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Abstract—Manifold distances are very effective tools for
visual object recognition. However, most of the traditional
manifold distances between images are based on the pixel-
level comparison and thus easily affected by image rotations
and translations. In this paper, we propose a new manifold
distance to model the dissimilarities between visual objects
based on the Complex Wavelet Structural Similarity (CW-
SSIM) index. The proposed distance is more robust to
rotations and translations of images than the traditional
manifold distance and the CW-SSIM index based distance.
In addition, the proposed distance is combined with the k-
medoids clustering method to derive a new clustering method
for visual object categorization. Experiments on Coil-20, Coil-
100 and Olivetti Face Databases show that the proposed
distance measure is better for visual object categorization
than both the traditional manifold distances and the CW-
SSIM index based distances.

I. INTRODUCTION

COMPARING the similarity of two objects is a funda-
mental operation for many clustering algorithms [1].

Methods such as the k-medoids [2], the dip-means [3] and
clustering by fast search and find of density peaks [4] only
need the similarity matrix as input. A similarity measure is
a real-world function that assesses the similarity between
two objects. Although no single definition of a similarity
measure exists, similarity measures are usually in some
sense the opposite of distance metrics, that is, they take
on large values for similar objects and small values for
very dissimilar objects.

There have been considerable efforts in searching for the
appropriate similarity measures for object categorization.
In Euclidean space, the Euclidean distance (L2 norm) and
the city-block distance (L1 norm) are two most famous
distances. For images, one of the most effective simi-
larity measures is complex wavelet structural similarity
(CW-SSIM) index [5], which is robust to small rotations
and translations of images. Pearson correlation coefficient
[6] and joint entropy [7] are two widely used similari-
ty/distance measures for probability distributions. For high-
dimensional data, Radial Basis Function (RBF) kernel is
a popular choice of a distance measure. More information
about similarity/distance measures can be found in [8].

Although the previous distance/similarity measures have
achieved some success, they are not suitable to deal with
visual objects which often lie in very high-dimensional
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spaces and have 2D/3D spatial structures [9]. On one
hand, manifold learning is a powerful tool to deal with
the high-dimensional issue of visual objects. Most of
the manifold learning methods use the manifold ways of
perception [10] which assumes that the data of interest
lie on an embedded low-dimensional manifold within the
high-dimensional space whose dimension equals to the size
of an image. Isomap [11], one of the most famous manifold
learning algorithms, implements the manifold assumption
by introducing the geometric distance to approximate the
manifold distance. The geometric distance itself is approx-
imated by the shortest distance on a neighborhood graph
constructed by ε-neighborhood or t-nearest-neighborhood
(t-nn) neighborhood (here we use t instead of k in the
k-nearest-neighborhood algorithm to avoid confusion with
the k used in k-means/k-medoids). The advantage of the
geometry distance is that it preserves the neighborhood
properties of the data distribution and keeps the intrinsic
dimension unchanged. Manifold learning methods have
been successfully applied into dimensionality reduction
[12], target tracking [13], face recognition [14] and so on.

One the other hand, the structural similarity (SSIM)
index [15] is one of the first attempt to deal with the
2D/3D structure of visual objects. It attempts to discount
those distortions that do not affect the structures of the
image and achieves a very good performance for image
quality prediction with a wide variety of image distortions.
However, it is highly sensitive to translations and rotations
of images. To address this issue, the CW-SSIM index
was proposed in [5], which assumed that the local phase
pattern contains more structural information than the local
magnitude, and the non-structural image distortions such
as small translations lead to consistent phase shift of a
group of neighboring wavelet coefficients. The CW-SSIM
index is very robust to small rotations and translations of
images and can be combined with other image clustering
[4] or classification [16] methods.

Although manifold learning methods and the CW-SSIM
index have achieved some success in their own fields, no
effort has been made to investigate the merit of combining
the two methods. In this paper, we propose a new manifold
distance measure named the Geometric CW-SSIM (GCW-
SSIM) distance measure for visual object categorization.
The distance is a combination of the CW-SSIM index for
measuring the similarities between images and the geomet-
ric distance for preserving the local properties of a cluster.
In addition, we apply the new manifold distance measure
to the k-medoids and propose a new clustering method
named the Geometric CW-SSIM k-medoids (GCW-SSIM
k-medoids). Further, experiments have also been conducted
on three famous visual object data sets, Coil-20 [17], Coil-
100 [18], and Olivetti Face Database [19] to evaluate the
performance of both the new manifold distance measure
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and the GCW-SSIM k-medoids.
The rest of this paper is organized as follows. Section II

introduces the geometric CW-SSIM distance measure. The
GCW-SSIM k-medoids clustering algorithm is described
in Section III. In Section IV, experiments are conducted to
evaluate the performance of the proposed geometric CW-
SSIM distance measure and the GCW-SSIM k-medoids
clustering algorithm. Conclusions are given in Section V.

