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Abstract. In this paper, we propose a novel manifold regularized
online semi-supervised learning (OS2L) model in an Reproducing Kernel
Hilbert Space (RK-HS). The proposed algorithm, named Model-Based
Online Manifold Regularization (MOMR), is derived by solving a con-
strained optimization problem, which is different from the stochastic gra-
dient algorithm used for solving the online version of the primal problem
of Laplacian support vector machine (LapSVM). Taking advantage of the
convex property of the proposed model, an exact solution can be obtained
iteratively by solving its Lagrange dual problem. Furthermore, a buffer-
ing strategy is introduced to improve the computational efficiency of the
algorithm. Finally, the proposed algorithm is experimentally shown to
have a comparable performance to the standard batch manifold regular-
ization algorithm.

Keywords: Manifold regularization · Online semi-supervised learning ·
Lagrange dual problem

1 Introduction

Cognitive science has drawn a lot of attentions for its significance in under-
standing human categorization in recent years [5]. In human learning, learners
can incrementally learn the classes of various objects from the surrounding envi-
ronment, where only a few objects are labeled by a knowledgeable source. This
scenario can be regarded as online semi-supervised learning, that is, the label of
a new arrived sample is unavailable or presented very sporadically in the online
process.

In this paper, we focus on the online semi-supervised learning (OS2L) prob-
lems. Several online semi-supervised learning algorithms have been proposed in
the past several years. By using a heuristic method to greedily label the unla-
beled examples, Babenko et al. [1] and Grabner et al. [9] tried to solve the OS2L
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problems in an online supervised learning framework. Dyer et al. [3] presented
a semi-supervised learning (SSL) framework called COMPOSE (COMPacted
Object Sample Extraction), where a few labeled samples are given initially, and
then a SSL problem is solved based on the currently labeled samples and new
unlabeled samples, which are from a drift distribution. To reduce the computa-
tional complexity of manifold construction in the online training process, Kveton
et al. [11] and Farajtabar et al. [4] proposed the harmonic solution for manifold
regularization on an approximate graph. By using online convex programming,
Goldberg et al. [6] proposed an online manifold learning framework for SSL in a
kernel space with stochastic gradient descent. In addition, they extended their
method to online active learning by adding an optional component to select
which instances to label [8]. Sun et al. [7,14] exploited the property of Fenchel
conjugate of hinge loss and gradient ascend method to solve the dual problem
of their online manifold learning model. These algorithms in [6,7,14] are derived
by using online gradient methods, implying that these methods can be regarded
as solving the off-line semi-supervised learning models by stochastic gradient
methods. However, none of these stochastic gradient methods can obtain exact
solution because they do not directly solve the constrained optimization problem
involved.

Note that an algorithm with an exact solution can obtain better performance.
Therefore, to exploit the internal geometry information of the unlabeled data and
take advantage of the kernel methods, in this paper we propose a novel online
manifold regularization learning model in an Reproducing Kernel Hilbert Space
(RKHS). In each iteration of online training, by considering the new arrived
sample and the previous samples, an online model based on a constrained opti-
mization problem is presented. Unlike the stochastic gradient method for solving
the off-line model, the exact solution of the proposed model can be obtained by
exploiting the Lagrange dual problem. In addition, the regularization parameter
of the proposed model can be regarded as a forgetting factor, which can be used
to control the number of support vectors by considering a buffering strategy in
the online leaning process. By such merit, the proposed online predictor experi-
mentally exhibits a high accuracy comparable to batch algorithm LapSVM.

The rest of this paper is organized as follows. Section 2 presents the proposed
model and algorithm. Experimental results on several data sets are shown in
Sect. 3. Some concluding remarks are given in Sect. 4.

