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Abstract. The functional Magnetic Resonance Imaging (fMRI) data of both the 

ventral pathway and the dorsal pathway on the visual cortex in a classification 

task was analyzed. We found that the classification performance improved hier-

archically from lower-level regions to higher-level regions in both pathways, 

which partly verified the visual pathway theory proposed in cognitive neurosci-

ence. Moreover, the LO (Lateral Occipital), V3a and V3b fMRI data were good 

classification basis no worse than the widely-used features such as GIST, HOG 

and LBP. It indicated that imitating the activity patterns of visual cortex to design 

new feature-extraction algorithms might be favorable. Finally, the performance 

of V3a and V3b voxels were very close to that of LO voxels. Consequently, in 

the design of brain-like intelligence systems, we should consider the coordination 

mechanism between the two pathways rather than focusing on the ventral path-

way alone. The relationship of human visual pathway and deep learning structure 

was also discussed tersely. 
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1 Introduction  

The mechanism of human visual system has long been an attractive research topic, and 

still under research by enthusiastic scholars. The research mainly involves biology, psy-

chology, cognitive neuroscience and pattern recognition algorithms, thus it forms a 

comprehensive research field. The understanding of human visual cortex is not sup-

posed to be merely a fundamental research issue concerning medical anatomy or biol-

ogy, for the benefits it brings to the development of artificial intelligence (AI) and var-

ious engineering techniques are beyond measure. The understanding of visual system 
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will in turn instruct us to design more brain-like algorithms (e.g. new deep learning 

models) to accomplish pattern recognition tasks.  

The visual cortex across the brain is believed to be hierarchically organized by dif-

ferent function-specialized regions and could be further divided into two pathways ac-

cording to different functions, i.e. the ventral pathway and the dorsal pathway [1]. The 

former one is tightly related to object identification, while the latter one mainly deals 

with object localization. In 1970s, Hubel and Wiesel realized from their empirical ob-

servations that the activity mode of the neurons located in V1 resembled Gabor wavelet 

filters, and different neurons corresponded to different frequencies and orientations [2, 

3]. Their work successfully explained the computational characters in the primary cor-

tex V1, which was the shared “entrance” of both the ventral and dorsal pathway.  En-

couraged by the success of the shallow V1 model, researchers began to try deeper mod-

els under the hope of describing downstream areas and proposed the HMAX model to 

imitate the activity patterns of the ventral pathway [4]. The basic HMAX structure con-

sisted of four layers. The first layer was formed by Gabor filters. The second layer 

performed max-pooling. The third layer extracted the output of the second layer and 

operated template matching, and the forth layer was another pooling layer. The multi-

layer HMAX model was capable of explaining the computational characters of V1 and 

V2, but had trouble extending to higher cortical areas such as V4 and IT (Inferior Tem-

poral) [5]. In 1990s, researches turned to a more direct approach. The central method-

ology was to collect response data to various stimulus at multiple region-of-interests 

ROIs and used statistical fitting techniques to find model parameters that produced the 

observed stimulus-response relationship. However, they soon realized that multilayered 

networks fitted to neural data in higher areas such as V4 ended up overfitting the train-

ing data and predicting comparatively small amounts of explained variance on novel 

testing images [6]. Thus the features extracted from such models were not good classi-

fication basis. The reasons might include such two following aspects: (1) the data 

amount was not large enough to provide a precise representation of connections be-

tween regions, and (2) the process of image identification in the visual cortex could not 

be easily explained by the simple cascaded ventral pathway V1-V2-V4-IT. There were 

countless coupled and cross-pathway connections between the ventral and dorsal path-

ways, so the mechanism of object identification cannot be simply described by a single 

pathway. The contributions of the dorsal pathway should not be neglected, so the com-

plex synergistic effects of the dorsal pathway (e.g. V3a and V3b areas) should also be 

included into the models. We should study the activity patterns of ROIs located along 

the dorsal pathway as well as ventral ones when designing new feature-extraction al-

gorithms. 

The instruments for visual cortex research differs according to diverse application 

fields, in which fMRI is suitable for cerebral cortex imaging. The fMRI technology 

measures the Blood Oxygen Level Dependent (BOLD) in the brain vessels, which is 

tightly related to image-understanding process. Simultaneously, fMRI is able to offer 

us a deep and precise insight into different ROIs at a time resolution of less than one 

second and a space resolution in millimeter. With the help of fMRI and distributed 

pattern analysis method, researchers were able to investigate where and how complex 

natural scene information was encoded and discriminated by the brain [7, 8].  



