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Data-Based Adaptive Critic Designs for Nonlinear
Robust Optimal Control With Uncertain Dynamics
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Abstract—In this paper, the infinite-horizon robust optimal
control problem for a class of continuous-time uncertain non-
linear systems is investigated by using data-based adaptive critic
designs. The neural network identification scheme is combined
with the traditional adaptive critic technique, in order to design
the nonlinear robust optimal control under uncertain environ-
ment. First, the robust optimal controller of the original uncertain
system with a specified cost function is established by adding a
feedback gain to the optimal controller of the nominal system.
Then, a neural network identifier is employed to reconstruct the
unknown dynamics of the nominal system with stability analysis.
Hence, the data-based adaptive critic designs can be developed
to solve the Hamilton–Jacobi–Bellman equation corresponding to
the transformed optimal control problem. The uniform ultimate
boundedness of the closed-loop system is also proved by using
the Lyapunov approach. Finally, two simulation examples are
presented to illustrate the effectiveness of the developed control
strategy.

Index Terms—Adaptive critic designs, adaptive dynamic pro-
gramming, intelligent control, neural networks, policy iteration,
robust optimal control, system identification, uncertain nonlinear
systems.

I. INTRODUCTION

MODEL uncertainties arise frequently in practical control
systems, such as mechanical systems, transportation

systems, and power systems and can severely degrade the
closed-loop system performance. Therefore, the problem of
designing robust controllers for nonlinear systems with uncer-
tainties has drawn considerable attention in the literature for
many years [1]–[6]. Although various direct robust control
approaches have been proposed previously, the relationship
between robust control and optimal control has been stud-
ied recently to derive new robust control methods [4]–[6].
Lin et al. [4] showed that the robust control problem could
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be solved by studying the optimal control of correspond-
ing nominal system, but detailed procedures were not given.
Lin and Brandt [5] presented an optimal control approach
to achieve robust control of robot manipulators. The nomi-
nal part of the controlled system was linear and hence, the
optimal controller could be obtained by solving an algebraic
Riccati equation. Since many practical systems possess non-
linearity and uncertainty, it is necessary to study the robust
control problem when the nominal parts are nonlinear sys-
tems. Wang et al. [6] developed a novel iterative algorithm for
online design of robust control for a class of continuous-time
nonlinear systems. This was a meaningful result which used
the advanced computational intelligence technique to deal with
the traditional nonlinear robust control problem. However, the
optimality of the robust controller with respect to a speci-
fied cost function was not discussed, not to mention that the
dynamics of the nominal system were assumed to be known.
This restricts its application to some extent and also motivates
our research.

The basic idea of the design strategy in this paper
comes from neural-network-based optimal control, or neuro-
optimal control. As is known, dealing with the nonlin-
ear optimal control problem always requires solving the
Hamilton–Jacobi–Bellman (HJB) equation. Although dynamic
programming is a conventional method in solving optimiza-
tion and optimal control problems, it often suffers from the
curse of dimensionality. To avoid the difficulty, based on
function approximators, such as neural networks, adaptive or
approximate dynamic programming (ADP) was proposed by
Werbos [7] as a method to solve optimal control problems
forward-in-time. Recently, research on ADP and related fields
has gained much attention from various scholars [6], [8]–[50].
The comprehensive research progress and prospects of ADP
for optimal control can be found in [8] and [9]. Remarkably,
more and more researchers have pointed out that ADP is a bio-
logically inspired and computational method to construct truly
brain-like systems in the field of computational intelligence
and intelligent control [7], [8], [10], [20], [33], [45].

