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Abstract 

Recommender systems have been widely used to provide personal and convenient 
services for users. As one of successful recommendation methods, collaborative filtering 
explores users’ interests from item consumptions. However, it suffers from the data 
sparsity problem that most users have interacted with a small number of items. 
Particularly, data sparsity causes the discontinuous user activities over time, which 
limits the time-dependent recommendation methods for tracking users’ changing 
interests. In this paper, we extend existing methods and propose an inhibited hidden 
Markov model to alleviate the sparsity problem. The model considers the statuses of 
users’ interests at each time unit and allows for capturing users’ dynamic interests 
under idle status. We derive an EM algorithm to estimate the model parameters and 
predict users’ actions. We perform a comprehensive experiment on the datasets of 
various sparsity levels. The results show our model has been consistently and 
significantly  better than the state-of-the-art algorithms. 
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Introduction 

Recommender systems have attracted significant interest from academia and industry. They alleviate the 
information overload problem and provide users with personalized services and product 
recommendations. Therefore, they have been widely used in many applications, such as in e-commerce 
Xiao and Benbasat (2007), movie recommendation (Azaria et al. 2013), social network services (Gupta et 
al. 2013), etc. 

Collaborative filtering is one common and successful recommendation technique, in which the 
recommendation is made based on historical transactions and user-item interactions. Collaborative 
filtering is generally classified into memory-based and model-based methods (Cacheda et al. 2011). The 
former explore the similarity between users or items and make recommendations based on similar users’ 
choices or item consumption. The latter use machine learning or data mining algorithms to explore the 
potential patterns. Both methods have success in real-world applications (Adomavicius and Tuzhilin 
2005). 

One major challenge for the collaborative filtering methods is the data sparsity problem (Adomavicius and 
Tuzhilin 2005), where most users only consume a small number of items. The sparsity problem often 
results in difficulties identifying and aggregating data from similar users or deriving potential 
consumptions. 

Much research has investigated the sparsity problem. A typical approach is to utilize auxiliary information, 
such as users’ demographics (Gogna and Majumdar 2015), items’ content (Liu et al. 2013), or social 
contextual information (Ma et al. 2011) to compensate for the relationships between users or items. But 
such side information is difficult to acquire or not valid. Another common approach is to reduce the 
dimensionality of the user-item matrix or cluster users or items to smooth the impact of sparsity 
(Desrosiers and Karypis 2010). However, this method has limitations in theoretical interpretation. 

In this research, we join these efforts to tackle the sparsity problem, particularly for time-dependent 
recommendation. Time-dependent recommender systems incorporate time factors into modeling of the 
evolution of user interests (Sahoo et al. 2012; Yin et al. 2015), which lead to observable performance 
improvements (Koren 2009; Xiong et al. 2010). A milestone work in this area is the hidden Markov model 
(HMM) (Sahoo et al. 2012), which models users’ inherent interests with latent states and captures users’ 
changing interest with the transition between the states. Nevertheless, time-dependent methods also face 
the data sparsity problem. Due to limited consumption, user-item interactions may be discontinuous over 
time, which would affect the recommendation performance (Luo et al. 2014). 

In this paper, we improve Sahoo et al.’s framework (Sahoo et al. 2012) and build an inhibited hidden 
Markov model (IHMM) to tackle the sparsity problem. In the model, we allow the latent states of users’ 
interests to be in an active and an inactive state, which controls whether the state can make emissions at 
the current time period. So, we do not observe the users’ activities because the users are idle. The model 
provides a flexible framework to capture inactivity over time. We derive an expectation maximization (EM) 
algorithm to estimate the model parameters and make predictions under active states. Experiments on 
the Netflix dataset show that our model is more effective than the classic methods. 

Our paper focuses on the sparsity problem in time-dependent recommendation. Results show that user 
inactivity may be part of the reason behind the sparsity problem and one aspect that can be modelled in 
recommender systems. 

Related Work 

Data sparsity is one major challenge for collaborative filtering (Adomavicius and Tuzhilin 2005). Many 
researchers have investigated this problem. In this section, we briefly summarize the related works that 
tackle the sparsity problem and organize them into two groups. 

