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Abstract— Prehensile analysis is a research field attract-
ing multi-disciplinary interests, including computer science,
mechanology and neuroscience. For robot, grasp type recogni-
tion provides critical information for human-robot interaction
and robot self-learning. One of the research direction is to
discover the common modes of human hand use with first-
person point-of-view wearable cameras. In contrast to previous
methods based on handcraft features and multi-stage pipeline,
we use a convolutional neural network to learn discriminative
features of grasp types automatically, which can also achieve
grasp type localization and classification simultaneously in a
single-stage pipeline. Furthermore, a clustering method is also
proposed to find the hierarchical relationships between different
grasp types. Experiments are conducted on UT Grasp dataset
and Yale human grasping dataset. The proposed method shows
better accuracy and higher efficiency than traditional methods.

I. INTRODUCTION

HUMAN hand gives rich information about the interac-

tion between human and physical environment. Grasp

taxonomy is a wide research field crossing many disciplines

such as robotics [11], biomechanics [29], child development

[7], developmental medicine [13] and occupational therapy

[23].

Human hand has about 15 joints, which result in more than

20 degrees of freedom (DoF) [22]. The complex and various

uses of human hand make the classification of hand function

challenging. As directly modeling the structure and joint of

human hand is difficult, the combined analysis of ways in

which hand interact with grasped object might break the hand

function into some sub-classes [16]. In grasp taxonomy, the

definition of grasp is:

”A grasp is every static hand posture with which an object

can be held securely with one hand.” [15]

In robotics, prehensile analysis is an important research

direction. On the one hand, a long term goal is to reduce

mechanical complexity of multi-fingered robot hands but still

preserve their dexterity. Deep understanding of the function,

structure and mechanism of human hand could give some

insights to the design of the anthropomorphic hand for robot

Yinlin Li, Yuren Zhang, Hong Qiao and Xuanyang Xi are with the State
Key Laboratory of Management and Control for Complex Systems, Institute
of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road,
Beijing 100190, China; Hong Qiao is also with CAS Center for Excellence
in Brain Science and Intelligence Technology (CEBSIT), Shanghai 200031,
China; Ken Chen is with Institute of manufacturing Eng. (IME), Dept.
of Precision Instruments and Mechanology, Tsinghua University, Beijing
100084, China.
This work is supported by the National Science Foundation of China

(NSFC) (Grants 61210009, 61502494), the Beijing Municipal Science
and Technology Grants (D16110400140000, D161100001416001), and the
Strategic Priority Research Program of the CAS (Grant XDB02080003).

and the disabled, which provides hardware for human-level

manipulation. On the other hand, by equipping intelligent

robot with hand grasp recognition software, the robot can

recognize multiply human actions by hand grasp perception.

Hence, safer and smoother interaction and cooperation be-

tween robot and human could be achieved. By ”watching”

videos recording tasks with hand use, robots can better repeat

and learn the manipulation sequences of humans, which may

largely decrease the labor cost for robot training, and further

improve the intelligence, adaptation and learning ability of

robot.

Different from the controlled laboratory setting, and con-

tact hand tracking devices such as data gloves and inertial

sensors, we try to understand the grasp types of normal

activities in daily life based on visual perception, which

allows a completely non-contact grasp recording. Wearable

camera is used as it could provide egocentric videos, which

has many advantages: (1) First person point of view (POV)

can observe the interaction of hand with the grasped object

from the best angle of view, as the object and hand are always

in the center and prominent position of image with little

occlusion; (2) Detailed manipulation information including

contact point, object shape and changing of grasp type could

be recorded, which makes it possible for the intelligent robot

with nearly same viewpoint to learn from image sequences

directly; (3) Wearable camera can effortlessly record hours

of video. Hence, large data set can be recorded in various

tasks for deep understanding of our grasp type in daily life

[6].