2 Online Manifold Learning

In this section, the proposed model is presented in detail. In Sect. 2.1, a new
model is proposed for online manifold regularization learning in an RKHS. In
Sect. 2.2, the proposed model is solved by exploiting the property of Lagrange
dual problem.
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2.1 Online Model Based on Manifold Regularization

Assume that the current learning data for semi-supervised learning are
(x1, y1, δ1), (x2, y2, δ2), . . ., (xt, yt, δt) where xi ∈ X is a point, yi ∈ Y = {−1, 1}
is its label and δi is a flag to determine whether the label yi is available (yi is avail-
able if and only if δi = 1). At round t, the current predictor is ht(x) = sign(ft(x))
and f0 is set as f0 = 0 in our algorithm. In online semi-supervised learning, when
a new sample (xt+1, yt+1, δt+1) is available, the function ft+1 is updated based on
the current decision function ft and the implicit feedback, that is, the manifold
structure of the samples.

Suppose that K(·, ·) is a chosen Kernel function over the training samples and
H is the corresponding RKHS. Therefore, according to the Representer Theory
[13], ft and ft+1 can be written as:

ft(·) =
t∑

i=1

αt
iK(xi, ·), ft+1(·) =

t∑

i=1

αt+1
i K(xi, ·) + αt+1

t+1K(xt+1, ·). (1)

In the online learning process, our aim is to update {αt+1
i }t+1

i=1 from {αt
i}t

i=1

based on a proper algorithm. Considering the trade-off between the amount
of progress made on each round and the amount of information retained from
previous rounds, and compromise the classification error, the manifold constraint
and the complexity of f as LapSVM, our online semi-supervised learning model
with manifold regularization is presented as:

min
f,ξt+1

1
2
‖f − ft‖2H+

λ1

2
‖f‖2H + Cδt+1ξt+1 +

1
2
λ2

t∑

i=1

(f(xi) − f(xt+1))2wit+1

s.t. yt+1f(xt+1) ≥ 1 − ξt+1, ξt+1 ≥ 0

(2)

where 1
2‖f − ft‖2H measures the difference between f and the previous ft,

the term ‖f‖2H controls the complexity of the decision function f ,
∑

(f(xi) −
f(xt+1))2wit+1 is the manifold regularizer which depends on the edge weight
wit+1, f and xi, and ξt+1 is the slack variable denoting a possible error for the
newly arrived data(xt+1, yt+1, δt+1) after f is determined, λ1, λ2 and C are para-
meters reflecting the weights compromising complexity, the manifold regularizer
and the classification error.

In the objective function of (2), the manifold structure of the samples is
reflected in the term

∑t
i=1(f(xi)− f(xt+1))2wit+1, which can be regarded as an

implicit feedback. This regularization term makes the new sample gain a similar
decision value to its close sample in the manifold. Therefore, the proposed model
can take advantage of the implicit feedback and the kernel methods. The solution
of the proposed model is presented in the next section.

2.2 Online Algorithm of the Proposed Model

In this section, we give a detailed solution of the proposed model by exploiting
the property of Lagrange dual problem. Assuming that δt+1 = 1 (if δt+1 = 0, the
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solution of (2) can be obtained by the similar process as below), the Lagrange
dual problem of (2) is

max
γt+1

min
f,ξt+1

L(f, ξt+1, γt+1, βt+1)

s.t. γt+1 ≥ 0, βt+1 ≥ 0
(3)

where γt+1 and βt+1 are the Lagrange multipliers corresponding to the con-
straints yt+1f(xt+1) ≥ 1 − ξt+1 and ξt+1 ≥ 0, respectively.

For simplicity, we define D and W as

Dij =

⎧
⎨

⎩

wij if 0 < i = j < t + 1∑t
i=1 wit+1 if i = j = t + 1

0 otherwise
(4)

Wij =

⎧
⎨

⎩

wij if 0 < i < t + 1, j = t + 1
wij if i = t + 1, 0 < j < t + 1
0 otherwise

(5)

Substituting (1), (4), (5) into (3) and let L = D − W , we have

L(α, ξt+1, γt+1, βt+1) =
1
2
αT (K + λ1K + λ2KLK)α

− γt+1(yt+1α
T J − 1 + ξt+1) + c0

− αT Kα̃t − βt+1ξt+1 + Cξt+1

(6)

where α = [α1, . . ., αt+1]T , α̃t = [αt
1, . . ., α

t
t, 0]T , K is a (t + 1) × (t + 1) Gram

Matrix with Kij = K(xi, xj), J = Ke, e = [0, . . ., 0, 1]T is a (t + 1)-dimensional
vector and c0 is a constant.