The first approach to deal with data sparsity is to incorporate auxiliary information of users or items into 
collaborative filtering for imputing missing relationships. A typical way is to integrate additional 
information, such as social network, item content, or user profiles into the memory-based collaborative 
filtering for neighbors selection (Jiang et al. 2015; Ozbal et al. 2011). Additional information can also be 
incorporated into the model-based collaborative filtering framework. For example, Gogna and Majumdar 
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(2015) investigated groups of similar users having similar demographics into matrix factorization as 
regularization terms. Ma et al. (2011) conducted latent factors analysis on the consumption and social 
relationship networks in the Bayesian probabilistic matrix factorization (BPMF) framework. Wang and Li 
(2015) leveraged items’ relationships to link the collaborative topic regression models that fused topic bias 
generated by latent Dirichlet allocation (LDA) into probabilistic matrix factorization (PMF). 

A unique piece of auxiliary information is consumers’ ratings of items, which can be used to enhance the 
similarity computation. Desrosiers and Karypis (2010) fused all ratings into kernel functions to extend the 
SimRank algorithm’s similarity computation that only used the common users and items. Ghazarian and 
Nematbakhsh (2015) used the Pearson VII Universal Kernel function to consider all ratings and enhance 
user-based collaborative filtering. Huang et al. (2004) and Chen et al. (2011) made use of association 
retrieval technology to explore extensional users’ or items’ similarities on user-item bipartite graphs.  

The second method is to conduct clustering or dimensionality reduction methods on a user-item matrix 
for smoothing. Kim and Cho (2003) performed singular value decomposition (SVD) on ratings and 
calculated the similarities of decomposed vectors in user-based collaborative filtering. Koren et al. (2009) 
regularized the latent factors to handle the overfitting caused by sparsity in matrix factorization. Gong 
(2010) clustered users and items with k-means and predicted ratings with item-based collaborative 
filtering.  

Although existing methods provide us ways to alleviate the data sparsity problem, they have their 
limitations.  The additional information may be difficult to acquire. Dimension reduction addresses the 
problem but does not provide any theoretical insights on the reasons behind the sparse data.   

Time-dependent recommendation methods explore the evolution of users’ interests over time. One typical 
method is to employ a time-decay factor to reduce the weight of historical consumption of items over time. 
It assumes recent consumptions contribute more weight to users’ current interests (Ding and Li 2005; Liu 
et al. 2010; Yu and Li 2010). Another method is to develop time-related variables to explore users’ 
changing patterns. Xiang and Yang (2009) and Koren (2009) considered the changes of user bias and 
item bias as time variables in the matrix factorization framework. A recent prominent method is to model 
users’ drifting interests with transitive latent variables. For example, Xiong et al. (2010) proposed a 
Bayesian Probabilistic Tensor Factorization that incorporated the time factor depending on the preceding 
time step into BPMF. Sahoo et al. (2012) combined the aspect model with HMM for tracking users’ 
changing interests with the Markov chain.  

Existing time-dependent methods seldom consider the sparsity problem. Jiang et al. (2015) studied users’ 
dynamics at both rating and review levels in high-involvement product recommendation. They inferred 
topic ratings of the products over time and imputed the sparse user-item matrix by integrating the 
dynamics into the similarity between items. Luo et al. (2014) assumed the tendency of user factors and 
item factors depends on the recent corresponding factors in the probabilistic matrix factorization 
framework and imputed unobserved observations in the current user-item matrix with a sampling 
method.  

In this research, we take a look at the data sparsity problem from the perspective of discontinuous user 
activities over time. We aim to model such idle users in a time-dependent recommendation method for 
tracking users’ dynamic interests over time. 

An Inhibited Hidden Markov Model 

In this paper, we extend Sahoo et al. (2012) HMM model and propose an inhibited hidden Markov model 
(IHMM) that models time periods without user activities in the emission of latent states. 
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Model Formulation 
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Figure 1. An Idle Hidden Markov Model for Collaborative Filtering 

The HMM proposed by Sahoo et al. (2012) tracks the evolution of users’ interests with a Markov chain. 
When a user is at a state, the state will emit observations, which are the users’ consumptions of items. In 
our model, we follow the idea of user interest transition. Different from HMM, we design a state 
inhabitation mechanism that controls whether a state can emit observations at a time point. For the states 
that cannot emit, we consider the users are idle and not in a mood to consume. The model associates the 
latent state with the user’s mood: to consume (emit) or not to consume (emit). 