In this paper, we try to understand human grasp types

in our daily life, including classification, localization and

clustering. The proposed methods are better than existing

grasp type analysis methods in the following aspects:

• Automatic feature learning: Compared to multiply hand-
craft features for grasp type recognition, this paper

adopts Deep Convolutional Neural Network (DCNN) to

achieve feature learning automatically;

• Single-stage pipeline: Compared to hand detection and
grasp type classification in a multi-stage pipeline, the

DCNN model in this paper can realize grasp type

classification and localization in a single stage both in

the training and testing process;

• More efficient and higher accuracy: The proposed

model can achieve faster classification and localization

speed, and also much better accuracy than existing

methods, which could be embedded in intelligent robot

systems to achieve higher level of cognition.
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The reminder of this paper is organized as follows. Sec-

tion II introduces the related work on grasp taxonomy and

grasp type classification. Section III describes the proposed

grasp type learning framework, which includes three main

modules. The experimental results and analyses are given in

Section IV. Finally, Section V concludes the work.

II. RELATED WORK

In grasp taxonomy, the pioneering work of Schlesinger et

al. [33] organize human grasping behavior into six distinct

categories: cylindrical, tip, hook, palmar, spherical, and later-

al based on object properties. Napier [32] suggests to divide

grasps into power and precision grasps. By investigating

three overlapping constraints from the task, the grasped

object and the hand/gripper, Cutkosky [11] proposes a more

comprehensive and detailed taxonomy of grasps for robot

manipulation. In [16], the grasp types in the literature are

investigated and arranged in a systematic way. 33 different

grasp types are found, which could also be reduced to a set

of 17 more general grasps if only the hand configuration is

considered without the object shape/size.

In recent years, the interacted relationship between the

property of object and grasp types are further investigated.

some researchers show that the number of fingers used for

grasping increases with the size and mass of targets, until a

grasp with two hands is needed [8], [9]. Some researchers

indicate that the shape of object has a similar influence on

grasp type chosen between different subjects, which makes

it possible to predict grasp type based on object shape alone

[17], [26]. Other work tries to analyze the frequency of

each grasp type, gives an object classification for grasp type

selection, as well as finds a proper small set of grasps to

span a wide range of objects [5], [14].

In robotics, grasp type classification is used in program-

ming by demonstration, allowing automatic grasp planning

of a robot from a demonstrated human grasp, where human

action is imitated by robot [1], [12], [24]. Kang and Ikeuchi

try to functionally map human hand grasp kinematics to

artificial hands [25]. Grasp planers are also investigated based

on observation of human behaviors and object properties [2].

In pattern recognition, hand detection, gesture recognition

and grasp type recognition are closely related research topics,

which have wide applications in human-machine interaction,

human action recognition and human intention inference, etc.

Hand detection is usually achieved by the perception of

human upper body, and integrating many kinds of handcraft

features, including color, texture, SIFT and HOG, etc [28],

[30]. Most of the hand pose and gesture recognition tasks

realize the recognition of UP, DOWN, STOP, POINT, YES

and NO, without considering the grasp task [31], [37]. There

are also a series of bio-inspired features such as arches

formed by fingers, which are introduced to the articulated

hand model to model the structure and function of different

grasp types [36]. These kinds of methods normally use

RGB Depth images and require a calibration phase, making

it difficult to be applied to the daily life videos recorded

by wearable camera. Huang et al. [21] use a fast online
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Fig. 1. The Fast R-CNN framework for hand grasp type classification and
localization.

clustering algorithm to investigate the diverse set of common

grasps based on masked HOG descriptor. Yang et al. [35]

propose a five-layer CNN model to classify six common

used grasp types in natural situation and further take the

probability outputs of grasp types of two hands for human

intention inference. However, [21] and [35] achieve hand

detection and grasp type clustering/classification in a multi-

stage pipeline.

III. GRASP TYPE LEARNING FRAMEWORK

A. Regions of Interest Extraction

We use the Fast Region based CNN framework [19] (Fast

R-CNN) for hand localization and grasp type classification.

The network needs to take two kinds of inputs: a batch of

N images and a list of R corresponding regions of interest

(RoIs). Instead of selective search method [34] used in the

original Fast R-CNN model, the Binarized Normed Gradients

(BING) method [10] is applied for the extraction of RoIs.