Note that L(α, ξt+1, γt+1, βt+1) attains its minimum with respect to α and
ξt+1, if and only if the following conditions are satisfied:

∇αL(α, ξt+1, γt+1, βt+1) = 0, (7)

∇ξt+1L(α, ξt+1, γt+1, βt+1) = 0. (8)

Therefore, we formulate a reduced Lagrangian:

LR(α, γt+1) =
1
2
αT (K + λ1K + λ2KLK)α + c0

− γt+1(yt+1α
T J − 1) − αT Kα̃t.

(9)

Taking derivative of the reduced Lagrangian with respect to α, we have:

α = (K + λ1K + λ2KLK)−1(Kα̃t + Jyt+1γt+1). (10)
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Substituting back in the reduced Lagrangian we get:

max
γt+1

− 1
2
(Kα̃t + Jyt+1γt+1)T A−1(Kα̃t + Jyt+1γt+1) + γt+1

s.t. 0 ≤ γt+1 ≤ C,

(11)

where A = K + λ1K + λ2KLK.
Let γt+1 be the stationary point of the object function of (11).
Therefore

γt+1 =
1 − yt+1J

T A−1Kα̃t

JT A−1J
. (12)

Assume that optimal solution of (11) is γ∗
t+1. Note that the object function

(11) is quadratic, so the optimal solution γ∗
t+1 in the interval [0, C] is at either

0, C or γt+1. Hence

γ∗
t+1 =

⎧
⎨

⎩

0, if γt+1 ≤ 0
C, if γt+1 ≥ 0
γt+1, otherwise

(13)

Furthermore, if δt+1 = 0, we can obtain the solution of the proposed model
by the similar process as above. Thus, the online manifold regularization for
classification is presented as

ft+1(x) =
t+1∑

i=1

αt+1
i K(xt+1, x),

ht+1 = sign(ft+1(x)),

(14)

where

αt+1 = A−1(Kα̃t + δt+1yt+1γ
∗
t+1J)

The above process of solving the proposed model is denoted by MOMR. In
practice, the parameter λ1 can be regard as a forgetting factor. Suppose λ2 is very
small and λ1 > 0. According to (10), we have α � (1+λ1)−1(α̃t+yt+1eγt+1), that
is, αt+1

i � αt
i/(1 + λ1) for i = 1, . . ., t, which means that the absolute value of αt

i

will continually decrease in the online process. Thus, if the absolute value of a
coefficient is small in the current decision function, the corresponding sample can
be deleted safely from the current support vectors set. Based on this, a buffering
strategy is introduced to make the online training feasible in the RKHS. The
detailed process of the buffering strategy is presented in Sect. 3.

3 Experiments

To verify the effectiveness, we compare the proposed algorithm with two online
manifold regularization algorithms and a batch algorithm on two data sets. In
Sect. 3.1, the experimental setups are introduced in detail. In Sect. 3.2, several
experiments are processed and the results are summarized and analyzed in detail.
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3.1 Experimental Setup

Two data sets are used in our experiments. The first data set is the MNIST [12].
We focus on the binary classification task of separating ‘6’ from ‘8’ (MNIST6VS8)
in our experiment. The sizes of the training set and test set are 11769 and 1932
respectively. The second data set is the FACEMIT [10] which contains 361-
dimensional images of faces and non-faces. A balanced subset from FACEMIT
(size 5000) is sampled and divided into two sets: the training set and the test set
with a proportion 1:1 for our experiment. Similar to the experimental settings
in [6,7], the labeled rate of the training samples is set to be 2% in all the
experiments.

In our experiments, we focus on online manifold regularization algorithms
derived from the dual problem. Therefore, We compare the performance of our
algorithm MOMR with an online manifold regularization algorithm based on
Example-Associate Update (denoted by OMR-EA), an online manifold regular-
ization algorithm based on Overall Update (denoted by OMR-Overall) [7] and
a batch manifold regularization algorithm LapSVM [2].