II. GEOMETRIC CW-SSIM DISTANCE

The idea of the geometric CW-SSIM distance first
comes from the geometric distance which is a widely-used
manifold distance. Fig. 1 shows the difference between
the traditional Euclidean distance (or L2 distance) and the
manifold distance. In Fig. 1, images of a toy cat taken
with different angles form a manifold space whose intrinsic
dimensionality is 1. The reason for this is that only the
angle is a free variable. In the manifold space, it is assumed
that the distance between images is proportional to the
difference between their angles (in the sense of a modulus
operation of 360 degrees).

Fig. 1. Illustration of the difference between the Euclidean and manifold
distances. The blue lines denote the Euclidean distances, and the red
dash lines denote the manifold distances. The L2 distances between two
neighbors are almost the same, which we set as 1 for simplicity. The L2

distances between other points can be any other numbers, which have
nothing to do with the distance of the neighbors. The manifold distance
between A1 and A6 is approximated by their shortest distance on the
2-nn neighborhood graph and is about 3 in this example.

However, the L2 distance violates the manifold assump-
tion due to the following two drawbacks:

1) It only considers the pixel intensities and thus ne-
glects the geometric information between objects;

2) It neglects the 2D structural information of images.
One of the solutions for the first drawback is to use the

geometric distance instead of the L2 distance. However,
the geometry distance in the manifold is hard to estimate
due to the limited and discrete samples. An approximation
for the geometric distance is the minimum distance in
a neighborhood graph that is usually constructed by ε-
neighborhood or t-nearest-neighborhood (t-nn) [20]. The
minimum distance on the neighborhood graph can be
efficiently computed by the Dijkstra algorithm [21].

To resolve the second drawback with the L2 distance, the
CW-SSIM index is used as the similarity measure between

images. The CW-SSIM index takes the 2D structure of
images into consideration and is a general index for image
similarity measurement. The key idea behind the CW-
SSIM index is that small geometric image distortions lead
to consistent phase changes in the local wavelet coefficients
and that a consistent phase shift of the coefficient does not
change the structural content of the image. Specifically,
given two sets of coefficients cx and cy extracted at the
same spatial location in the same wavelet sub-bands of the
two images being compared, the local CW-SSIM index is
defined as:

S̃(cx, cy) =
2|
∑M

i=1 cx,ic
∗
y,i|+K∑M

i=1 |cx,i|
2 +

∑M

i=1 |cy,i|
2 +K

. (1)

Here, c∗ denotes the complex conjugate of c and K is a
small positive stabilizing constant. S̃(cx, cy) ranges from
0 to 1, where the fact that S̃(cx, cy) equals 1 implies no
structural distortion. The global CW-SSIM index S̃(x,y)
between two images x and y is calculated as the aver-
age of S̃(cx, cy), which is first computed with a sliding
window running across the whole wavelet sub-bands and
then averaged. The advantage of the CW-SSIM index
includes: 1) It does not require explicit correspondences
between pixels being compared; 2) It is insensitive to small
geometric distortions (rotations and translations); and 3)
It compares the textural and structural properties of the
localized regions of the image pairs.

A new manifold distance called the GCW-SSIM distance
is obtained by combining the CW-SSIM index and the geo-
metric distance. t-nn is used to construct the neighborhood
graph. Algorithm 1 shows the procedure for computing the
GCW-SSIM distance. In Algorithm 1, Nt(x

(i)) is the t-
neighborhood of x(i) and Dijkstra(x(i), x(j)) is the short-
est distance between x(i) and x(j) on the neighborhood
graph.

Algorithm 1 The Geometric CW-SSIM Distance
Input: X and t (t-nn parameter)
Output: G (GCW-SSIM distance)

1: sij ← S̃(x(i), x(j))
2: dij ← 1− sij
3: Construct the neighborhood graph using the CW-SSIM

distance and t-nn as follows:

dij ←

{
dij , if x(j) ∈ Nt(x

(i));

∞, otherwise.
(2)

4: gij ← Dijkstra(x(i), x(j))
5: return G

Compared with the geometric distance, the GCW-SSIM
distance improves the accuracy of computing the manifold
distance since the CW-SSIM index is more robust to
rotations than the L2 distance. In addition, the GCW-
SSIM distance is more robust to rotations and translations
of images compared with the CW-SSIM index since the
manifold distance helps to preserve the local information
of similar objects.