In this paper, we analyzed fMRI data for both the ventral pathway V1-V2-V4-LO 

and the dorsal pathway V1-V2-V3-V3a-V3b in a natural image classification task, and 

the results were instructive. 

2 Data and Task 

In order to explore the organization and function of the visual cortex, as well as to 

identify which areas are involved in object recognition process, the classification accu-

racy (based on BOLD values of each region) is introduced as the analyzing tool and 

evaluation criterion. BOLD is a direct measurement of the cerebral cortex activities, so 

the better the image is encoded by cortex regions, the higher classification accuracy of 

the BOLD-based classifiers will acquire.  

The data set contained the fMRI responses of 1750 natural photographs, and the 

stimulus included animals, buildings, food, humans, indoor scenes, manmade objects, 

outdoor scenes, and textures. During the experiment, the subject looked at a sequence 

of natural photographs displayed on a screen, and at the same time, the BOLD responses 

of multiple cortex regions were recorded by fMRI scanning synchronously. The exper-

iment used flashing technique to enhance the signal-to-noise ratio of voxel responses. 

The fMRI responses for each image were recorded according to the stimulus design 

shown in Fig.1. Seven ROIs were considered, including V1, V2, V3, V3a, V3b, V4 and 

LO, and their overall tridimensional distribution on the occipital lobe was shown in 

Fig.2 (a). In Fig.2 (b), two different paths were illustrated, in which V1, V2, V4, LO 

belonged to the ventral pathway, and V1, V2, V3, V3a, V3b belonged to the dorsal 

pathway. In order to optimize the data structure, several steps for preprocessing were 

performed, i.e. the alignment was performed manually and the data were temporally 

interpolated to account for differences in slice time acquisition [9]. Peak BOLD re-

sponses to each of the 1750 images were then estimated from the preprocessed data and 

stored. The responses for each voxel were z-scored, so for a given voxel the units of 

each “response” were standard deviations from that voxel’s mean response [9]. Notice 

that in an fMRI map, the voxel numbers of each ROI was different according to the 

researchers’ selection, as is shown in Table 1.  

  

Fig. 1. Stimulus design. Every image was shown in a 1s-3s schedule. During the first 1s, the 

same image flashed three times (each time for 200ms) to stimulate the brain’s corresponding 

response patterns to the maximum, and the following 3s was grey background, then the next 

picture was shown. 

The dataset was originally contributed by Jack Gallant et al. at UC Berkeley [9, 10]. 

For more detailed information about the data set, or download it for research purpose, 

log on to the website (https://crcns.org/data-sets/vc/vim-1/about-vim-1).  

https://crcns.org/data-sets/vc/vim-1/about-vim-1


 

Fig. 2. The distribution and voxel number of ROIs. (a)  The brief structure of human visual sys-

tem1. The visual information is first collected by the retina and transmitted to the Lateral Genic-

ulate Nucleus (LGN), then get into the visual cortex mainly located at the Occipital Lobe (OL) 

via the visual radiation. Henceforth, the brain extracts complex features in a highly-nonlinear 

way and begins the understanding process. (b) The two visual pathways. The dorsal pathway 

deals with the “where” problem and the ventral pathway deals with the “what” problem. The 

double sided arrows indicate that the information flow in both pathways are bidirectional rather 

than unidirectional, and there are connections between the two channels.  

Table 1. The voxel numbers considered in seven ROIs. 

ROIs V1 V2 V3 V3a V3b V4 LO 

Voxel 

number 
1294 2036 1973 484 314 701 928 

In order to perform classification task, we tagged the output labels for the 1750 fMRI 

maps by hand. We selected 1575 samples (90%) for supervised training and 175 sam-

ples (10%) for validation.  

3 Experiments and Results 

The dimensionality of fMRI signal (often more than 1000 for each region) was too high 

in terms of the limited sample amount (1575). So the full-connected shallow networks 

with backpropagation (BP) algorithm were not favorable (generally to implement a 

model with full-connection networks, the training cases should be at least ten times the 

number of total parameters of the networks [5]. Our data set apparently could not meet 

such strict requirement). In order to efficiently perform classification with small sample 

amount and high-dimensional features, we chose SVM classifiers and performed PCA 

before classification.  