To reduce the storage for online learning in an RKHS, we use a buffering
strategy for all the online algorithms: Let the buffer size be B. If the buffer is
full, the sample with the smallest absolute coefficient in the buffer is replaced
by the new arrived sample. We evaluate the three online algorithms separately
with different buffer sizes (B ∈ {50, 200}) in our experiments.

In all the experiments, the RBF kernel k(xi, xj) = exp(−‖xi − xj‖2/(2σ2
K))

is used for classification and the edge weights are Gaussian weights k(xi, xj) =
exp (−‖xi − xj‖2/(2σ2

W )) which define a fully connected graph. The parameter
values σK , σW , λ1 and λ2 are selected by using 5-fold cross validation on the first
500 samples of the training data, where σK , σW ∈ {2−3, 2−2, 2−1, 20, 21, 22, 23}
and λ1, λ2 ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102}. In addition, as sug-
gested in [7], the step sizes of the OMR-EA and OMR-Overall are set to be a
small value 0.01. The value of parameter C is set to be 1 for the proposed algo-
rithm MOMR. The computational efficiencies of all the algorithms are evaluated
in terms of their CPU running time (in seconds). All the experiments are imple-
mented in Matlab over a desktop PC with Inter(R) Core(TM) 3.2 GHz CPU,
4G RAM and Windows 7 operating system.

3.2 Online Processing and Performance Evaluation

In this subsection, we give out a detailed process of the experiments and evaluate
the performance of the proposed algorithm for online manifold regularization
learning.

All the three online algorithms are performed in the same way which are
divided into two steps: (1) Online processing. Train a classifier with a new arrived
sample; (2) Test. Test the final model on a test set. In each learning round, the
batch algorithm LapSVM is trained with all the visible samples. We repeat all
the experiments 10 times (each with an independent random permutation of the
training samples) and the results presented below are all average over 10 trials.



Online Manifold Regularization 603

Table 1. The accuracy of different algorithms on the data set MNIST6VS8 and
FACEMIT with different buffer sizes. The best classification results are marked in
boldface.

Date set B MOMR OMR-EA OMR-Overall LapSVM

MNIST6VS8 50 98.012± 0.442 96.491± 1.775 97.495± 0.714 98.861± 0

MNIST6VS8 200 99.048±0.078 98.954± 0.177 97.981± 0.543 98.861± 0

FACEMIT 50 78.024±3.411 77.992± 3.390 78.000± 3.478 77.600± 0

FACEMIT 200 78.552±3.360 77.948± 3.126 77.920± 3.237 77.600± 0

The test accuracies on the two data sets are summarized in Table 1. From
the results, the test accuracy of MOMR is comparable with the off-line algo-
rithm LapSVM on the two data sets and higher than those of the two online
algorithms OMR-EA and OMR-Overall. These are reasonable since that: (a)
in our algorithm, the exact solution is obtained from the proposed model; (b)
in OMR-EA and OMR-Overall, the approximate solutions of their models are
derived by online gradient method.
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Fig. 1. Cumulative running time of online updating the classifiers with different buffer
sizes on the data set MNIST6VS8 and FACEMIT.
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The online updating time of the four algorithms are presented in Fig. 1. With
respect to the running time, we can see that MOMR is comparable to the online
algorithms OMR-EA and OMR-Overall when the buffer size is small and much
faster than the off-line algorithm LapSVM. These can be explained by: (a) each
sample is only trained once by the online algorithms; (b) a buffering strategy is
used to reduce the repeated training process.

Considering above two results, it can be inferred that the proposed algorithm
is in the first grade among the four algorithms both on the test accuracy aspect
and on the running time aspect.

Additionally, in practice, the buffer size can be used to trade-off the accuracy
and the time cost of online classifiers. The appropriate buffer size can be derived
by using cross validation on the first N arrived samples, where N is a predefined
number.

4 Conclusion

In this paper, the proposed model offers a new method to solve the OS2L prob-
lem. Experiment results verify the effectiveness of the proposed algorithm. In
addition, the proposed method enriches the research fields of cognitive compu-
tation and LapSVM.
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