Reinforcement learning is a class of approaches used
in the field of machine learning to derive the optimal
action of an agent based on responses from its environ-
ment. Lewis and Vrabie [10] stated that the ADP technique
was closely related to reinforcement learning and that pol-
icy iteration was one of the basic algorithms of reinforcement
learning. In addition, the information of system dynamics is
necessarily required when the traditional policy iteration algo-
rithm is employed. Vamvoudakis and Lewis [13] discussed
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an online algorithm based on policy iteration for learning the
continuous-time optimal control solution with infinite hori-
zon cost for nonlinear systems with known dynamics. They
presented an online adaptive algorithm which involved simul-
taneous tuning for both actor and critic neural networks.
Modares et al. [15] proposed an online learning algorithm,
based on the policy iteration technique, to find the optimal
control solution for continuous-time systems subject to input
constraints. However, for many complex systems, it is dif-
ficult to acquire accurate models of controlled plants. Then,
Modares et al. [16] presented an online policy iteration algo-
rithm to learn the continuous-time optimal control solution
for unknown constrained-input systems. Unlike existing results
which require complete or at least partial knowledge about
the system dynamics, the proposed method does not need
any knowledge about the system dynamics. Liu et al. [27]
developed an online synchronous approximate optimal learn-
ing algorithm based on policy iteration to solve a multiplayer
nonzero-sum game without requiring exact knowledge of
dynamic systems. Besides, Luo et al. [32] addressed the
model-free nonlinear optimal control problem based on data
by introducing the reinforcement learning technique. They
proposed a data-based approximate policy iteration method
by using real system data rather than a system model.
However, system uncertainties are not considered in most
works. Recently, Jiang and Jiang [35] studied the robust opti-
mal control design for a class of uncertain nonlinear systems
from a perspective of robust ADP. It is an important work
of integrating tools from nonlinear control with the idea of
ADP, which not only stabilizes the original uncertain sys-
tem, but also achieves optimality in the absence of dynamic
uncertainty. Note that the optimization issue related to the
original uncertain system is not included. In many situations,
it is necessary to define suitable cost functions correspond-
ing to nonlinear systems with uncertainties and discuss the
optimality. Note that though the robust optimal control of non-
linear systems has been studied in [37], it is reconsidered in
this paper from the following two aspects. On one hand, the
dynamics of nominal system is not required by constructing
a neural network identifier. On the other hand, the model-free
policy iteration algorithm is presented to solve the transformed
optimal control problem with stability analysis different from
that of [37]. Overall, to the best of our knowledge, there are no
results on robust optimal control of uncertain nonlinear sys-
tems through data-based adaptive critic designs method. This
is the motivation of this paper.

Actually, in this paper, it is the first time that the robust opti-
mal control scheme for a class of uncertain nonlinear systems
via data-based adaptive critic learning technique is established.
First, the optimal controller of the nominal system is designed.
It can be proved that the modification of the optimal control
law is in fact the robust controller of the original uncertain sys-
tem, which also achieves optimality under the definition of a
cost function. Then, a data-based ADP technique, which relies
on two neural networks, namely, a model network and a critic
network, is developed to solve the transformed optimal control
problem. The uniform ultimate boundedness of the closed-loop
system is also proved via the well-known Lyapunov approach.

At last, two simulation examples are given to show the effec-
tiveness of the robust optimal control scheme. It is found that
the developed approach not only extends the application scope
of ADP to nonlinear optimal control design under uncertain
environment, but also provides a novel robust optimal control
method for uncertain nonlinear systems. The significance lies
in the fact that it employs the idea of computational intel-
ligence to construct and design self-learning and intelligent
control systems.

The rest of this paper is organized as follows. In Section II,
the robust control design of uncertain nonlinear system is
stated with some backgrounds of nonlinear optimal control
design. In Section III, the robust optimal control method of
uncertain nonlinear system is provided with theoretical proof.
In Section IV, the optimal control implementation via data-
based adaptive critic learning approach is developed with
stability analysis, by using neural network and policy iteration
techniques. In Section V, two numerical examples are given
to demonstrate the effectiveness of the established approach.
In Section VI, concluding remarks and discussion on future
work are presented.

II. PROBLEM STATEMENT AND PRELIMINARIES

In this paper, we study a class of continuous-time uncertain
nonlinear systems described by

ẋ(t) = f (x(t)) + g(x(t))
(
ū(t) + d̄(x(t))

)
(1)

where x(t) ∈ R
n is the state vector, ū(t) ∈ R

m is the con-
trol vector, f (·) and g(·) are differentiable in their arguments
with f (0) = 0, and d̄(x) ∈ R

m is the unknown nonlinear per-
turbation. We let x(0) = x0 be the initial state and assume
d̄(0) = 0 ensuring that x = 0 is an equilibrium of (1).
Similar to many other literature, for the corresponding nominal
system

ẋ(t) = f (x(t)) + g(x(t))u(t) (2)

we also assume that f + gu is Lipschitz continuous on a set
� in R

n containing the origin and that (2) is controllable.
For designing the robust optimal control of (1), we should

find a feedback control law ū(x), such that the closed-loop
system is globally asymptotically stable for all uncertainties
d̄(x) and the optimality related to a specified cost function is
attained. Next, we will show that it can be transformed into
solving the optimal control problem for the nominal system
with an appropriate cost function.