All the results in our work were obtained by three-fold cross-validation and shown 

in the form of mean ± SD. 
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3.1 The Rising Trend of Performance along Both Pathways 

We found that there were distinguishable differences among each ROI’s performance 

along both pathways, and there were some regular patterns or distinct trends that acted 

in accordance with cognitive neuroscience findings. The results were summarized in 

Fig. 3. In the ventral pathway V1-V2-V4-LO, the performance was 23.6%, 30.7%, 

35.2% and 47.8% respectively. The dorsal pathway V1-V2-V3-V3a-V3b showed a 

similar trend that classification accuracy improved as the level of ROIs advanced, and 

the performance was 23.6%, 30.7%, 32.2%, 41.3%, and 45.9% respectively. Appar-

ently, there was a common phenomenon in both pathways that classification perfor-

mance improved significantly as visual information passed on from lower areas to 

higher areas. Among all the ROIs considered, LO (47.8%) played the best, followed by 

V3b (45.9%) at the top of the dorsal pathway in this experiment. 

 

Fig. 3. Performance trend along both pathways. (a) The ventral pathway (four ROIs). (b) The 

dorsal pathway (five ROIs). 

3.2 LO fMRI Data Contains Substantial Information of Images 

The visual tasks (usually classification) have long been a difficult challenge to modern 

computer science. Numerous algorithms aimed at representing images were previously 

proposed [11, 12]. They were designed quite statistical and mathematical for computer 

calculation, but far from imitating the way the brain worked. Unsurprisingly, if our goal 

was simply classification accuracy, the opinions diverged as to whether more biological 

detailed models would ultimately be needed [13].  

In order to show the superiority of the brain over traditional feature-extraction meth-

ods in image representation, we extracted 512-D GIST features (unlike SIFT who 

aimed at giving pictures local and regional descriptions, GIST aimed at offering global 

and overall features), 576-D HOG features and 256-D LBP features for each of the 

1750 natural photographs, and designed SVM classifiers accordingly. The results were 



summarized in Fig. 4. It turned out to be that in this task, LBP (48.4%) was slightly 

better than LO fMRI (47.8%), LO fMRI played better than GIST (46.8%), while HOG 

(42.1%) played the worst.  

Therefore, if we designed deep models that could eventually simulated the response 

activities of voxels located at LO or V3b (and even-higher areas) to imitate the way the 

brain-extracted features, the classification performance might be better than classifiers 

designed on the basis of traditional features. Introducing the prior knowledge of human 

visual pathways into the designation of computer vision systems to form more bionic 

visual models for various tasks was commendable. The brain is undoubtedly more ef-

fective than human-assigned feature-extraction approaches. 

 

Fig. 4. Performance comparison of LO fMRI with GIST, HOG, and LBP. 

3.3 The Dorsal Pathway Contributes to Object Identification 

The relatively high performance of LO was natural, because modern neuroscience had 

found numerous evidences of the specific function of ventral pathway in object recog-

nition. However, we found that the performance of V3a and V3b (41.3% and 45.9% 

respectively) were not far from LO. The results indicated that the dorsal pathway (in-

cluding V3, V3a and V3b at least) also contributed to object identification.  

We also performed canonical correlation analysis (CCA) [12] to seek for the corre-

lationship of V3a and V3b with other ROIs. The results were shown in Fig.5. CCA 

algorithm linearly mapped two sets of variables to new spaces respectively, and then 

maximized the correlationship of two sets of mapped data. Therefore, CCA was an 

appropriate method to evaluate the linear correlationship of two given variables. Here 

voxel activities of different regions were considered as variable sets, and the linear 

unoriented correlationship (the strongest relationship) of V3a and V3b with other re-

gions was thus excavated. The introduction of CCA aimed at analyzing unoriented 

functional connectivity of ROIs rather than the oriented effective connectivity, and was 

often done by electroencephalograph. 

Simultaneously, the recent findings in deep learning also confirmed our speculation. 