Figure 1 shows the graphical representation of our proposed model. In this model, we assume there are |�| users in the dataset, and each user has the same HMM structure. We employ latent states � = {1, … , �} 
to denote users’ interests, and their initial probability is �. The discrete latent variable ��� ∈ � represents 
the possible interest of user u at time unit t, and the transition of states is used to capture each user’s 
changing interest over time, whose probability is denoted as A. Each state can emit some observations 
that are users’ consumptions of items. The set of items preferred by user u at time unit t and its number 
are denoted as ���  and ���, following multinomial distributions with parameter � and negative binomial 
distributions (NBD) with parameters � and �, respectively. Here we assume the entire dataset has |�| 
items and T time units, � ∈ [1, �].  
In our model, we use a binary variable ��� to determine the status (active, or not) of latent states. When ��� = 0, the latent state of user u is inactive at time unit t, which means lack of observations at the 
corresponding time point. When ��� = 1, the latent state of user u is active at time unit t, which means the 
existence of emissions at this time point. We assume this variable follows the Bernoulli distributions with 
parameter ω, as in formula (1). 

When ��� = 0, we assume it is impossible to have observations. When ��� = 1, we assume the state must 
emit some observations. Thus:  

( 0 | , 0) 1
( 0 | , 0) 0

t t t
u u u
t t t
u u u
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ì = = = =ï
í

¹ = = =ïî
 (2) 
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Overall, our model has the following parameters: 
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n �: The initial probability of latent states associated with users’ interests is a K-dimensional 
vector. 

n A: The transitive probability of latent states representing the evolution of users’ interests over 
time is a K*K matrix. 

n � : The parameters of binomial distributions followed by ���  are represented with a K-
dimensional vector. 

n �, �: The parameters of negative binomial distributions followed by ��� are represented with a K-
dimensional vector respectively. 

n �: The parameters of multinomial distributions followed by ��� , the set of items preferred, are 
represented with a K*|I| matrix. 

 EM Algorithm 

To estimate the parameters � = {�, �, �, �, �, �} of our proposed model, we develop an EM algorithm. We 
follow the forward-backward approach in the Expectation Maximization (EM) framework to iteratively 
find the maximum likelihood of the parameters given a series of observations. In the Expectation step, we 
compute the forward variables and backward variables and derive the posterior probabilities of latent 
states given the observations. In the Maximization step, we employ maximum a posterior (MAP) to 
update the parameters. Then we predict the status (active, or not) of latent states associated with users’ 
interests and infer the probabilities of preferences for items by each user under the active situation.  

Given a sequence of users’ consumptions {���:�}|�|, we can get the log-likelihood function of the parameters 
as follows: 
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 (4) 

where 1:T
uI  represents the set of items preferred by user u. 

In the Expectation step, we follow the forward-backward algorithm, and firstly define the forward 
variables and backward variables for inferring the posterior distributions in formula (4). Because there 
are two latent state statuses, i.e., active or inactive, we define two kinds of forward variables to present the 
posterior probabilities of observing ���:� given state ���  : 

° 1:t
u u u u(Z ) (Z , 0 | I )t t tP Fa = =  (5) 

µ 1:t
u u u u(Z ) (Z 1| I )t t tP Fa = =,  (6) 

where ��(∗)  is the active forward variable, and ��(∗)  is inactive. The forward variable represents the 
probability of states given the observations from the start time unit to the current time unit. It is equal to 
the sum of these active and inactive variables, formula (7). 

° µ1:t
u u u u u(Z ) (Z | I ) (Z ) (Z )t t t tPa a a= = +  (7) 

Here, we suppose ���  only depends on the current latent state and is independent of the previous states. 
Hence, the transitive probability of successive states with inactive or active status can be simplified as:  

1 1 1 t 1
u u u u u u u u u u u(Z , | Z , )= (Z , | Z )= ( | Z ) (Z | Z )t t t t t t t t t tP F F P F P F P- - - -  (8) 

According to the forward recursive formula described in Bishop (2006), we can get the recursive 
expressions of these two kinds of forward variables as follows:  
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where �(��� |�����) is used to normalize the variables so that ∑ �(��� = �)� = 1. 

Similarly, we can define two kinds of backward variables and calculate the recursive expressions.  