BING is a generic objectness method, which resizes

bounding boxes of various objects with different scales to

fixed small 8×8 windows, and uses normed gradient features
to describe them. Each candidate window will be scored with

a linear SVM classifier, and the original sizes of them are

also considered in later process. Furthermore, the binarized

version of the 8 × 8 features shows great efficiency, which

can propose a few thousands high quality object windows

at 300 fps, while selective search method requires several

seconds for one image.

In this paper, we are only interested in the grasp type of

image. Thus, the windows containing hand with grasped ob-

ject are taken as ground truth positive samples, and windows

have less than 0.5 overlap with the ground truth are taken as

negative samples. Then, BING is used to train the objectness

model and extract RoIs from each image.

B. Network Configuration and Learning

The Fast R-CNN model is different from the general CNN

models, because it could handle multi-size inputs, and has

a RoI pooling layer and a multi-task loss function. The

framework of the Fast R-CNN model used in this paper

is given in Fig. 1. This model could learn discriminative

features of grasp type automatically and achieve grasp type

classification and localization simultaneously and efficiently.

The detailed configuration of the network is given in

Fig. 2. The structure and order of the convolutional layers,

pooling layers and fully connected layers are similar to the
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Fig. 2. The layer configuration of Fast R-CNN. The red blocks are the
characteristic features of the model.

ConvNet model proposed in [27]. In each mini-batch, the

last convolutional layer and relu layer will output N feature

maps and R RoIs, which will be the inputs of the RoI

pooling layer. Each feature map is a multi-dimensional array

with H rows, W columns and C channels. Each RoI is

a tuple (n, r, c, h, w), and n is its index, (r, c) is its top

left coordinate, and (h,w) is its height and width. The RoI
pooling layer is a simplified version of the spatial pyramid

pooling layer in SPPnet [20]. Here, only a single level of

pyramid is used, and the bin size is set to be (h/H ′, w/W ′),
where H ′ and W ′ is the height and width of a max pooling
grid.

The softmax layer in ConvNet is replaced with two

sibling layers: a softmax layer over K + 1 categories (K
grasp type categories and 1 background) and K bounding

box regressors (the regression of background class is not

computed). According to this structure, the multi-task loss L
to train networks jointly for classification and bounding box

regression is as follows:

L(p, q∗, t, t∗) = Lcls(p, q∗) + λ[‖q∗‖ ≥ 1]Lloc(t, t
∗) (1)

Lcls(p, q
∗) = −

K∑

k=1

q∗klog(
ep

k

∑K
m=1 e

pm
) (2)

Lloc(t, t
∗) =

∑

i∈{x,y,w,h}
smoothL1(ti, t

∗
i ) (3)

where Lcls is the softmax loss function. p =
(p0, p1, ..., pK) is the output of softmax of one sample over
K + 1 categories, and q∗ is the true class label vector

comprising some 0 and one 1 for grasp type, and the position

of 1 corresponds to the ground truth label. For background

sample, q∗ is an all zero vector. The indicator function

λ[‖q∗‖ ≥ 1] evaluates to 1 when ‖q∗‖ ≥ 1 and 0 otherwise.
Lloc is the L1 loss regression function which outputs a

regression offset for each of the K grasp type categories.

t = {tx, ty, tw, th} represents the parameterized coordinates
of the predicted bounding box tuple [18], and t∗ is the

parameterized coordinates of ground truth bounding box.

During pre-training, the ConvNet model is used to classify

multiply grasp types and background class. Then, Fast R-

CNN is fine-tuned based on the trained convolutional and

pooling layers of ConvNet. Each SGD minibatch includes 8

images and 128 RoIs, sampling 16 RoIs from each image.

The positive grasp samples are the RoIs that have an inter-

section over union (IoU) with ground truth bounding box of

at least 0.6. The background samples are those that have a

(a)

(b)

Fig. 3. Some examples of the (a) UTG and (b) YHG hand grasp dataset.

maximum IoU with ground truth in the interval [0.1, 0.5].

The ratio of positive and negative samples is 1: 1. For more

details, please refer to [19], [18], [20].

C. Grasp Type Hierarchial Structure

According to [16], there are different ways to classify

grasp types. Finding the hierarchial structure and relation-

ships between different grasp types may give some insights

to the deep understanding of the ways that we use our hands

in daily life.