Let R ∈ R
m×m be a symmetric positive definite matrix. We

denote d(x) = R1/2d̄(x) with d(x) ∈ R
m bounded by a known

function dM(x), i.e., ‖d(x)‖ ≤ dM(x) with dM(0) = 0. For (2),
for the purpose of solving the infinite horizon optimal control
problem, we should derive the control law u(x) that minimizes
the cost function

J(x0) =
∫ ∞

0

{
d2

M(x(τ )) + uT(x(τ ))Ru(x(τ ))
}
dτ. (3)

According to the classical optimal control theory, the feed-
back control must not only stabilize the controlled system
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on �, but also guarantee that the cost function (3) is finite
(i.e., the designed control law must be admissible). The defini-
tion of admissible control can be found in [12], [13], and [26].

Let �(�) be the set of admissible controls on �. For any
admissible control law u ∈ �(�), if the associated cost func-
tion (3) is continuously differentiable, its infinitesimal version
is the nonlinear Lyapunov equation

0 = d2
M(x) + uT(x)Ru(x) + (∇J(x))T( f (x) + g(x)u(x)) (4)

with J(0) = 0. In (4), the symbol ∇(·) � ∂(·)/∂x is the
notation of the gradient operator, for example, ∇J(x) =
∂J(x)/∂x.

Define the Hamiltonian of (2) as

H(x, u,∇J(x)) = d2
M(x) + uT(x)Ru(x)

+ (∇J(x))T( f (x) + g(x)u(x)). (5)

The optimal cost function of (2) is formulated as

J∗(x0) = min
u∈�(�)

∫ ∞

0

{
d2

M(x(τ )) + uT(x(τ ))Ru(x(τ ))
}

dτ.

In view of optimal control theory, the optimal cost function
J∗(x) satisfies the HJB equation

0 = min
u∈�(�)

H
(
x, u,∇J∗(x)

)
. (6)

Assume that the minimum on the right-hand side of (6) exists
and is unique. Then, the optimal control law is

u∗(x) = −1

2
R−1gT(x)∇J∗(x). (7)

Based on (5) and (7), the HJB equation (6) of (2)
becomes

0 = d2
M(x) + (∇J∗(x))Tf (x)

− 1

4

(∇J∗(x)
)T

g(x)R−1gT(x)∇J∗(x) (8)

with J∗(0) = 0. In the following, we will discuss how the
optimal control problem of nominal system (2) is linked with
the robust optimal control of original uncertain system (1).

III. ROBUST OPTIMAL CONTROL METHODOLOGY

OF UNCERTAIN NONLINEAR SYSTEMS

In this section, we first develop a robust control law for the
original uncertain system (1) and then show that the robust
control law possesses the property of optimality under a spec-
ified cost function. Some results of [37] will be used to build
the theoretical basis of the nonlinear robust optimal control
methodology, which is necessary and helpful to the develop-
ment of data-based robust optimal control strategy in the next
section.

To establish the robust stabilizing control strategy of (1), we
modify the optimal control law (7) of (2) by adding a feedback
gain π , that is

ū(x) = πu∗(x) = −1

2
πR−1gT(x)∇J∗(x). (9)

Considering (8) and (9), the derivative of L1(t) = J∗(x(t))
along the trajectory of the closed-loop system can be formu-
lated as

L̇1(t) = (∇J∗(x)
)T

( f (x) + g(x)ū(x))

= −d2
M(x) − 1

2

(
π − 1

2

)∥∥∥R−1/2gT(x)∇J∗(x)
∥∥∥

2
.

Clearly, L̇1(t) < 0 whenever π ≥ 1/2 and x 
= 0.
Hence, for (2), the feedback control given by (9) ensures
that the closed-loop system is asymptotically stable for all
π ≥ 1/2.

Lemma 1 [37]: For (1), there exists a positive number π∗
1 ≥

1, such that for any π > π∗
1 , the feedback control developed

by (9) ensures that the closed-loop system is asymptotically
stable.

The proof of Lemma 1 is provided in [37]. According to
Lemma 1, ū(x) with π > π∗

1 ≥ 1 is a robust control law of
the original system (1). Next, we show that it also holds the
property of optimality. To this end, we have to define a cost
function related to the original system (1). Consider

J̄(x0) =
∫ ∞

0

{
Q(x(τ )) + 1

π
ūT(x(τ ))Rū(x(τ ))

}
dτ (10)

where

Q(x) = d2
M(x) − (∇J∗(x)

)T
g(x)d̄(x)

+ 1

4
(π − 1)

(∇J∗(x)
)T

g(x)R−1gT(x)∇J∗(x). (11)

By adding and subtracting (1/(π − 1))dT(x)d(x) to (11) and
noticing the fact that dT(x)d(x) ≤ d2

M(x), we can easily
find that

Q(x) ≥ d2
M(x) − 1

π − 1
dT(x)d(x)

≥ π − 2

π − 1
d2

M(x).