In 2012, Krizhevsky et al. built the famous convolutional neural network and won the 

ImageNet competition [14]. It marked the beginning of the dominance of deep neural 

networks in computer vision. In the past four years, error rates had dropped further, 



roughly matching (or even exceeded) human performance in the domain of visual ob-

ject classification [13]. In order to give the high performance a physiological explana-

tion and improve recent deep model structure, researchers tried to compare the state-

of-art deep neural networks with the visual pathway to see how much they match in 

architecture. For example, Michael Eickenberg et al. extracted the outputs of all lay-

ers after rectified linear units (ReLU) of OverFeat (2013). They used L2 penalized lin-

ear regression to fit a predictive model to each voxel of the measured brain activity after 

spatial smoothing and subsampling. They found that the outputs of some layers e.g. the 

fourth or fifth convolutional layer were able to predict the activities of V3a and V3b 

voxels at relatively high accuracy. It implied that there were some internal relationships 

between network layers and the two ROIs. Consequently, if the deep networks were 

confirmed to be “brain-like” (some scholars are working on the interesting topic, such 

as Nikolaus [13], Cambridge and DiCarlo [5], MIT), then we might come to the con-

clusion that V3a and V3b played an important role in object recognition. Moreover, the 

role of V3a and V3b in the real visual pathway might be similar with the corresponding 

layers in the deep network.  

Although building the one-to-one correspondence between deep network layers and 

visual pathway regions is not accessible now (the existing deep models can only 

roughly imitate the visual system), yet deep networks are still regarded as best models 

of human visual system till today. 

 

Fig. 5. The correlationship of V3a and V3b with other regions measured by CCA. (a) The ca-

nonical correlation of V3a and other regions. There was a relatively strong correlationship be-

tween V3a and V2, as well as with V3. (b) The same analysis was performed on V3b, and the 

result demonstrated that relatively strong correlationship existed between V3b and V2, as well 

as with V3. Both the figures show that the activity patterns of V3a and V3b were tightly related 

to V2 and V3 voxels. It should be mentioned that V4 and LO also had relatively good correla-

tionship with the two regions. 

4 Discussion 

The results demonstrates that the accuracy increases along the path V1-V2-V4-LO, 

which is the main part of the ‘ventral pathway’. The ventral path mainly solves the 

problem of object recognition, so the outcome is not surprising. The increasing trend of 

accuracy corresponds to the fact that as we track the information stream in the human 



visual system, the representations of the stimulus grow more and more abstract and 

global for comprehension. Along the entire visual path, the higher functional areas as-

semble the information delivered by lower ones to form more comprehensive and inte-

grated representations. Notice that V1 is the “entrance” of the ventral pathway, and the 

whole information of any given image is “stored” in V1, so the representations of this 

region are intuitively expected to perform the best. However, we find that the following 

regions all perform better in classification task, which indicates that the visual infor-

mation is deeply hidden in V1 with high nonlinearity, so the SVM classifiers are unable 

to excavate the essence of the data. But that is exactly why the ventral visual pathway 

exists. The V1 information is further transmitted in a highly nonlinear way among the 

cascaded cortex regions. In this process, the nonlinearity is decoded gradually, making 

the representations change from wide and shallow to deep and narrow [5]. The mecha-

nism of vision can be described as a nonlinear data miming (DM) process.  

The results also demonstrates that the prediction accuracy of LO based classifiers 

rivals the traditional-feature-based classifiers. Image classification is difficult because 

it’s hard to excavate the deep statistical essence (features) of the data. The features 

should possess enough distinguishing ability between different samples, but represent 

similar samples as close as possible. Our work shows brain cortex regions have such 

characteristics no less than traditional features do. Therefore, we can design new brain-

like feature-extraction methods to simulate the activity patterns of visual cortex regions 

(especially higher regions). 

The dorsal pathway also shows its contribution to object recognition process, alt-

hough it was traditionally believed to be tightly related to localization problems and not 

effective in object recognition. In fact, there are many complex connections between 

ventral neurons and dorsal neurons, and the contributions of dorsal regions in recogni-

tion tasks should not be neglected. 

The relationship between visual pathway and deep neural networks is confusing but 

interesting. They are similar in the hierarchically-connected structure (some scholars 

even matched up the layers and regions), and the basic element of artificial neural net-

work imitates the real nerve cell, and the convolutional networks even simulates the 

local receptive field character. They are different because the brain is a deep and com-

plex recurrent neural network [13], which could not be fully described by the current 

feed-forward deep models. Moreover, it is physiologically unlikely that the visual cor-

tex learns exactly by BP algorithm, because true biological postnatal learning in hu-

mans may use a large amount of unsupervised data. However, the deep networks are 

still regarded as the best models of the brain and have achieved great success in various 

fields, such as speech recognition and machine translation [13]. Our results verified that 

there are “information pyramids” in our visual system, including the ventral pathway 

as well as the dorsal pathway. There’s a commonly addressed question that, why our 

visual system (and the deep networks) are hierarchically organized? Previous studies 

have shown that three-layer shallow BP network can approximate continuous functions 

with arbitrary precision by adding a sufficient number of hidden units and suitably set-

ting the weights [15], but why a “multi-layer pyramid” structure is needed? The reason 



depth matters is that deep models can represent many complex functions more con-

cisely [13], because they are endowed with more powerful nonlinear feature-extraction 

ability. 

