
  

 

1 INTRODUCTION 

Planning in human environment for manipulators is 

challenging and difficult, as the environment has certain 

obstacles that the manipulators must find the collision free 

path. Working in a narrow space for human beings is 

tedious and dangerous. Thus, a special robot(figure 1) is 

designed to fulfill the task with high efficiency and high 

safety. 

the welding arm
the carry arm

 
Fig1. the overview of the dual-arm welding robot 

 

The whole execution of the task would be composed of 

multiple components including detection of the square 

workpiece, determination of the grasping point and path 

planning in the narrow space. In this paper, what we are 

concerned about is the task of path planning － the 

computation of collision free path from the starting point 

to the destination while maintaining the position of the 

end-effector. 

The task that we would like to execute is that the 

end-effector of the carry arm moves from one place to the 

destination to carry the square workpiece with the fix 

orientation. 

In the environment with obstacles, the artificial potential 

field algorithm[1] is a common method. This method is 

used in real-time obstacle avoidance. However, it is prone 

to stuck in local minima. 
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Eldershaw and Yim[2]have demonstrated a graph-based 

planner for legged vehicles based on PRM(Probabilistic 

Roadmaps), a randomized algorithm. However, the PRM 

suffers from the shortcoming that the generated plans, 

though feasible, may be far from optimal. Furthermore, the 

PRM-based planner is part of a greater planning hierarchy, 

which increases the complexity of the overall architecture. 

Some algorithms have developed to minimize the cost of 

the solutions through optimization techniques[3][4]. The 

Covariant Hamiltonian Optimization and Motion 

Planning(CHOMP) algorithm[3] works by creating a naive 

initial trajectory from start to goal, and then uses a method 

similar to gradient descent to minimize the cost function. 

However, the gradient descent makes the approach 

vulnerable to local minima in the cost function. The 

Stochastic Trajectory Optimization for Motion 

Planning(STOMP) algorithm[4] relies on generating noisy 

trajectories to explore the space around a naive initial 

trajectory. It then combines these trajectories to produce 

an updated trajectory with low cost. A cost function which 

combines the obstacles and smoothness cost is optimized 

in each iteration. The scholastic nature of the approach 

makes it less vulnerable to the local minima in the cost 

function. 

[5][6][7] provide methods which are computationally less 

expensive. However, they do not generalize well to action 

cost computation in maps with non-binary costs. Also, 

they are often limited to a particular shape or class of 

obstacles. 

[8] designs the static fuzzy controller for the partially 

unknown environment and the simulation result illustrates 

its effectiveness.[9] finds the path in indoor environment 

based on Colony Optimization algorithm.[10] proposes a 

new genetic algorithm to overcome the weakness of the 

traditional genetic algorithm, and simulation result 

indicates that the method can reduce the scale of the 

population, minimize the searching scope and improve the 

velocity of the convergence.  

Our approach to this problem is a graph search-based 

algorithm on the foundation of A* algorithm[11]. A* 

algorithm is simple, and efficient in most cases when the 

problem is in lower dimension. A* algorithm is a 

search-based algorithm. Search-based algorithms have the 
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advantages of good cost minimization and guarantees on 

completeness[12]. The two goals of the cost function is to 

minimize the length of the path and also maximize the 

distance to the obstacles along the path. 

A* algorithm has a long history, and a lot of planning 

algorithm is based on it. D* algorithm is a kind of dynamic 

A* algorithm, which repairs paths to the robot’s state in 

real time. Focussed D* algorithm[13] extends D*, and it 

focusses the repairs to significantly reduce the total time 

required for the initial path calculation and subsequent 

replanning operations. Min-Max LRTA*[14] proposes a 

real-time heuristic search method to solve planning tasks 

in non-deterministic domains efficiently. SetA*[15] 

combines the goal directed search of A* with the ability of 

BDDs to traverse an exponential number of states in 

polynomial time. Groundhog[16] uses A* algorithm to 

navigate in the mines, and the planning algorithm is in 3D 

C-Space maps.[17] presents an algorithm for planning 

goal-directed footstep navigation strategies through 

obstacle-filled environment and uneven ground. [18] 

shows a continuous, randomized version of A* along with 

an empirical analysis showing planning time convergence 

rates in the robotic manipulation domain. There is an 

anytime algorithm(ARA*)[19] to produce bounded 

suboptimal solutions in an anytime fashion. [20] develops 

a variable sized grid map, in which the size of the grid 

cells further from the robot increased. Only the area 

closest to the robot needs to be searched carefully, areas 

further from the robot can be searched coarsely. In [21] 

Honda ASIMO uses A* algorithm with three cost 

functions: location cost, step cost and expected cost. 