µ t 1:T t 1:T 1:t
u u u u u u(Z ) P(I | Z , 1) / (I | I )t t tF Pb + += =  (11) 

° t 1:T t 1:T 1:t
u u u u u u(Z ) P(I | Z , 0) / (I | I )t t tF Pb + += =  (12) 

µ °
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u
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where ��(∗) is the active backward variable and ��(∗) is the inactive. The backward variable can be derived 
as formula (14). 
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Thereby, we can derive the posterior distributions in formula (4). Firstly, the posterior probability of state ���  with active status or inactive status given a sequence of observations can be derived as the product of 
corresponding forward and backward variables.  

µ µ1:( , 1| ) ( ) ( )t t T t t
u u u u uP Z F I Z Za b= =  (15) 

° °1:( , 0 | ) ( ) ( )t t T t t
u u u u uP Z F I Z Za b= =  (16) 

The posterior probability of state ���  given a sequence of observations can be obtained from the above two 
formulas (15) and (16). 

° ° µ µ1:( | ) ( ) ( )+ ( ) ( )t T t t t t
u u u u u uP Z I Z Z Z Za b a b=  (17) 

Secondly, two successive states consist of these two states with active or inactive status. Hence, the joint 
probability of two successive states given the observations listed in formula (4) can be inferred as: 

1
u u

1 1:T 1 1 1:T
u u u u u u u u(Z , Z | I ) (Z , , Z , | I )

t t

t t t t t t

F F

P P F F
-

- - -= åå  (18) 

where the joint posterior distributions of two successive latent states with active or inactive status given 
the sequence of observations are derived from the forward and backward variables.  

° °1 1 1:T 1 1 1: 1
u u u u u u u u u u u u u u u u(Z , , Z , | I ) (Z ) (I | Z , ) ( Z | Z )P( | Z ) (Z ) / (I | I )t t t t t t t t t t t t t t tP F F P F P F Pa b- - - - -=  (19) 

In the Maximization step, we estimate the parameter Θ based on maximum a posterior (MAP).  As Wang 
and Blunsom (2013) and Sahoo et al. (2012) pointed out, Dirichlet priors can be placed on the initial 
probability, each row of transitive probability, and each row of emitting observation probability given a 
certain latent state, i.e.: 

1~ ( | , , )KDirichlet xp a a¼  where / Kia a=  (20) 

j,: 1~ ( | , , )KA Dirichlet x a a¼ , where /i Ka a=  (21) 
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��,:~�����ℎ���(�|��, ��, … , �|�|), where �� = �/|�| (22) 

In our experiments, we set � to 100. The MAP of the parameters can be inferred as follows: 
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The variable � follows Bernoulli distributions, and their conjugate priors are also Dirichlet distributions. 
We can derive the parameters as follows:  
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where �  and �  are the parameters of Dirichlet distribution, and we set them to 1.001. Because the 
parameters of NBD, i.e., a and b, cannot be solved in closed form, we employ the Newton method to get 
their numerical values. 

Prediction 

With the estimated model parameters, we can derive the latent states of users’ interests and whether they 
are active or not in the next time period. Based on this information, we can predict users’ consumptions of 
items in the next period. 

The probability of each item that may be viewed can be derived from the active latent states as follows: 
t 1 t 1 t 1 t 1 t 1 t 1
u u u u u u(i I ) P(i I | k, 1) P( k, 1)

k
P Z F Z F+ + + + + +Î = Î = = = =å  (27) 

With various numbers of items, ��� , preferred by user u, item i is included in this set. The probability of 
item i given the active latent state in formula (27) can be calculated as:  

t
u

t 1 t 1 t 1 t 1 t 1 t 1
u u u u u u ki
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=
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In formula (27), the probability of each active state can be seen as the sum of the products of the last 
states and the transitive probability.  
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Experiment 

Experiment Setup  

We evaluate the proposed method using the Netflix dataset1 that comes from Netflix contest. This dataset 
was collected from 1999 to 2005. It includes more than 100 million ratings given by approximately 
480,000 users on over 17,000 movies.  

In the experiment, we manipulate the dataset to get datasets with different sparsity levels and also keep 
the experiment manageable. First, we filter out items without enough users’ consumption. We only keep 
the movies which are consumed by at least 2,000 users, which provides us 5,264 movies. Second, we filter 
out users without enough activity. We vary the required number of consumptions for each user to be from 
100 to 1,500. By setting the smaller threshold, more users (with less consumption) are kept in the dataset, 
thus leading to a higher sparsity level. Finally, we randomly select 2,000 users from the filtered dataset to 
keep the data size manageable.  