Clearly, there exists a positive number π∗
2 ≥ 2, such that for

all π > π∗
2 , Q(x) is a positive definite function. Hence, it is

important to derive that the definition of new utility function,
i.e., Q(x)+(1/π)ūTRū, corresponding to the original uncertain
system (1) is reasonable. Then, we obtain the main theorem
of this section.

Theorem 1: Consider (1) with infinite-horizon cost func-
tion (10). There exists a positive number π∗ such that for
any π > π∗, the feedback control law obtained by (9) is
an asymptotically stabilizing solution of the designed optimal
control problem.

Proof: The Hamiltonian of (1) with cost function (10) is

H̄
(
x, ū,∇ J̄(x)

) = Q(x) + 1

π
ūT(x)Rū(x)

+ (∇ J̄(x)
)T(

f (x) + g(x)
(
ū(x) + d̄(x)

))

where π > π∗
2 ≥ 2. Using (8), (9), and (11), we can derive

that

H̄
(
x, ū,∇ J̄(x)

) = (∇ J̄(x) − ∇J∗(x)
)T

× (
f (x) + g(x)

(
ū(x) + d̄(x)

))
.
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By replacing J̄(x) with J∗(x), we obtain H̄(x, ū,∇J∗(x)) = 0.
This shows that J∗(x) is a solution to the HJB equation of (1).
Correspondingly, the optimal control law of (1) is πu∗. Then,
we say that the control law (9) achieves optimality with cost
function (10). Overall, there exists a positive number π∗ �
max{π∗

1 , π∗
2 } such that for any π > π∗, the control law (9)

is an asymptotically stabilizing solution to the corresponding
optimal control problem. This completes the proof.

Remark 1: Based on Theorem 1, there exists a π > π∗
such that the control law (9) can not only stabilize (1), but
also achieve optimality with the defined cost function (10).
Moreover, we find that the function J̄(x) relies on the
choice of feedback gain π . When π varies, the cost func-
tion J̄(x) varies, and then the optimal control of (1) also
varies. However, the form of the optimal control is fixed,
i.e., πu∗.

According to Theorem 1, in order to design the robust
optimal control of (1), we should put emphasis upon solv-
ing the optimal control problem of nominal system (2).
As we observe from the previous parts, the ADP method
is effective to solve the nonlinear optimization and opti-
mal control problems. Then, in the following, we will
provide a neural-network-based data-driven optimal control
approach for (2) and prove the stability of the closed-loop
system.

IV. OPTIMAL CONTROL IMPLEMENTATION VIA

DATA-BASED ADAPTIVE CRITIC DESIGNS

In this section, we present the optimal control imple-
mentation via data-based adaptive critic designs. A neural
network identifier is constructed and trained to learn the sys-
tem dynamics. Then, a model-free policy iteration algorithm
for the transformed optimal control problem is developed and
implemented by building a critic neural network. Stability
analysis of the closed-loop system is provided in detail
as well.

A. Neural Network Identification

In this paper, we assume that the internal and drift dynamics
of (2) are unknown. A three-layer neural network identi-
fier is used to reconstruct the unknown dynamics by using
input–output data. Let the number of hidden layer neurons be
denoted by lm. The corresponding nominal system (2) based
on neural network can be represented as

ẋ = Ax + ωT
mσm

(
νT

mz
)

+ εm. (12)

Let z̄ = νT
mz, where z̄ ∈ R

lm . In (12), A is a designed stable
matrix, z = [xT, uT]T ∈ R

n+m is the neural network input
vector, νm ∈ R

(n+m)×lm is the ideal weight matrix between
input layer and hidden layer, ωm ∈ R

lm×n is the ideal weight
matrix between hidden layer and output layer, εm ∈ R

n is
the functional approximation error, and σm(·) ∈ R

lm is the
activation function selected as a monotonically increasing one,
such as σm(·) = tanh(·). Similar to [27], [49], and [50], for

any y1, y2 ∈ R (y1 ≥ y2), there exists a constant λ0 (λ0 > 0),
such that

σm(y1) − σm(y2) ≤ λ0(y1 − y2). (13)

During system identification, let the weight matrix between
input layer and hidden layer be constant while only tuning the
weight matrix between hidden layer and output layer. Hence,
the output of neural network identifier can be presented as

˙̂x = Ax̂ + ω̂T
m(t)σm

(
ẑ
)

where ω̂m(t) is the current estimated matrix of the ideal weight
matrix ωm at time t, x̂ is the estimated system state, and ẑ =
νT

m[x̂T, uT]T. Then, the dynamics of the identification error can
be obtained by

˙̃x = Ax̃ + ω̃T
m(t)σm

(
ẑ
)+ ωT

m

(
σm(z̄) − σm

(
ẑ
))+ εm (14)

where ω̃m = ωm − ω̂m is the weight estimation error of
the identifier and x̃ = x − x̂ is the system identification
error.