Almost all researches that try to bind deep learning and visual pathway together are 

limited to analyzing how much they match, but until today, there’s no effective way to 

improve deep learning structure by the foreknowledge of the visual cortex (e.g. redesign 

convolutional filters for each layer in accordance with corresponding cortex regions 

and even weight updating algorithm). This direction deserves much further research. 

Based on classification accuracy and previous evidences in the OverFeat network, we 

find that V3a and V3b located at the dorsal pathway are also involved in object recog-

nition process. V3a and V3b have their own important status in visual information en-

coding, consequently, if we want to redesign each layer (or layers) by different ROIs’ 

activity characteristics, not only the regions of the ventral pathway should be included, 

but also the ROIs of the dorsal pathway should be considered. 

References 

1. Kruger N, Janssen P, Kalkan S, et al. Deep hierarchies in the primate visual cortex: What can 

we learn for computer vision?[J]. Pattern Analysis and Machine Intelligence, IEEE Transac-

tions on, 2013, 35(8): 1847-1871. 

2. Hubel D H, Wiesel T N. Receptive fields of single neurones in the cat's striate cortex[J]. The 

Journal of physiology, 1959, 148(3): 574-591. 

3. De Valois K K, De Valois R L, Yund E W. Responses of striate cortex cells to grating and 

checkerboard patterns[J]. The Journal of Physiology, 1979, 291: 483. 

4. Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex[J]. Nature neu-

roscience, 1999, 2(11): 1019-1025. 

5. Yamins D L, Dicarlo J J. Using goal-driven deep learning models to understand sensory cor-

tex.[J]. Nature Neuroscience, 2016, 19(3):356-365. 

6. Gallant J L, Connor C E, Rakshit S, et al. Neural responses to polar, hyperbolic, and Cartesian 

gratings in area V4 of the macaque monkey.[J]. Journal of Neurophysiology, 1996, 

76(4):2718-2739. 

7. Schmah T, Hinton G E, Zemel R S, et al. Generative versus discriminative training of RBMs 

for classification of fMRI images[C]// Advances in Neural Information Processing Systems 

21, Proceedings of the Twenty-Second Annual Conference on Neural Information Processing 

Systems, Vancouver, British Columbia, Canada, December 8-11, 2008. 2008:1409-1416. 

8. Walther D B, Caddigan E F L. Natural scene categories revealed in distributed patterns of 

activity in the human brain.[J]. Journal of Neuroscience the Official Journal of the Society for 

Neuroscience, 2009, 29(34):10573-10581. 

9. Kay K N, Thomas N, Prenger R J, et al. Identifying natural images from human brain activ-

ity.[J]. Nature, 2008, 452(7185):352-355. 

10. Kay K N, Naselaris T, Gallant J L. fMRI of human visual areas in response to natural im-

ages[J]. CRCNS. org, 2011. 

11. X. Wang, T. X. Han, S. Yan. An HOG-LBP human detector with partial occlusion handling[J]. 

Proceedings, 2009, 30(2):32-39. 

12. Cruz-Mota J, Bogdanova I, Paquier B, et al. Scale Invariant Feature Transform on the Sphere: 

Theory and Applications[J]. International Journal of Computer Vision, 2012, 98(2):217-241. 



13. Kriegeskorte N. Deep Neural Networks: A New Framework for Modeling Biological Vision 

and Brain Information Processing[J]. Annual Review of Vision Science, 2015, 1: 417-446. 

14. Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neu-

ral networks[C]//Advances in neural information processing systems. 2012: 1097-1105. 

15. Schäfer A M, Zimmermann H G. Recurrent neural networks are universal approxima-

tors[M]//Artificial Neural Networks–ICANN 2006. Springer Berlin Heidelberg, 2006: 632-

640. 