III. THE GCW-SSIM k-MEDOIDS

The k-medoids algorithm is a variant of the k-means
clustering algorithm. It selects data samples as centers (also
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Fig. 2. Visualization of the distances on the toy cat set (1 unit = 10 degrees rotation). The distances are normalized into the range [0, 1] for
visualization by dividing the maximum distance. Note that the GCW-SSIM distance is enlarged by a factor of 50 for showing due to their small
values.

called medoids) and attempts to minimize the following
objective function:

C∗ = argmin
C

m∑
i=1

k∑
j=1

vij d(x
(i), c(j)) (3)

where vij is the assignment index: vij equals 1 if x(i)

is assigned to the jth cluster or 0 otherwise. d(x(i), c(j))
is any kind of distance measures. The most famous al-
gorithm to solve (3) is the Partitioning Around Medoids
(PAM) algorithm [22] which starts from some randomly
selected medoids and iteratively updates the assignments
and medoids until the objective function achieves some
local minima.

We use the GCW-SSIM distance proposed in the previ-
ous section as the distance measure for the k-medoids al-
gorithm. The corresponding clustering algorithm is named
as the GCW-SSIM k-medoids. The procedure for GCW-
SSIM k-medoids is presented in Algorithm 2. Here g(x, c)
denotes the geometric CW-SSIM distance between x and
c. The GCW-SSIM k-medoids mainly deals with the the
unsupervised clustering task of visual objects that lies on
a manifold.

Algorithm 2 The GCW-SSIM k-medoids Algorithm
Input: X and t

Output: C∗ (optimal medoids)
1: C ← C(0) (randomly selected k medoids)
2: G ← GCW-SSIM distance computed by Algorithm 1
3: while there are changes in the assignments do
4: Assign each data point to the closest medoid;

vij ←

⎧⎨
⎩
1, if gij = min

j=1,2,··· ,k
g(x(i), c(j));

0, otherwise.
(4)

5: Update medoids as follows,

c(j) ← argmin
c∈{x(i)|vij=1}

∑
i:vij=1

g(x(i), c)

6: end while
7: C∗ ← C

8: return C∗

IV. EXPERIMENTS

In this section, experiments are conducted to evaluate the
performance of the proposed GCW-SSIM distance and the

GCW-SSIM k-medoids. The following three criteria are
used to evaluate the performances of unsupervised image
categorization [23]. 1) Each learned category is associated
with the true category that accounts for the largest number
of cases in the learned category. Thus, the error rate (re)
is computed. 2) Rate of true association (rt) is the fraction
of pairs of images from the same true category that was
correctly placed in the same learned category. 3) Rate of
false association (rf ) is the fraction of pairs of images
from different true categories that was erroneously placed
in the same learned category. Better clustering performance
is characterized with lower values for re and rf but higher
rt value.

The k-medoids is repeated 1000 times to reduce the af-
fect of randomly selected initial seeds. The criterion values
are recorded when the objective function (3) achieves a
minimum value among the repeats.

All experiments are conducted on a single PC with Intel
i7-4770 CPU (4 Cores) and 16G RAM.

A. Experiments on Coil-20

We first shows the difference of distances on the toy cat
set (the 4th category in Coil-20). The toy cat set contains
72 images taking 5 degrees apart as the object rotated
on a turntable. Fig. 2 shows the differences of the four
distances: 1) The L2 distance gets small value only when
the difference of angles between two objects is no more
than 20 degrees; 2) the CW-SSIM distance could get a
small value even when the difference of angles is more
than 100 degrees; 3) The geometry distance narrows the
distance gaps in L2 since the objects are locally connected;
and 4) the GCW-SSIM distances are relatively smaller
than the geometry distance, and as a result it is inclined
to cluster the objects into the same category. This means
that the GCW-SSIM distance would be more distinctive in
clustering the toy cat into the same category than the other
three distances.

We now compare the clustering performance of the k-
medoids on the dataset Coil-20 with the four distance
measures. We use “C” to denote the CW-SSIM distance,
“G” to represent the geometric distance and “GC” to
denote the GCW-SSIM distance. Three subsets are selected
from the dataset Coil-20. They are Coil-5 (object 1,3,5,7
and 9), Coil-10 (objects with even numbers) and Coil-15
(objects except 3,7,11,15 and 19). The clustering results
on the Coil-sets are shown in TABLE I. As expected, the
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TABLE I
CLUSTERING PERFORMANCE COMPARISON ON THE COIL-SETS.

Data Sets k-medoids (L2) k-medoids (C) k-medoids (G) k-medoids (GC)
re rt rf re rt rf re rt rf re rt rf

Coil-5 41.7 50.0 15.8 43.0 58.0 21.9 9.2 89.9 4.6 2.5 95.6 1.3
Coil-10 24.9 80.5 5.5 23.2 74.3 5.4 8.8 89.5 1.4 0.3 99.5 0.1
Coil-15 30.7 71.3 4.1 32.4 63.7 4.5 10.9 91.2 1.6 9.2 93.1 1.3
Coil-20 33.2 60.4 2.7 36.4 62.4 4.7 19.4 79.3 1.8 15.8 87.2 2.0

TABLE II
CLUSTERING PERFORMANCE COMPARISON ON THE LARGE COIL-SETS. DEFINITION OF re , rt AND rf CAN BE FOUND IN SEC. IV.