Here, we define the similarity between two grasp types as

Sk,l =
1

nk × nl
nk∑

i

nl∑

j

simL2(p
k
i , p

l
j), (4)

where k and l are two categories of grasp type. nk, nl
is the number of testing samples of kth and lth category,

respectively. pki is the kth softmax output of ith sample. The
sim function is computed by L2 norm.

We use the hierarchical clustering method to obtain the

clustering tree of grasp types.

IV. EXPERIMENTS

To explore the effectiveness of our model on grasp type

classification, localization and clustering. Experiments on

two grasp datasets — the UT grasp (UTG) dataset [6] and

the Yale human grasping (YHG) dataset [4] are conducted.

The UTG dataset is collected in a controlled environment,

and 17 grasp types usually used in daily life are selected

[3]. All the manipulations are recorded with a head mounted

camera. The images are resized to 540 × 960 pixels, and

the ground truth bounding box of grasp type is (200 × 300
pixels) labeled automatically based on the mask image of

arm and hand. The YHG dataset contains 27.7 hours of

head mounted videos recorded from two housekeepers and

two machinists during their regular work activities. Here, 7

regular used grasp types of the machinists are selected. The

image is resized to 480 × 640 pixels, and the ground truth

bounding box has 150 × 150 pixels. Some examples of the
UTG and the YHG dataset are given in Fig. 3.

A. Regions of Interest Extraction

The RoIs are extracted with BING. The visualization of the

learned weights are given in Fig. 4. Comparison experiments

with random selection (RS) and selective search (SS) are

also conducted. The recalls of BING and RS are given
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(a) (b)

Fig. 4. Visualization of the weights learned by BING on (a) UTG and (b)
YHG dataset.

in Table. I. N-RoIs represents the number of RoIs of one

image. BING can achieve 99.5% recall with 100 RoIs both

for UTG and YHG dataset. We could see that the results

of RS are very bad. The average processing time (Ave-T)

and average number of RoIs (Ave-N-RoIs) of one image are

given in Table. II. For BING, the average number of RoIs

of each image is 79 and 120 for the UTG and YHG dataset,

respectively. The SS method needs much longer time and

generates much more useless RoIs than BING.

TABLE I

RECALL OF BING AND RANDOM SELECTION.

Dataset UTG UTG YHG YHG
N-RoIs 10 100 10 100
BING 66.0% 99.5% 51.6% 99.5%
RS 9.7% 64.5% 4.0% 35.9%

TABLE II

COMPARISON OF BING AND SELECTIVE SEARCH

Dataset UTG UTG YHG YHG
params Ave-T (ms) Ave-N-RoIs Ave-T (ms) Ave-N-RoIs

BING 7.2× 10−2 79 1.2× 10−1 120

SS 9.6× 102 558 5.8× 102 880

B. Grasp Classification and Detection

The classification of two categories — grasp and back-

ground is conducted with the ConvNet model. The ground

truth bounding box windows are taken as positive samples,

and windows have less than 0.5 overlap with the ground truth

are taken as negative samples. Then, on the whole image,

grasp detection is achieved with the Fast R-CNN model fine-

tuning from the pre-trained ConvNet.

Comparisons with two kinds of features — handcraft fea-

ture HOG and biologically inspired hierarchical max-pooling

feature (HMAX) are conducted, and SVM classifier is used

for classification. As it is shown in Table. III, ConvNet

achieves the best accuracy 99.95% and 97.41% for UTG

and YHG dataset, respectively. This indicates the higher

representative and discriminative ability of deep learning

model.

TABLE III

GRASP CLASSIFICATION ACCURACY (TWO CLASSES)

Dataset UTG YHG
HOG+SVM 98.45% 89.18%
HMAX+SVM 93.62% 90.33%
ConvNet 99.95% 97.42%

(a) (b)

Fig. 5. AP curve of the Fast R-CNN on (a) UTG and (b) YHG dataset.

Fig. 6. Some of the grasp detection results on the YHG dataset.

