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ABSTRACT
In this paper, we proposed a bi-stage framework for image-
based emotion recognition by combining the advantages of
deep convolutional neural networks (D-CNN) and hyper-
graphs. To exploit the representational power of D-CNN,
we remodeled its last hidden feature layer as the ‘attribute’
layer in which each hidden unit produces probabilities on a
specific semantic attribute. To describe the high-order re-
lationship among facial images, each face was assigned to
various hyperedges according to the computed probabilities
on different D-CNN attributes. In this way, we tackled the
emotion prediction problem by a transductive learning ap-
proach, which tends to assign the same label to faces that
share many incidental hyperedges (attributes), with the con-
straints that predicted labels of training samples should be
similar to their ground truth labels. We compared the pro-
posed approach to state-of-the-art methods and its effective-
ness was demonstrated by extensive experimentation.
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1. INTRODUCTION
Recognizing facial expression is a prime facet of build-

ing emotionally intelligent systems. Earlier work [20] [22] in
this area is mostly based on the Facial Action Coding System
(FACS) [4] proposed by Paul Ekman, in which facial expres-
sions were decomposed into visual attributes called ‘action
units’ (AUs), i.e. movements of face regions such as human’s
eyes, nose and month. These AU-based methods are very
dependent on carefully hand-engineered features to ensure

good performance. Another category of work for expres-
sion analysis used human’s general appearance information
such as facial shape and texture features to model a per-
son’s facial emotion [2] [24] [27]. Due to the success of deep
learning in various computer vision problems, recent work
in this category applied deep convolutional neural networks
(D-CNN) as appearance-based classifier to detect action unit
occurrence [5] or emotion classes [13] [19] and achieved en-
couraging results. The common ground of [5] [13] and [19]
is that they all trained an end-to-end D-CNN system to pre-
dict AU/expression classes.

Previous work [26] [25] on visualization of D-CNN for ob-
ject recognition revealed that shallow layers in deep net-
works learn low-level visual patterns such as edges or cor-
ners, whereas last several layers extract abstract or semantic
attributes such as object parts. [13] also illustrated that in
a D-CNN model trained for emotion recognition task, acti-
vations of its high-level hidden units resemble facial action
units or variants of them. Inspired by these observations, in
this paper we proposed a bi-stage model (as shown in Fig-
ure 1) to tackle the image-based emotion prediction problem,
instead of using an end-to-end network to recognize facial ex-
pression. In the first stage we exploited the representational
power of D-CNN to extract visual attributes by remodeling
its last hidden feature layer (the first full connected layer) as
the ‘attribute’ layer. Initially we trained our D-CNN which
is able to predict emotion labels directly, by pre-training
on a face recognition dataset and fine-tuning on the target
face expression datasets. Then the classification layers were
removed and the node values of the last hidden layer was ex-
ponentially normalized. We argue that each of these hidden
units contains specific semantic information and represents
an facial attribute critical to expression classification; the
normalized value produced by each node can be taken as
the probability that an input sample has the corresponding
attribute.

To utilize generated attributes, in the second stage we
formulated the task of emotion recognition as a hypergraph
partition problem in which face images are taken as vertices
and computed visual attributes are used to form hyperedges.
As defined in [29], a hypergraph is a graph in which an
edge (i.e. hyperedge) can connect (or contain) more than
two vertices; it takes account of the high-order relationship
that three or more vertices having a same attribute. For
example, multiple expressive images may contain a same fa-
cial action unit. This relationship cannot be described by
ordinary pairwise graphs in which an edge only links two
vertices. Considering that each attribute computed in the
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Figure 1: Our framework. The input image (denoted as a yellow vertex) is processed by the trained D-CNN.
The output layers are removed and the units in the last hidden feature layer (the first full-connected layer) are
exponentially normalized. Each node in this layer is taken as an ‘attribute’ and is used to form a hyperedge
(denoted as an ellipse) in a hypergraph. In this example, three attributes (illustrated as red, green and blue
nodes) are activated and the yellow vertex is assigned to three corresponding hyperedges.

first stage represents multiple images, it is more natural to
describe the relationship among facial expression images as
a hypergraph. Our hyeredge construction process is differ-
ent from [11], in which local clusters computed from hand-
crafted low-level features (e.g. SIFT [16]) were used to build
hyperedges. Our attributes learned from D-CNN also differ
from those of [9] in that the semantic attributes of [9] were
predefined by image annotators.