Data Sets
k-medoids (L2) k-medoids (C) k-medoids (G) k-medoids (GC)
re rt rf re rt rf re rt rf re rt rf

Coil-25 41.9 59.8 4.2 38.2 55.7 2.7 25.3 72.6 2.4 20.1 77.7 1.5
Coil-50 42.6 54.6 2.3 41.0 56.5 1.9 32.6 70.0 1.6 24.6 78.1 1.2
Coil-75 48.0 47.8 1.4 50.5 49.4 1.5 36.3 68.2 1.8 32.4 69.8 1.0

Coil-100 52.6 47.1 1.4 51.9 44.3 1.1 37.3 62.9 1.1 35.4 67.2 1.0
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Fig. 3. Performance comparison on the large Coil-100 dataset with a varying number of clusters.

GCW-SSIM k-medoids gets the best results compared with
the other methods.

B. Experiments on Coil-100

In addition, we compare the clustering performance on
Coil-100 to evaluate the effectiveness of the proposed
method with a large number of clusters. We also select
three subsets from Coil-100. They are Coil-25 (object 1,
5, 9, · · · , 93 and 97), Coil-50 (objects with even number)
and Coil-75 (Coil-25 + Coil-50). Coil-25, Coil-50, Coil-
75 and Coil-100 are denoted as the large Coil-sets to
distinguish from the Coil-sets. The clustering results on
the large Coil-sets are shown in TABLE II. Again, our
method outperforms the other three methods.

To get a closer look at the tendency of the criteria
with a variant number of clusters, we select the first
k (k = 10, 20, · · · , 90 and 100) categories from the
Coil-100 set as 10 subsets. The performance results are
visualized in Fig. 3. It is observed from Fig. 3(a)-(b) that
the manifold distance based methods outperform the non-
manifold distance based methods. It is observed further
that GCW-SSIM k-medoids outperforms k-medoids with
the geometric distance.

C. Experiments on Olivetti Face Database

We now compare the clustering performance with d-
ifferent distances on the Olivetti Face Database for face
recognition. The data set consists of 400 face images from
40 individuals. The images are taken at different times,
with varying lighting, facial expressions and facial details.
The size of each image is 64× 64 pixels. We select three
subsets, Oliv.-10 (faces 2,6,10, · · · , 34 and 38), Oliv.-20

(faces with odd number), and Oliv.-30 (Oliv.-10 + Oliv.-
20). The whole database is denoted as Oliv.-40.

The results are shown in TABLE III. Our method
gets the best performance on most of the subsets under
the criteria re and rt. This implies that the GCW-SSIM
distance is less sensitive to lighting and facial expression
changes. As a result, the GCW-SSIM distance makes faces
in the same true category more similar compared with the
other distances and thus helps to cluster the faces into a
same category. In addition, the rt value of GCW-SSIM
k-medoids on the Oliv.-40 data set outperforms the state-
of-art performance reported in [4], which is around 68%.

V. CONCLUSION

In this paper, we proposed a new distance measure
named GCW-SSIM distance which has the merit of both
the CW-SSIM index and the geometric distance. Compared
with the geometric distance, the GCW-SSIM distance
improves the accuracy of computing the manifold distance
since the CW-SSIM index is more robust to rotations
than the L2 distance. In addition, the GCW-SSIM distance
is more robust to rotations and translations of images
compared with the CW-SSIM index, which is verified by
visualization on the toy cat set. We also proposed a new
clustering method named GCW-SSIM k-medoids that uses
the GCW-SSIM distance for visual object clustering. The
experiments on the real world data sets showed that GCW-
SSIM k-medoids has an excellent performance for the
visual object categorization tasks.
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TABLE III
CLUSTERING PERFORMANCE COMPARISON ON THE OLIVETTI-SETS.

Data Sets k-medoids (L2) k-medoids (C) k-medoids (G) k-medoids (GC)
re rt rf re rt rf re rt rf re rt rf

Oliv.-10 5.0 90.9 1.3 15.0 77.1 2.9 4.1 92.4 1.0 11.0 93.6 2.4
Oliv.-20 36.5 52.6 4.0 33.5 54.1 3.1 34.5 57.0 3.3 30.0 73.2 3.7
Oliv.-30 34.7 53.0 2.4 34.7 54.7 2.3 28.0 65.4 2.0 25.0 71.8 1.7
Oliv.-40 39.5 47.0 2.1 36.3 50.2 1.5 34.8 57.6 1.9 29.7 69.2 2.6
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