
motion to acquire sEMG samples and joint information at the
same time. Cycling is employed in this case as it is the most
commonly used exercises for rehabilitation.

A circular path is displayed on a computer screen, and
the subject was required to drive the robotic leg to run an
approximately circular track with his effort. The subject was
asked to accomplish 6 cycles at each trial with no time limit,
and repeated 6 trials with no rest to contain muscle fatigue
information. The maximum voluntary contraction (MVC) and
resting state of eight muscles were recorded at last.

C. Data Processing

The sEMG acquisition device has designed with a 50 Hz
notch filter and a 20-200 Hz band-pass filter in hardware, so



as to remove most of the signal artifacts while retaining the
information within the signals. The raw sEMG samples were
full-wave rectified and filtered first. The fourth-order Butter-
worth filter with cutoff at 2 Hz was selected for the envelope
processing because this provides a appropriate compromise
between the smoothness of the signals and time delays [16].

Since the sEMG samples were sampled at 2560 Hz, while
the joint information (actuating torques generated by robot,
joint angles and angular velocities) were sampled at 50 Hz, the
sEMG samples were sub-sampled to 50 Hz through a sliding
window. Then the signals divided MVC of corresponding mus-
cles for normalization. After data processing, several typical
sEMG signals and net muscle torques at hip and knee joints
(calculated through equation (3)) are shown in Fig. 4.
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Fig. 4. Some typical sEMG signals and net muscle torques at hip and knee
joints after data processing acquired from one trial.

III. MODEL DEVELOPMENT AND RESULTS

A. BP neural network for net muscle torque estimation

The process of model development was conducted based
on Neural Network Toolbox of MATLAB.

Two BP neural networks are used to estimate the net mus-
cle torques at hip and knee joints respectively. sEMG signals
from five muscles (GM, IL, RF, BF and SE) were employed
to estimate net muscle torque at hip joint as they generate
the extension or flexion of hip. Similarly, sEMG signals from
six muscles (RF, VL, VM, BF, SE and GA) were employed
to estimate net muscle torque at knee joint. Both agonist and
antagonist muscles were included in two models to account
for co-contraction (particularly at higher contraction levels).
Meanwhile, joint angle and angular velocity can influence
muscle contraction dynamics [17], so they also served as the
inputs of two neural networks.

Previous study showed that the sEMG-torque model is
a dynamic mapping relationship, adding sEMG samples of
recent several times as inputs can improve the estimated ac-
curacy. However, the sEMG information was sufficient in this
study, and adding previous samples increased the complexity
of neural network largely while the improvement of accuracy

was limited. To build a practical and reliable model, we only
used the current sEMG samples. The number of neurons in
the hidden layer was selected as 2n+1 (n is the length of input
vector) on the basis of empirical law.

Therefore, the neural network for estimation of net muscle
torque at hip joint has 7 input nodes and 15 neurons in the
hidden layer, whose structure is shown in Fig. 5. The neural
network for estimation of net muscle torque at knee joint has
8 input nodes and 17 neurons in the hidden layer, which is
similar to that shown in Fig. 5. The performance of BP neural
network is very sensitive to the selection of learning rate. As
a consequence, the variable learning rate BP with momentum
algorithm was used in our research, nonlinear tansig function
and linear purelin function were selected as the transmission
functions in the hidden layer and output layer respectively.

Fig. 5. Structure of the BP neural network used in the estimation of net
muscle torque at hip joint.

The experimental data should be divided into two subsets,
the training subset and the validation subset. As the subject
did the circular-like motion with his own willingness, the data
variation between different trials (even between different cycles
of the same trial) could be observed. In this situation, cross
validation method was used to verify the generalization ability
of the networks, which is that every single trial’s data were
set as validation subset alternately while the other five trails’
data were set as the training subset.

Since sEMG signals are 30-100ms prior to body motion,
the sEMG signals were delayed for 60ms before inputting to
the neural networks.

B. Experiment results

Fig. 6 shows one trial of net muscle torque estimation
result. The subject’s torques are time-varying because he exerts
his effort randomly. It can be seen that the well-trained neural
networks can estimate the subject’s active motion intention in
real time. Though the root-mean-square errors are relatively
large, the estimation performance is enough to provide effec-
tive assistance to users and perform the active training.
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Fig. 6. Net muscle torque estimation using BP neural networks. The blue
solid line shows the identification torques calculated through equation (3) and
the red solid line represents the BP estimation torques. The root-mean-square
error is 3.71 Nm for hip joint and 2.92 Nm for knee joint.

We introduced the neural networks to the control system of
iLeg and the output torques of networks were used to drive the
robotic leg. Fig. 7 illustrates the real-time motion trajectory of
ankle joint when the subject performs active training.
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Fig. 7. Visual feedback from iLeg. This user interface can provide real-
time motion trajectory of ankle joint in cartesian space. The black solid line
represents the desired motion path and the red solid line shows the actual
motion trajectory. The big red point displays the current motion point.

IV. CONCLUSION AND DISCUSSION

This paper presents a practical method to estimate the net
muscle torques of lower limbs using sEMG, which can be
used to perform a real-time coordinated active training with
our rehabilitation robot. It can be seen from Figs. 6 and 7 that
the outputs of network models are able to reflect the subject’s
active motion intention and assist the subject to perform active
training. So a rough estimate of net muscle torques is enough
when providing effective movement assistance. The proposed
approach has been tested with a circular-like trajectory. We
believe that it can be generalized to other forms of movement
in accordance with the model development described above.

Compared with torque sensor data, the sEMG signals
reflect degree of activity in specific muscle and can be detected
ahead of movement without electromechanical delay. These
characteristics make it promising as the human-machine inter-
face to make devices react pre-actively rather than re-actively
to user intent.

This preliminary experiment demonstrates the feasibility of
a rough estimation model used in multi-joint coordinated active
training based on sEMG. Future research will concentrate on
the improvement of motion compliance and enhancing the
robustness of sEMG-torque estimation model.
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