Based on the built hypergraph, our method generates
emotion labels by a transductive inference approach, which
tends to assign the same label to images that share many
incidental hyperedges (attributes), with the constraints that
predicted labels of training images should be similar to their
ground truth labels. We compared the proposed approach
to state-of-the-art methods and its effectiveness was demon-
strated by extensive experimentation.

2. REVISIT TO HYPERGRAPH
Let V represent a finite set of vertices and E a family of

subsets of V such that
⋃
e∈E = V . G = (V,E,w) is called

a hypergraph with the vertex set V and the hyperedge set
E, and each hyperedge e is assigned a positive weight w(e).
A traditional hypergraph can be represented by a |V | × |E|
incidence matrix Ht:

h(vi, ej) =

{
1, if vi ∈ ej
0, otherwise.

(1)

This hypergraph model has proven to be beneficial to various
clustering/classification tasks [1] [18] [10] [21] [9], because it
can represent the information that three or more vertices
have a same attribute (belong to a same hyperedge), which
usual graphs can not describe. However, as illustrated in
Equation 1, this structure assigns a vertex vi to a hyperedge
ej with a binary decision, which causes some information
loss. [11] proposed a fuzzy hypergraph model by taking each
vertex as a ‘centroid’ vertex and forming a hyperedge with
a centroid and its k-nearest neighbors (k-NN); h(vi, ej) is
defined as the similarity between vi and vj , where vj is the
centroid of ej . Although this method avoided the hard as-
signment in Equation 1, such a hyperedge built by k-NN
clustering does not represent a semantic attribute; it only
describes the local affinity relationship computed from low-
level visual features (e.g. SIFT [16]).

In this paper, we utilized D-CNN to construct semantic
hyperedges and defined our hypergraph model as follows:

h(vi, ej) =

{
O(j, i), if O(j, i) > t
0, otherwise.

(2)

where O(j, i) denotes the probability of an image i having
an attribute j, which will be explained in the next section;
t is a threshold. Here each attribute is corresponding to
a hyeredge. According to this formulation, vi is ‘softly’
assigned to ej based on the output probability O(j, i) of
trained D-CNN. For a vertex v ∈ V , its degree is defined
to be d(v) =

∑
e∈E w(e)h(v, e). For a hyperedge e ∈ E,

its degree is defined as δ(e) =
∑
v∈e h(v, e). Dv, De and

W are used to denote the diagonal matrices of the vertex
degrees, the hyperedge degrees and the hyperedge weights
respectively.

3. THE BI-STAGE FRAMEWORK

3.1 Our D-CNN Model
Network architecture. In this paper we constructed

our D-CNN as in Table 1. The architecture consists of four
convolutional layers containing 96, 128, 128 and 192 filters,
respectively. Except those hidden units in the first layer (in-
puts of which are 49 × 49 gray-level images), all other con-
volutional layers use 3D convolutional filters. We adopted
the rectified linear unit (ReLU) as the activation function.
We used two consecutive convolutional layers (Layer 3 and
Layer 4) to increase the representational power. The size
of all filters on each feature map is 3 × 3 to capture more
detailed texture variation. We used 3×3 pooling with stride
2 for all pooling layers. The last convolutional layer is fol-
lowed by a full-connected layer containing 512 hidden units.
We implemented this D-CNN model on the famous deep
learning library CAFFE created by Jia [12].

Training Protocols. We trained our models using stochas-
tic gradient descent with a batch size of 128 examples; we set
momentum = 0.9 and weight decay = 0.001; we initialized
all the weights from zero-mean Gaussian distribution with
a standard deviation 0.005. We also used dropout [7] and
various forms of data augmentation to regularize our net-
works and reduce overfitting. We applied dropout to all the
convolutional layers and fully-connected layers with a prob-
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Table 1: Structure of our deep convolutional neural networks. The last line shows the number of feature
maps for convolutional layers and feature dimensions for full connected layers.

1 2 3 4 5 6 7 8 9 10
Layer Conv. Pool. Conv. Conv. Pool. Conv. Pool. FC FC SoftM.
Kernel size 3× 3 3× 3 3× 3 3× 3 3× 3 3× 3 3× 3 – – –
# of feat. maps or dims 96 – 128 128 – 192 – 512 # of Emotions –

ability of 0.5. For data augmentation, we applied the follow-
ing transformations to each image: translations, horizontal
flips, rotations, scaling and pixel intensity augmentation.