For the grasp detection task, the Average Precision (AP)

curve of the Fast R-CNN is shown in Fig. 5, and the

other results are given in Table. IV. AP AUC is the area

under AP curve. The recall and precision are computed by

considering all the predicted bounding boxes. We could see

that the Fast R-CNN can make a good balance between

recall and precision. The result in the UTG dataset is much

better than the YHG dataset. The reason is that the UGT

is sampled under a controlled environment, which is easier

for perception. Some of the detection results on the YHG

dataset are shown in Fig. 6. Though only the right hands with

grasped object are labeled and trained, the method could also

detect left hands in some conditions.

TABLE IV

GRASP DETECTION RESULTS

Dataset UTG YHG
AP 0.79 0.48

AP AUC 0.84 0.49
Recall 0.88 0.59
Precision 0.94 0.61

C. Grasp Type Classification and Detection

The two categories grasp classification and detection is

just a simplified version of grasp type understanding. In this

part, experiments of 18 categories (17 grasp types and 1

background) on UTG dataset and 8 categories (7 grasp types

and 1 background) on YHG dataset are carried out. Same

procedures as those of the two categories are processed. The

final results of classification are shown in Table. V.

For classification task, the accuracy of ConvNet on UTG

dataset is 96.85%, which only decreases 3% than that of

two categories. The ConvNet still has a better accuracy than

traditional methods.
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For detection task, the mean AP (mAP) of Fast R-CNN on

UTG and YHG dataset is 76.34% and 34.38%, respectively.

The AP of each grasp type on UTG and YHG dataset is given

in Table. VI and Table. VII, respectively. The classification

and detection on the YHG dataset are much more difficult

than that on the UTG dataset. Some examples of the detection

results are given in Fig. 7. For the Fast R-CNN model, the

average detection time of one image is 0.3 s, which is faster

than R-CNN and other traditional methods.

D. Grasp Clustering

The hierarchical relationships of the 17 grasp types in the

UTG dataset are analyzed. Firstly, the distance matrix of

the 17 grasp types is given in Fig. 8, where the index (1-

17) corresponds to the index in Table. VI. The hierarchical

clustering tree of them is shown in Fig. 9. The bottom layer

includes the original 17 categories. Then, two clusters are

gathered together successively. Sometimes, three clusters has

the same distance are clustered together. We could see that

the most similar categories are clustered together firstly, and

then the less similar categories.

V. CONCLUSIONS

In this paper, deep neural networks including ConvNet and

Fast R-CNN were applied for classification and detection of

multiply grasp types, and a hierarchial clustering method was

used to understand the relationships between different grasp

types. The experiments on two public datasets in controlled

and usual environments were conducted, and the comparison

experiments with handcraft features and other hierarchical

models showed the effectiveness of the methods in this

TABLE V

MULTICLASS GRASP TYPE CLASSIFICATION ACCURACY

Dataset UTG (18) YHG (8)
HOG+SVM 94.89% 51.54%
HMAX+SVM 83.14% 45.97%
ConvNet 96.85% 63.64%

TABLE VI

AP OF EACH GRASP TYPE ON UTG DATASET

Idx-Grasp Type AP Idx-Grasp Type AP
1-precision disk 51.99% 10-adduction 80.70%
2-parallel extension 63.01% 11-index finger extension 80.08%
3-extension type 71.29% 12-lateral pinch 80.28%
4-power sphere 81.28% 13-tripod 80.20%
5-medium wrap 79.89% 14-lateral tripod 90.77%
6-thumb index finger 78.64% 15-large diameter 80.99%
7-thumb 2 finger 78.31% 16-ring 63.49%
8-thumb 3 finger 77.31% 17-light tool 79.60%
9-thumb 4 finger 79.92%

TABLE VII

AP OF EACH GRASP TYPE ON YHG DATASET

Grasp Type AP Grasp Type AP
lateral pinch 48.35% lateral tripod 52.97%
medium wrap 26.70% thumb 2 finger 20.34%
thumb 3 finger 24.15% thumb 4 finger 33.34%

thumb index finger 34.82%

(a)

(b)

Fig. 7. Some examples of the detection results on (a) UTG and (b) YHG
dataset.

Fig. 8. Distance matrix of the 17 grasp types in UTG dataset. The difference
becomes bigger when the color turns from black (0) to white (1).

paper. In the future, we will try to better understand hand

manipulation by analyzing both hand and grasped object.
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