We create 5 datasets by varying the required users for each item condition. Table 1 reports the statistics of 
the datasets. In the table, we adopt the sparsity level defined by  Sarwar et al. (2000): �� = 1 − ���� × �� (30) 

where �� is the level of data sparsity, �� is the number of user-item pair transactions, �� and ��  are the 
number of users and items respectively. A larger value means a higher data sparsity.  

In our experiments, we used a sliding window approach that divides the dataset into training/testing sets 
at the monthly level. We partition the whole dataset into time slices according to calendar month. The 
sliding window can hold the first n time slices as the training set for estimating the model parameters and 
the next time slice, i.e., the (n+1)-th month, as the test set for evaluation. Then we shift the time window 
of training data by one month and consider the next n time slices from the 2nd month as the training set 
and the (n+2)-th month as the evaluation test set. We set the size of sliding window as n=48 months, and 
conduct 24 rounds of experiments to the end of the dataset. We perform top-5 and top-10 predictions.  

Evaluation Metrics 

To evaluate the performance of the proposed model, we apply the commonly used metrics, precision, 
recall, and F-measure, on the top-N recommendations. In our experiments, we compare with the 
benchmark recommendation methods on N=5 and N=10. The precision measure refers to the proportion 
of recommended relevant items for users retrieved in the predictions. The recall measure refers to the 
proportion of recommended relevant items for users retrieved in the test data. When we increase or 
decrease the number of recommendations, one of them strengthens while the other weakens. To balance 
the precision and recall, the F-measure combines the precision and recall into a single metric for 
comparison: F1=2´P´R/(P+R). 

                                                           
1 http://www.netflix.com 

Table 1. The Filtered Datasets  

 Data I Data II Data III Data IV Data V 

Filter: # items for each user >100 >500 >800 >1000 >1500 
# randomly selected users 2,000 2,000 2,000 2,000 2,000 

# items 5,264 5,264 5,264 5,264 5,264 
# user-item interactions 698,519 1,581,031 2,142,706 2,525,057 3,389,121 

sparsity 0.934 0.850 0.796 0.760 0.678 

http://www.netflix.com
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Baseline Algorithms 

In this research, we compare our prosed model with the following three state-of-the-art methods. 

1. HMM Model (Sahoo et al. 2012), which is the ancestor of our model and employs latent interest state 
transition to model users’ dynamic interests. 

2. User-based Collaborative Filtering (UCF) (Jannach et al. 2010), one classic recommendation 
method. It assumes similar users have common interests. This method employs the Pearson Correlation 
(Wang et al. 2006; Ziegler and Lausen 2004) to measure the similarity between users and make 
recommendations. 

3. Singular Vector Decomposition (SVD) (Kim and Cho 2003), which conducts dimensionality 
reduction to alleviate the sparsity problem. This method performed SVD on user-item ratings as fomula 
(31) and calculated the similarities of decomposed vectors �����  in the user-based collaborative filtering.  

T
k k kR U S V=  (31) 

We repeated the experiments in each experiment setup 10 times and conducted pairwise t-tests to 
compare our proposed approach with the baseline methods. 

Results and Discussion 

Table 2. Recommendation Performance 

 Top-5 Recommendation Top-10 Recommendation 

Alg. P R F1 P R F1 

Data V Sparsity: 0.678 

IHMM (K=40) 0.0902 0.0229 0.0362 0.0817 0.0412 0.0539 
HMM(K=60) 0.0863 0.0217 0.0343 0.0766 0.0390 0.0509 

SVDCF 0.0271 0.0066 0.0105 0.0264 0.0129 0.0171 

UBCF 0.0239 0.0057 0.0092 0.0229 0.0110 0.0147 

Data IV Sparsity: 0.760 

IHMM (K=40) 0.0688*** 0.0211*** 0.0320*** 0.0622** 0.0378*** 0.0465*** 
HMM(K=30) 0.0572 0.0179 0.0270 0.0520 0.0323 0.0394 

SVDCF 0.0225 0.0068 0.0103 0.0229 0.0139 0.0171 

UBCF 0.0210 0.0063 0.0096 0.0207 0.0126 0.0155 

Data III Sparsity: 0. 796 

IHMM (K=30) 0.0674*** 0.0228*** 0.0337*** 0.0612*** 0.0412*** 0.0485*** 
HMM(K=50) 0.0557 0.0190 0.0280 0.0504 0.0341 0.0401 