Here, we provide the following two assumptions, which are
commonly used in papers such as [27], [49], and [50].

Assumption 1: The ideal neural network weight matrices
are bounded by two positive constants, i.e., ‖ωm‖ ≤ λωm and
‖νm‖ ≤ λνm .

Assumption 2: The functional approximation error εm is
upper bounded by a function of identification error, such that
εT

mεm ≤ λεm x̃Tx̃, where λεm is a positive constant.
The stability of identification error dynamics is proved in

the following theorem.
Theorem 2: Suppose that Assumptions 1 and 2 are satisfied.

The identification error x̃ is asymptotically stable, if the weight
matrix of the neural network identifier is updated by

˙̂ωm = �mσm
(
ẑ
)
x̃T (15)

where �m ∈ R
lm×lm is a symmetric positive definite matrix of

learning rates.
Proof: Choose the following Lyapunov function:

L2(t) = 1

2
x̃Tx̃ + 1

2
tr
(
ω̃T

m�−1
m ω̃m

)
.

We take the derivative of L2(t) along the trajectory generated
by the identification error (14) as

L̇2(t) = x̃T ˙̃x + tr
(
ω̃T

m�−1
m

˙̃ωm

)
.

Based on (14) and (15), we have

L̇2(t) = x̃TAx̃ + x̃TωT
m

(
σm(z̄) − σm

(
ẑ
))+ x̃Tεm. (16)

According to (13) and Assumption 1, we can obtain

x̃TωT
m

(
σm(z̄) − σm

(
ẑ
)) ≤ 1

2
x̃TωT

mωmx̃ + 1

2

(
σm(z̄) − σm

(
ẑ
))T

× (
σm(z̄) − σm

(
ẑ
))

≤ 1

2
x̃TωT

mωmx̃ + 1

2
λ2

0‖z̄ − ẑ‖2

≤ 1

2
x̃TωT

mωmx̃ + 1

2
λ2

0λ
2
νm

x̃Tx̃. (17)
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Based on (16) and (17) and considering Assumption 2,
we have

L̇2(t) ≤ x̃TAx̃ + 1

2
x̃TωT

mωmx̃ + 1

2
λ2

0λ
2
νm

x̃Tx̃

+ 1

2
x̃Tx̃ + 1

2
λεm x̃Tx̃

= x̃T
(

A + 1

2
ωT

mωm + 1

2

(
1 + λεm + λ2

0λ
2
νm

)
In

)
x̃

� −x̃Tx̃ (18)

where

 = −A − 1

2
ωT

mωm − 1

2

(
1 + λεm + λ2

0λ
2
νm

)
In

and In stands for the identity matrix with dimension n. If A
is selected to make  > 0, the Lyapunov derivative is nega-
tive such that L̇2(t) ≤ 0. Hence, it can be concluded that the
identification error approaches zero, i.e., x̃(t) → 0 as t → ∞.
This completes the proof.

From Theorem 2, we know the model neural network is an
asymptotically stable identifier. Consequently, after a sufficient
learning session, we can obtain the following neural network
identifier:

ẋ = f (x) + g(x)u = Ax + ωT
mσm(z̄). (19)

In addition, by taking the partial derivative of both sides of (19)
with respect to u, we can obtain

g(x) = ∂
(
Ax + ωT

mσ(z̄)
)

∂u

= ωT
m

∂σ(z̄)

∂ z̄
νT

m

[
0n×m

Im

]
. (20)

Remark 2: By virtue of neural network identification, the
unknown system dynamics and control matrix of (2) can
be approached by (19) and (20), respectively. Actually, as
approximated values, the state derivative ẋ in (19) and control
matrix g(x) in (20) should be denoted by ˙̂x and ĝ(x), respec-
tively. However, we still use ẋ and g(x) in the following for
convenience of analysis.

Remark 3: The expressions of ẋ and g(x) in (19) and (20)
are related with the converged weight vectors of the neural
network identifier. In this sense, it is feasible to develop a
data-based optimal control method under the framework of
ADP, which is helpful to achieve the robust optimal control
of uncertain nonlinear system.

B. Model-Free Policy Iteration Algorithm

In this section, a model-free policy iteration algorithm
working together with neural network identifier for nomi-
nal system (2) is presented. Via system identification, we
can acquire the weight matrices ωm and νm. Then, based
on (19) and (20), we can develop the model-free policy itera-
tion algorithm for the transformed optimal control problem as
shown in Algorithm 1.