Pre-training and fine-tuning. We discriminatively pre-
trained our D-CNN on the Labeled Faces in the Wild dataset
(LFW) [8] which contains 5,749 subjects and 13,233 cropped
face images. During this phase we used 4,000 output corre-
sponding to the number of selected training subjects till the
networks converge. Then we replaced the 4000-way classifi-
cation with randomly initialized N-way classification, where
N is the number of emotions presented in a specific expres-
sion dataset. Stochastic gradient descent training of the D-
CNN parameters was continued by using the corresponding
expression dataset. We found the pre-training and followed
domain-specific fine-tuning is very effective to boost perfor-
mance of our task. So far we have built an end-to-end model
which is able to predict emotion labels directly.

3.2 Hyperedge Construction
As shown in Table 1, the first full-connected (FC) layer

has 512 hidden units and each unit produces specific seman-
tic information beneficial to our task. We took these units as
facial expression ‘attributes’ and used them to construct hy-
peredges. During this stage, the classification layers (Layer
9 and 10) were removed and the 512 ‘attribute’ units were
exponentially normalized as follows:

O(j, i) =
eC(i,j)

512∑
k=1

eC(i,k)

, (3)

where C(i, j) denotes the value of jth unit (of the 8th layer)
for input image i. In this way the term of O(j, i) in Equa-
tion 2 is defined and each hidden unit here represents a hy-
peredge. Input all the images (including both the training
and testing samples) of a dataset into our D-CNN model and
a hypergraph can be constructed accordingly. Note that t
in Equation 2 was empirically set to the average of all nor-
malized node values of the 8th layer. The hyperedge weights
were all set to 1 for simplicity.

4. HYPERGRAPH LEARNING
In the classical work of hypergraph learning, the normal-

ized cost function [29] Ω(f) of a bi-partition problem is de-
fined as follows:

Ω(f) =
1

2

∑
e∈E

∑
u,v∈e

w(e)h(u, e)h(v, e)

δ(e)

(
f(u)√
d(u)

− f(v)√
d(v)

)2

= fT (I −Θ)f, (4)

where the vector f is the image labels to be learned; Θ =

D
− 1

2
v HWD−1

e HTD
− 1

2
v and I −Θ is a positive semi-definite

matrix called the hypergraph Laplacian. By minimizing this
cost function, images sharing many incidental hyperedges
are guaranteed to obtain similar labels. In [11], it was veri-
fied that derivation in Equation 4 also holds for the fuzzy hy-
pergraph. In an unsupervised framework, Equation 4 can be
optimized by the eigenvector related to the smallest nonzero
eigenvalue of I−Θ. In the transductive learning setting [29],
a vector y can be defined to represent the ground truth in-
formation: y(v) = 1

|Pos| , if a vertex v is in the positive set

Pos, y(v) = − 1
|Neg| , if it is in the negative set Neg. If v

is unlabeled, y(v) = 0. To force the assigned labels to ap-
proach the initial labeling y, a regularization term can be
added to the cost function:

Φ(f) = fT (I −Θ)f + µ‖f − y‖2, (5)

where µ > 0 is the regularization parameter. Above equa-
tion can be solved by differentiating Φ(f) with respect to
f :

f = (1− γ)(I − γΘ)−1y, (6)

where γ = 1
1+µ

. This is equivalent to solving the linear

system ((1 + µ)I −Θ) f = µy.
In our application, we constructed a hypergraph for all im-

ages with N different initial labeling vectors y, where N is the
number of emotions present in a specific dataset. In each of
these labeling vectors a positive/negative label denotes the
presence/non-presence of one expression on a training sam-
ple; an initial label 0 denotes that the corresponding image
is in the testing set. With N different ys above linear system
will be solved for N times and the final learned emotion of a
test image is decided by the maximum value of N predicted
scores.

5. EXPERIMENTS
We chose two representative facial expression datasets in

our experiments: the dataset for Facial Expression Recogni-
tion Challenge 2013 (FER2013) [3] and the extended Cohn-
Kanade database (CK+) [17]. We compared our proposed
method to two baseline approaches: 1) D-CNN + SVM in
which normalized output features of the 8th layer are fed
to a linear SVM classifier and 2) D-CNN + N-way Softmax
in which N emotion labels are predicted directly (by using
the configuration of N-way expression classification in the
last two layers). We also compared to state-of-the-art deep
learning based methods on each dataset to show the advan-
tage of our approach.

For the parameter γ in Equation 6, we followed the orig-
inal work of Zhou [28] and fix it as 0.1 for the best per-
formance. Other parameters were directly computed from
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Figure 2: Training data of FER2013. Each row con-
sists of faces of the same expression: starting from
the first row: Angry, Disgust, Fear, Happy, Sad,
Surprise, Neutral.

experimental data.