SVDCF 0.0245 0.0081 0.0120 0.0236 0.0156 0.0185 

UBCF 0.0213 0.0069 0.0102 0.0212 0.0138 0.0165 

Data II Sparsity: 0.850 

IHMM (K=40) 0.0446*** 0.0196*** 0.0269*** 0.0397*** 0.0342*** 0.0363*** 
HMM(K=50) 0.0339 0.0145 0.0201 0.0308 0.0263 0.0279 

SVDCF 0.0152 0.0065 0.0090 0.0152 0.0130 0.0139 

UBCF 0.0155 0.0063 0.0089 0.0146 0.0121 0.0131 

Data I Sparsity: 0.934 

IHMM (K=40) 0.0148** 0.0108** 0.0121** 0.0134*** 0.0197*** 0.0154*** 
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HMM(K=40) 0.0116 0.0087 0.0096 0.0102 0.0151 0.0116 

SVDCF 0.0099 0.0068 0.0077 0.0097 0.0137 0.0107 

UBCF 0.0076 0.0056 0.0061 0.0098 0.0137 0.0108 

The significance level between the largest and the second largest value in each column: p<0.1 *; p<0.05 **; p< 0.001 ***; 
The numbers in bold are not significantly different from the largest number in each column. 

Table 2 presents the different algorithms’ performances on the datasets, in which we highlight the highest 
value and show the significance level compared with the other values in each column. As we can see, the 
recommendation performance generally increases with reduction of data sparsity, which is consistent 
with prior knowledge. The experiment results also demonstrate the advantage of our proposed IHMM 
approach over existing methods. It is always in the group of best models and has significantly better 
performance than all other models except in Data V. The HMM approach is consistently the second best 
model. In Data V (sparsity=0.678), it does not have a significant difference from the IHMM. In other 
datasets, the IHMM significantly outperforms the HMM (at 95% to 99.9% confidence level), and the 
IHMM achieves about 15%~25% performance improvement over the HMM model.  

The other three algorithms have lower performance as compared with the two HMM models; UCF and 
SVD have a similar level of performance. The SVD model generally has a better performance than UCF 
due to its dimensionality reduction design. The IHMM and HMM methods outperform the SVDCF and 
UBCF methods, because the evolution of users’ interests plays a major role in the datasets.  

 

Figure 2. F-measure Improvement over HMM 

In Figure 2, we report the F-measure improvement of IHMM over HMM in Top-10 and Top-5 
recommendations. As we can observe, the performance improvement of the IHMM generally increases 
with the level of sparsity. We believe that the advantage of our proposed model comes from its ability to 
deal with the discontinuous user-item transactions over time.  
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In Figure 3, we report the percentage of inactive states of users as identified by our proposed IHMM 
model. As we can see, when the level of data sparsity increases, the percentage of users in the inactive 
state also increases. Our proposed IHMM approach does react to the percentage of idle users in the data.  

The experiment results clearly demonstrate the advantage of our proposed IHMM approach over existing 
methods. It can model the discontinuous transactions over time, which brings a large recommendation 
performance improvement. 

Conclusion 

In our research, we develop an inhibited hidden Markov model to alleviate the data sparsity problem. This 
model allows each latent state to be active or inactive at one time unit, which can model time periods 
without user activities in time-dependent recommendation. We derive an EM algorithm to estimate the 
model parameters and make predictions under the active states. We compare the model with the state-of-
the-art recommendation methods on a real-world dataset. The experiments show that our model has a 
significant improvement over the benchmark algorithms.   

Our proposed approach to deal with the sparsity problem has significant implications for practice. For 
example, in web or document recommendation, users may not log in the platform at some time for 
various reasons (e.g., they have found target items, or they turn to other platforms), so that the platform 
fails to capture users’ current interests. In e-commerce services, the transactions would be sparse over 
time because users would not always buy products. In entertainment recommendation (e.g., movies, 
music), users may be too busy to view the items for some time. In such applications, considering the 
discontinuous activities in time-dependent recommendation will bring even more benefits.  

In the future, we will continue to study the time-dependent recommendation methods. First, we will 
continue relaxing the assumptions/restrictions on the HMM framework so that the model can be more 
generic and fit the diverse requirements of real-world applications. Second, we further model the 
temporal interdependencies on user interest states in HMM models. Thus the state transition may not be 
pure Markov and can model more complicated user behaviors. Third, we will also consider the scalability 
of the model for larger datasets. Our target is to build a unified and effective framework for time-
dependent recommendation.  