Remark 4: Note that the above algorithm can converge
to the optimal cost function and optimal control law, i.e.,
J(i)(x) → J∗(x) and u(i)(x) → u∗(x) as i → ∞.
The convergence proof of policy iteration algorithm has been

Algorithm 1 Model-Free Policy Iteration Algorithm for the
Transformed Optimal Control Problem

1: Initialization
Let the initial iteration index be i = 0 and J(0)(·) = 0.
Give a small positive real number ε.
Start with an initial admissible control law u(0).

2: Neural Network Identification
Through system identification, compute the approximate
values of ẋ and g(x) according to (19) and (20), respec-
tively. Keep the converged weight matrices unchanged.

3: Policy Evaluation
Using the information of ẋ, solve the following nonlinear
Lyapunov equation

0 = d2
M(x) +

(
u(i)(x)

)T
Ru(i)(x) +

(
∇J(i+1)(x)

)T
ẋ

with J(i+1)(0) = 0.
4: Policy Improvement

Using the information of g(x), update the control law via

u(i+1)(x) = −1

2
R−1gT(x)∇J(i+1)(x).

5: Stopping Criterion
If ‖ J(i+1)(x) − J(i)(x) ‖≤ ε, stop and obtain the approxi-
mate optimal control law u(i+1)(x); else, set i = i + 1 and
go to step 3.

given in [12] and related references therein and is therefore
omitted here.

C. Implementation Process via Critic Network

Considering the universal approximation property of neural
networks, J∗(x) can be reconstructed by a single-layer neural
network on a compact set � as

J∗(x) = ωT
c σc(x) + εc(x)

where ωc ∈ R
lc is the ideal weight, σc(x) ∈ R

lc is the activa-
tion function, lc is the number of neurons in the hidden layer,
and εc(x) is the approximation error. Then, we have

∇J∗(x) = (∇σc(x))
Tωc + ∇εc(x). (21)

Based on (19) and (21), the Lyapunov equation (4) becomes

0 = d2
M(x) + uT(x)Ru(x)

+
(
ωT

c ∇σc(x) + (∇εc(x))
T
)(

Ax + ωT
mσm(z̄)

)
.

As the work of [13], [16], and [36], we assume that ωc,
∇σc(x), and εc(x) and its derivative ∇εc(x) are all bounded
on a compact set �.

Since the ideal weights are unknown, a critic neural network
is built in terms of the estimated weights as

Ĵ(x) = ω̂T
c σc(x)

for the purpose of approximating the optimal cost function,
where ω̂c represents the estimated weight matrix. Then, we
obtain

∇ Ĵ(x) = (∇σc(x))
Tω̂c. (22)
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Noticing (7), (20), and (21), we find that

u∗(x) = −1

2
R−1gT(x)

(
(∇σc(x))

Tωc + ∇εc(x)
)
. (23)

Accordingly, considering (7), (20), and (22), the approximate
control function is expressed as

û(x) = −1

2
R−1gT(x)(∇σc(x))

Tω̂c. (24)

Applying (24) to neural network identifier (19), the closed-
loop system dynamics can be rewritten as

ẋ = f (x) − 1

2
g(x)R−1gT(x)(∇σc(x))

Tω̂c.

Denoting M = g(x)R−1gT(x) and using the neural network
expression (21), the Hamiltonian becomes

H(x, ωc) = d2
M(x) + ωT

c ∇σc(x)f (x) − ecH

− 1

4
ωT

c ∇σc(x)M(∇σc(x))
Tωc

= 0 (25)

where

ecH = −(∇εc(x))
T
(

Ax + ωT
mσm

(
z̄∗))− 1

4
(∇εc(x))

TM∇εc(x)

denotes the residual error with z̄∗ = νT
m[xT, u∗T]T. Assume

that there exists a positive bound λecH such that ‖ecH‖ ≤
λecH . Based on the estimated weight vector, the approximate
Hamiltonian can be derived as

Ĥ
(
x, ω̂c

) = d2
M(x) + 1

4
ω̂T

c ∇σc(x)M(∇σc(x))
Tω̂c

+ ω̂T
c ∇σc(x)

(
Ax + ωT

mσm(z̃)
)

= d2
M(x) + ω̂T

c ∇σc(x)f (x)

− 1

4
ω̂T

c ∇σc(x)M(∇σc(x))
Tω̂c

� ec (26)

where z̃ = νT
m[xT, ûT]T. Let the weight estimation error of

the critic network be ω̃c = ωc − ω̂c. Combining (23), (25),
and (26), we can get

ec = −ω̃T
c ∇σc(x)

(
f (x) − 1

2
M(∇σc(x))

Tωc

)

− 1

4
ω̃T

c ∇σc(x)M(∇σc(x))
Tω̃c + ecH . (27)

In this paper, in order to train the critic network, we aim at
designing ω̂c to minimize the objective function

Ec = 1

2
eT

c ec.