Sampled Composition A*[22] is used to solve 

low-dimensional trajectory planning. [23] proposes a 

solution to the problem of finding an effective yet 

admissible heuristic function for A* by precomputing a 

look-up table of solutions. [24] thought that A* were often 

ill-suited to solve kinodynamic motion planning problems. 

They proposed some methods for approximating state 

space obstacles to make search-based planning faster and 

safer. Focused A* Heuristics Recomputation[25] enhances 

A* search that can detect and correct large discrepancies 

between the heuristic cost-to-go estimate and the true cost 

function. 

A major problem with A* and related algorithms had been 

that admissible heuristics result in examination of 

prohibitively large portions of the configuration space, 

whereas inflated heuristics cause significantly suboptimal 

behavior[26].Likhachev et al.[27] presents a framework of 

efficiently updating an A* search while smoothly reducing 

heuristic inflation, allowing resolution complete search in 

an anytime fashion on a broader variety of problems than 

previously computed.  

The main contribution of this work is to propose a cost 

function considering the possibility of the collision with 

obstacles. Section 2 describes the design of the robot. 

Section 3 gives the description of the planning task. 

Section 4 shows the cost function and the simulation result. 

Finally, section 5 is the conclusion. 

2 ROBOT STRUCTURE 

One of the characteristics of the robot is that it is used in 

narrow space. The narrow space is shown in figure 2. The 

product box has four obstacles: the outer front side, the 

inner front side, the back side, and the bottom. Also, the 

ceiling is a obstacle.  

The design of the robot is to imitate the process of our 

human beings in the factory. There are two arms with 

three joints to imitate the function of upper limb of our 

human beings. 
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Fig2. the narrow space 

 

The special robot is a kind of compact cylindrical 

coordinates robot (figure 1). There are two manipulators 

and one rail. Each arm moves around the rail on a plane, 

and also moves along the rail to reach another plane. One 

arm is for welding, and the other is for carrying and 

placing. Each arm is a Four-DOF arm, including one rail, 

three bars and three rotating links. The end of the welding 

arm is a welding gun; and the end of the carrying arm is 

suction cup. 

3 DISCRIPTION OF THE PLANNING TASK 

3.1. Problem Description 

The problem is to move the carry arm(figure 1) to the 

destination and carry the square workpiece(figure 1), 

finding the collision free path when the end-effector 

approaches the obstacles. In the process, the angle of the 

end-effector is invariant because the suction plate must 

hold horizontally. In this paper, we only plan the path of 

the end-effector in Cartesian space after it moves near the 

front side of the product box. Because when the 

manipulator approaches the obstacles, only the 

end-effector is prone to collide with the obstacles in our 

environment.  

3.2. Modeling of The Environment  

We consider the path planning in the workspace, and what 

we are only concerned about is the position of the 

end-effector working in one plane.  

For any path planning algorithm, the dimension of the 

planning is very important. Thus, we consider the fewer 

degrees of freedom to decrease the time complexity. The 

manipulator works in a plane when the position in rail is 

fixed. When the end-effector’s attitude is fixed, the path 

planning is a two dimensional problem, which is a 

low-dimensional planning problem.  



  

In figure 3, the starting point and the goal are denoted as 

‘S’ and ’D’ respectively. There are five obstacles: 

obstacle1, obstacle 2, obstacle 3, obstacle 4 and obstacle 5. 

Obstacle 1 is the outer front side of the product box; 

obstacle 2 is the inner front side of the product box; 

obstacle 3 is the back side. Obstacle 4 is the ceiling, and 

obstacle 5 is the bottom. The scale of collision probability 

is obstacle 1, obstacle 2, obstacle 3, obstacle 4 and 

obstacle 5, from large to small. 
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Fig 3. The scheme of path planning 

3.3. Graph Construction 

According to the model of the problem, we construct a 

graph with 20*20 squares on a plane(figure 4). The black 

nodes are the obstacles, the green node is the starting point, 

and the yellow node is the goal. 