Acknowledgements  

This work was supported in part by National Natural Science Foundation of China under Grant 71572169, 
in part by Guang Dong Natural Science Foundation under Grant 2015A030313876, and was partially 
supported by the Shenzhen Research Institute, City University of Hong Kong. 

 

Figure 3. The Ratio of Inactive States in IHMM 

 

0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

sparsity level

R
at

io
 o

f I
na

ct
iv

e 
S

ta
te

s



 Modeling Idle Customers to Tackle the Sparsity Problem 
  

 Thirty Seventh International Conference on Information Systems, Dublin 2016 12 

References 

Adomavicius, G., and Tuzhilin, A. 2005. "Toward the Next Generation of Recommender Systems: A 
Survey of the State-of-the-Art and Possible Extensions," IEEE Transactions on Knowledge and Data 
Engineering (17:6), pp. 734-749. 

Azaria, A., Hassidim, A., Kraus, S., Eshkol, A., Weintraub, O., and Netanely, I. 2013. "Movie 
Recommender System for Profit Maximization," in: Proceedings of the 7th ACM conference on 
Recommender systems. Hong Kong, China: ACM, pp. 121-128. 

Bishop, C. M. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). 
Springer-Verlag New York, Inc. 

Cacheda, F., Carneiro, V., Fernandez, D., and Formoso, V. 2011. "Comparison of Collaborative Filtering 
Algorithms: Limitations of Current Techniques and Proposals for Scalable, High-Performance 
Recommender Systems," Acm Transactions on the Web (5:1). 

Chen, Y., Wu, C., Xie, M., and Guo, X. 2011. "Solving the Sparsity Problem in Recommender Systems 
Using Association Retrieval," Journal of Computers (6:9). 

Desrosiers, C., and Karypis, G. 2010. "A Novel Approach to Compute Similarities and Its Application to 
Item Recommendation," in Pricai 2010: Trends in Artificial Intelligence: 11th Pacific Rim 
International Conference on Artificial Intelligence, B.-T. Zhang and M.A. Orgun (eds.). Berlin, 
Heidelberg: Springer Berlin Heidelberg, pp. 39-51. 

Ding, Y., and Li, X. 2005. "Time Weight Collaborative Filtering," in: Proceedings of the 14th ACM 
International Conference on Information and Knowledge Management. Bremen, Germany: ACM, 
pp. 485-492. 

Ghazarian, S., and Nematbakhsh, M. A. 2015. "Enhancing Memory-Based Collaborative Filtering for 
Group Recommender System," Expert Systems With Applications (42:7), pp. 3801-3812. 

Gogna, A., and Majumdar, A. 2015. "Matrix Completion Incorporating Auxiliary Information for 
Recommender System Design," Expert Systems With Applications (42:14), pp. 5789-5799. 

Gong, S. 2010. "A Collaborative Filtering Recommendation Algorithm Based on User Clustering and Item 
Clustering," Journal of Software (5:7). 

Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., and Zadeh, R. 2013. "Wtf: The Who to Follow Service at 
Twitter," in: Proceedings of the 22nd International Conference on World Wide Web. Rio de Janeiro, 
Brazil: ACM, pp. 505-514. 

Huang, Z., Chen, H., and Zeng, D. 2004. "Applying Associative Retrieval Techniques to Alleviate the 
Sparsity Problem in Collaborative Filtering," Acm Transactions on Information Systems (22:1), pp. 
116-142. 

Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. 2010. Recommender Systems: An Introduction. 
Cambridge University Press. 

Jiang, C., Duan, R., Jain, H. K., Liu, S., and Liang, K. 2015. "Hybrid Collaborative Filtering for High-
Involvement Products: A Solution to Opinion Sparsity and Dynamics," Decision Support Systems 
(79), pp. 195-208. 

Kim, J. K., and Cho, Y. H. 2003. "Using Web Usage Mining and Svd to Improve E-Commerce 
Recommendation Quality," in Proceedings of Intelligent Agents and Multi-Agent Systems: 6th 
Pacific Rim International Workshop on Multi-Agents, Prima 2003, J. Lee and M. Barley (eds.). 
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 86-97. 

Koren, Y. 2009. "Collaborative Filtering with Temporal Dynamics," in: Proceedings of the 15th ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France: ACM, 
pp. 447-456. 