The weights of the critic network are tuned based on the
standard steepest descent algorithm, that is

˙̂ωc = −αc

(
∂Ec

∂ω̂c

)
(28)

where αc > 0 is the learning rate of the critic network.

In the following, we derive the dynamics of the weight
estimation error ω̃c. According to (26), we find that

∂ec

∂ω̂c
= ∇σc(x)f (x) − 1

2
∇σc(x)M(∇σc(x))

Tω̂c

= ∇σc(x)( f (x) + g(x)û(x))

= ∇σc(x)
(

Ax + ωT
mσm(z̃)

)
. (29)

Denoting θ = ∇σc(x)(Ax + ωT
mσm(z̃)) and combin-

ing (27) and (29), the dynamics of the weight estimation error
is written as

˙̃ωc = αcec

(
∂ec

∂ω̂c

)

= −αcθ

{
ω̃T

c ∇σc(x)

(
f (x) − 1

2
M(∇σc(x))

Tωc

)

+ 1

4
ω̃T

c ∇σc(x)M(∇σc(x))
Tω̃c − ecH

}
(30)

which is useful to prove the stability of the weight estimation
error of the critic network.

D. Stability Analysis

In this section, the stability analysis of the closed-loop
system is established based on the Lyapunov approach.

Definition 1 [16], [29]: For nonlinear system ẋ = f (x(t)),
its solution is said to be uniformly ultimately bounded (UUB),
if there exists a compact set � ⊂ R

n such that for all x0 ∈ �,
there exist a bound � and a time T(�, x0) such that ‖x(t) −
xe‖ ≤ � for all t ≥ t0 + T , where xe is an equilibrium point.

Remark 5: The UUB stability emphasizes that after a tran-
sition period T , the system state remains within the ball of
radius � around xe.

Now, we derive the following theorem.
Theorem 3: Consider the system described by (19). Let the

weight tuning law of the critic network be updated by (28) and
the control law be computed by (24). Then, the closed-loop
system state x, the system identification error x̃(t), and the
weight estimation error ω̃c of the critic network are all UUB.

Proof: Choose the following Lyapunov function:

L(t) = L1(t) + L2(t) + L3(t)

where L1(t) = J∗(x(t)), L2(t) is defined as in Theorem 2, and

L3(t) = 1

2αc
ω̃T

c ω̃c.

The derivative of the Lyapunov function L(t) along the
trajectory of (19) is computed as

L̇(t) ≤ L̇1(t) − x̃Tx̃ + L̇3(t) (31)

where  is defined as in (18).
Combining (21) and (24), the first term in (31) can be

presented as

L̇1(t) = ωT
c ∇σc(x)f (x) − 1

2
ωT

c ∇σc(x)M(∇σc(x))
Tω̂c + ε1

= ωT
c ∇σc(x)f (x) − 1

2
ωT

c ∇σc(x)M(∇σc(x))
Tωc

+ 1

2
ωT

c ∇σc(x)M(∇σc(x))
Tω̃c + ε1
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where

ε1 = (∇εc(x))
T
(

Ax + ωT
mσm(z̃)

)
.

Based on (25), we can get

L̇1(t) = −d2
M(x) − 1

4
ωT

c ∇σc(x)M(∇σc(x))
Tωc

+ 1

2
ωT

c ∇σc(x)M(∇σc(x))
Tω̃c + ε1 + ecH

≤ −d2
M(x) + 1

4
‖ω̃c‖2 + 1

4

(
λ1m + λ2

1M

)
λ2

ωc

+ ε1 + ecH (32)

where λ1m > 0 and λ1M > 0 denote the lower and upper
bounds of the norm of matrix ∇σc(x)M(∇σc(x))T, respec-
tively, and λωc > 0 represents the upper bound of ‖ωc‖.

Combining (24) and the definition of θ , we have

θ = ∇σc(x)D + 1

2
∇σc(x)M(∇σc(x))

Tω̃c (33)

where

D = f (x) − 1

2
M(∇σc(x))

Tωc.