 
Fig4. The planning graph 

4 PATH PLANNING ALGORITHM BASED 

ON A* ALGORITHM 

Since the path planning problem is a two dimensional 

problem, the algorithm we propose is based on A* 

algorithm. We find the path from the four neighbours of a 

node, which is the left, right, up and down, not including 

the diagonal of the node. This is also called four-neighbor 

search[25].Our A* algorithm considers the distance 

between the end-effector and the obstacles.  

4.1. Cost Function 

As the path must have certain distance from the obstacles, 

we use a mathematical method to generate every G value 

to describe the distance to the obstacles. The dimension of 

the grid is m*n, and the number of the obstacles is q. 

Assume that every checking node
Ap belongs to the set of 

A, and every node
Op of the obstacles belongs to the set of 

O. The shortest distance between the checking node and 

one obstacle is as follows: 

min ( , ) min{ ( , )}=min(| | | |)A O i or j orD A O d p p x x y y     (1) 

in equation (1), 

( , )i jx y is the position of every node Ap , i = 1,2,…,m, j = 

1,2…,n; 

( , )or orx y is the position of obstacles
Op , r = 1,2,…,q; 

Thus, the expression of the G value is equation (2). 

min

( , )
* ( , )r

C
G i j

D A O
          (2) 

Where,  

r is the weight, showing the importance of every 

obstacle, and the value is set according to the possibility of 

collision; 

C is the adjustment parameter, which is used to adjust the 

G value bigger than 1. 

4.2. Simulation  

There are three experiments and the grid size is 20*20. 

Experiment 3 is our algorithm, and Experiment 1 and 

experiment 2 are used as comparison. 

Experiment 1:A* that do not consider the distribution of 

obstacles. If we do not consider the probability of obstacle 

collision. The G value is 1, and the simulation result is in 

figure 5. The black line denotes the path of the 

end-effector. We can see that this method is not a good 

one because the path is near the obstacles.  

Experiment 2:A* that uses empirical G value. We give G 

value of every node, especially G value is zero in ‘S’ and 

‘D ’, and black nodes are the obstacles. Figure 6 gives the 

result. 

Experiment3:A* that uses mathematical G value. 

Considering the obstacles, we use the mathematical 

expression of the G value, and the result is in figure 7. 

In our experiment, we compare the duration time and 

number of steps using these algorithms in 20*20 space in 

Table 1. A* with mathematical expression of G value 

increases the number of searching time slightly in 20*20 

space. However, our method decreases the searching steps. 

Also, setting the empirical value is a intractable and 

time-consuming task. Our algorithm using G(i,j) can 

decrease the workload. 

The comparison between different sizes of the space is in 

figure 8 using G(i,j) and empirical value. 

From figure 8, we can see that the number of steps of G 

value in mathematical expression is a little bit more than 

the empirical G value in 10*10 space and 12*12 space. 

However, when the space becomes larger, the steps of G 

value in mathematical expression is less than the steps of 

empirical G value.  



  

   
Fig 5. Result for that G value is 1     Fig 6.Empirical G value result 

 

 
Fig 7. Result of mathematical G value  

 

Table1. Comparison between three experiment 

Method 
Duration 

time(s) 

Number of 

steps 

A*without collision 

avoidance (G value 

is 1) 

0.270679 

 

106 

A* with collision 

avoidance(empirical 

G value) 

0.270876 

 

191 

A*with 

mathematical G 

value(G(i,j)) 

0.277456 

 

76 

 

       
Fig 8. Comparison of the steps in different size of space 

5 CONCLUSIONS 

In this paper, we contribute to path planning algorithm for 

the end-effector. We use the mathematical expression of 

the G value(G(i,j)) in the cost function based on A* 

algorithm, finding a collision free path. G(i,j) is a precise 

expression of the collision, and releases the pressure of 

setting the G value empirically and it can also decreases 

the searching steps to some extent. The simulation result 

validates the effectiveness. The platform of the algorithm 

is a special robot for carrying and welding. In future work, 

we will use sensors to detect the position of the obstacles, 

and use path planning algorithm to find the collision free 

path. 
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