Koren, Y., Bell, R., and Volinsky, C. 2009. "Matrix Factorization Techniques for Recommender Systems," 
Computer (42:8), pp. 30-37. 

Liu, J., Wu, C., and Liu, W. 2013. "Bayesian Probabilistic Matrix Factorization with Social Relations and 
Item Contents for Recommendation," Decision Support Systems (55:3), pp. 838-850. 

Liu, N. N., Zhao, M., Xiang, E., and Yang, Q. 2010. "Online Evolutionary Collaborative Filtering," in: 
Proceedings of the Fourth ACM Conference on Recommender Systems. Barcelona, Spain: ACM, pp. 
95-102. 

Luo, C., Cai, X., and Chowdhury, N. 2014. "Self-Training Temporal Dynamic Collaborative Filtering," in 
Advances in Knowledge Discovery and Data Mining: 18th Pacific-Asia Conference, Pakdd 2014, V.S. 



 Modeling Idle Customers to Tackle the Sparsity Problem 
  

 Thirty Seventh International Conference on Information Systems, Dublin 2016 13 

Tseng, T.B. Ho, Z.-H. Zhou, A.L.P. Chen and H.-Y. Kao (eds.). Cham: Springer International 
Publishing, pp. 461-472. 

Ma, H., Zhou, T. C., Lyu, M. R., and King, I. 2011. "Improving Recommender Systems by Incorporating 
Social Contextual Information," Acm Transactions on Information Systems (29:2). 

Ozbal, G., Karaman, H., and Alpaslan, F. N. 2011. "A Content-Boosted Collaborative Filtering Approach 
for Movie Recommendation Based on Local and Global Similarity and Missing Data Prediction," The 
Computer Journal (54:9), pp. 1535-1546. 

Sahoo, N., Singh, P. V., and Mukhopadhyay, T. 2012. "A Hidden Markov Model for Collaborative 
Filtering," Mis Quarterly (36:4), pp. 1329-1356. 

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. 2000. "Analysis of Recommendation Algorithms for E-
Commerce," in: Proceedings of the 2nd ACM conference on Electronic commerce. Minneapolis, 
Minnesota, USA: ACM, pp. 158-167. 

Wang, H., and Li, W.-J. 2015. "Relational Collaborative Topic Regression for Recommender Systems," 
Ieee Transactions on Knowledge and Data Engineering (27:5), pp. 1343-1355. 

Wang, J., Vries, A. P. d., and Reinders, M. J. T. 2006. "Unifying User-Based and Item-Based Collaborative 
Filtering Approaches by Similarity Fusion," in: Proceedings of the 29th annual international ACM 
SIGIR conference on Research and development in information retrieval. Seattle, Washington, USA: 
ACM, pp. 501-508. 

Wang, P., and Blunsom, P. 2013. "Collapsed Variational Bayesian Inference for Hidden Markov Models," 
Proceedings of the sisteenth International Conference on Articial Intelligence and Statistics, pp. 599-
607. 

Xiang, L., and Yang, Q. 2009. "Time-Dependent Models in Collaborative Filtering Based Recommender 
System," in: Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web 
Intelligence and Intelligent Agent Technology IEEE Computer Society, pp. 450-457. 

Xiao, B., and Benbasat, I. 2007. "E-Commerce Product Recommendation Agents: Use, Characteristics, 
and Impact," Mis Quarterly (31:1), pp. 137-209. 

Xiong, L., Chen, X., Huang, T.-K., Schneider, J., and Carbonell, J. G. 2010. "Temporal Collaborative 
Filtering with Bayesian Probabilistic Tensor Factorization," in Proceedings of the 2010 Siam 
International Conference on Data Mining.  pp. 211-222. 

Yin, H., Chen, B. C. L., Hu, Z., and Zhou, X. 2015. "Dynamic User Modeling in Social Media Systems," 
Acm Transactions on Information Systems (33:3). 

Yu, H., and Li, Z. 2010. "A Collaborative Filtering Method Based on the Forgetting Curve," in: 
Proceedings of the 2010 International Conference on Web Information Systems and Mining - 
Volume 01. IEEE Computer Society, pp. 183-187. 

Ziegler, C.-N., and Lausen, G. 2004. "Analyzing Correlation between Trust and User Similarity in Online 
Communities," in Trust Management, C. Jensen, S. Poslad and T. Dimitrakos (eds.). Springer Berlin 
Heidelberg, pp. 251-265. 

 