5.1 Performance on FER2013
FER2013 consists of 28,709 48 × 48 training, 3,589 val-

idation and 3,589 testing images of faces under 7 different
types of emotions: Angry, Disgust, Fear, Happy, Sad, Sur-
prise, Neutral. This dataset was used for ICML 2013 Chal-
lenge for Representation Learning. As shown in Figure 2,
the face images of this dataset are not frontalized. So with-
out frontalization we only rescaled the detected LFW faces
to 49 × 49 and used them for pre-training of our D-CNN
model mentioned in Section 3.1. The training and valida-
tion images of FER2013 were padded to 49 × 49 and em-
ployed for fine-tuning. This pre-training and fine-tuning was
performed 10 times independently to generate the average
accuracies in Table 2.

To form a hypergraph as introduced above, all the im-
ages including the testing samples were input to our D-CNN
model. The training and validation images with 7 emotion
labels were used as the ‘training’ set to get 7 different initial
labeling vectors. As illustrated in Table 2, 1) based on the
same D-CNN model, our hypergraph learning approach out-
performs D-CNN + SVM and D-CNN + Softmax by more
than 3%; 2) results of all these three approaches are better
than that of DLSVM [19], the winning method of ICML 2013
Challenge for Representation Learning. This illustrated the
effectiveness of pre-training and fine-tuning techniques used
to build our D-CNN model.

5.2 Performance on CK+
The extended Cohn-Kanade database (CK+) [17] con-

tains 593 sequences across 123 subjects. All sequences are
from the neutral face to the peak expression. ONLY 327 of
the 593 sequences have emotion labels and each of which is
assigned one of 7 expressions: Anger, Contempt, Disgust,

Table 2: Performance comparison on FER2013.
DLSVM [19] is the winning method of ICML 2013
Challenge for Representation Learning.

Method Accuracy
DLSVM [19] 71.2%
D-CNN + SVM 73.5% ± 1.8 %
D-CNN + Softmax 73.7% ± 1.7 %
D-CNN + Hypergraph 76.9% ± 1.4%

Table 3: Performance comparison on CK+.
Method Accuracy
AUDN [15] 93.7%
Zero-bias CNN + AD [13] 96.4% ± 3.1%
D-CNN + SVM 96.5% ± 2.5%
D-CNN + Softmax 95.7% ± 1.9%
D-CNN + Hypergraph 97.3% ± 2.3%

Fear, Happy, Sad and Surprise. To build the expression
dataset for comparison of results, we followed the protocol
of [14] [13] to extract last three frames of 327 sequences with
emotion labels. We also followed [14] [13] to use the first
frame of each sequence as a neutral expression. In this way
we formed a set of 1308 images with 8 different emotion la-
bels. A face detection algorithm [23] was applied on these
images and the cropped faces were all rescaled into 49× 49
images.

To train our deep neural networks, at first we pre-trained
our model as described in Section 3.1. Since detected faces
in CK+ images are all frontal, we used frontalized LFW data
provided by [6] for the pre-training. To fulfill the fine tuning
and the followed hypergraph learning, we split 1308 images
into 10 subject independent subsets in the manner presented
by [14] and performed 10 fold cross-validation. Each time,
images from the training set (9 out of 10 subsets) were em-
ployed to fine-tune the pre-trained D-CNN model. Data
augmentation techniques were utilized to optimize the tun-
ing results. In this way we have built a D-CNN model which
is able to predict the occurrence of an emotion directly; the
average prediction accuracy of 10 fold experiments is 95.7%.

To perform hypergraph learning, in each experiment 8
different ys w.r.t. 8 emotions were used and the final learned
expression was decided by the maximum value of 8 predicted
scores. By using the same D-CNN model, our hypergraph
learning approach outperforms D-CNN + SVM and D-CNN
+ N-way Softmax by 0.8% and 1.6%, respectively. Results
of all these three approaches are also better than those of
reported by start-of-the-art methods [15] and [13].

6. CONCLUSION
We introduced a transductive learning framework for image-

based emotion recognition, in which fuzzy hypergraph was
used to represent the relevance relationship among faces.
Using last hidden feature layer’s nodes of our D-CNN model
as semantic cues, we took each image as a vertex and formed
hyperedges according to those deep learning driven semantic
attributes. In this way, the task of facial expression classi-
fication was converted to a transductive learning problem
which can be solved by the hypergraph partition algorithm.
The effectiveness of our proposed method was demonstrated
by extensive experimentation on two popular databases.
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