Combining (30) and (33), the last term in (31) can be
rewritten as

L̇3(t) = 1

αc
ω̃T

c
˙̃ωc

= −
(

ω̃T
c ∇σc(x)D + 1

2
ω̃T

c ∇σc(x)M(∇σc(x))
Tω̃c

)

×
(

ω̃T
c ∇σc(x)D

+ 1

4
ω̃T

c ∇σc(x)M(∇σc(x))
Tω̃c − ecH

)
.

By using the inequalities

ab = 1

2

(

−
(

φ+a − b

φ+

)2

+ φ2+a2 + b2

φ2+

)

≤ 1

2

(

φ2+a2 + b2

φ2+

)

−ab = −1

2

((
φ−a + b

φ−

)2

− φ2−a2 − b2

φ2−

)

≤ 1

2

(

φ2−a2 + b2

φ2−

)

where φ+ and φ− are nonzero constants, we can find that L̇3(t)
can be rewritten as

L̇3(t) ≤ − 1

16

(
ω̃T

c ∇σc(x)M(∇σc(x))
Tω̃c

)2

+ 4
(
ω̃T

c ∇σc(x)D
)2 + 33

8
e2

cH

≤ − 1

16
λ2

1m‖ω̃c‖4 + 4λ2∇σc
λ2

D‖ω̃c‖2 + 33

8
e2

cH (34)

where λ∇σc > 0 denotes the upper bound of ‖∇σc(x)‖ and
λD > 0 represents the upper bound of ‖D‖.

Assume that we can determine a quadratic bound of d(x),
i.e., dM(x) = ρ0‖x‖ with a positive constant ρ0. Then, based
on (31), (32), and (34), we obtain

L̇(t) ≤ −d2
M(x) − x̃Tx̃ − 1

16
λ2

1m‖ω̃c‖4

+ 1 + 16λ2∇σc
λ2

D

4
‖ω̃c‖2 + 33

8
e2

cH

+ 1

4

(
λ1m + λ2

1M

)
λ2

ωc
+ ε1 + ecH

≤ −ρ2
0‖x‖2 − λmin()‖x̃‖2

− λ2
1m

16

⎛

⎝‖ω̃c‖2 −
2
(

1 + 16λ2∇σc
λ2

D

)

λ2
1m

⎞

⎠

2

+ ζ

where

ζ = 1

4

(
λ1m + λ2

1M

)
λ2

ωc
+ λε1 + λecH

+ 33

8
λ2

ecH
+
(

1 + 16λ2∇σc
λ2

D

)2

4λ2
1m

λε1 > 0 denotes the upper bound of ‖ε1‖, and λmin() > 0
stands for the minimum eigenvalue of the positive definite
matrix .

Given the following inequality:

‖x‖ >

√
ζ

ρ2
0

or

‖x̃‖ >

√
ζ

λmin()

or

‖ω̃c‖ >

√√√√√
√

16ζ

λ2
1m

+
2
(

1 + 16λ2∇σc
λ2

D

)

λ2
1m

holds, then L̇(t) < 0. Therefore, using the standard Lyapunov
extension theorem, we can derive that the closed-loop system
state x, the system identification error x̃(t), and the weight
estimation error ω̃c of the critic network are all UUB. This
completes the proof.

Remark 6: Currently, the selection of activation function of
the critic network is often a natural choice guided by engi-
neering experience and intuition (i.e., it is more of an art than
science) [12], [36], [49]. In addition, the initial admissible con-
trol law is necessary to perform the model-free policy iteration
algorithm, keeping the same characteristic as model-based pol-
icy iteration algorithm used in [6], [12], and [15]. Though it
is difficult to acquire in some cases, it can be chosen in light
of experience and intuition. These ways of choosing the ini-
tial parameters are reasonable under the framework of ADP
method.

Remark 7: During this section, we can develop an approxi-
mate optimal control law of nominal system with unknown
dynamics under the definition of a new cost function.
According to Theorem 1, by choosing a suitable feedback
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gain π , we can establish the robust optimal control strategy
of the original nonlinear system with unknown dynamics and
uncertainties.

V. SIMULATION

Two examples are provided in this section to demonstrate
the effectiveness of the robust optimal control strategy.

Example 1: Consider the continuous-time nonlinear system
given as follows:

ẋ =
[ −0.5x1 + x2

(
1 + 0.5x2

2

)

−0.8(x1 + x2) + 0.5x2
(
1 − 0.3x2

2

)
]

+
[

0
−0.5

](
ū + d̄(x)

)
(35)

where x = [x1, x2]T ∈ R
2 and ū ∈ R are the state and con-

trol variables, respectively. Note that d̄(x) = δ1x2 cos(δ2x1 +
δ3x2) denotes the dynamics uncertainty of the controlled
plant, where δ1, δ2, and δ3 are unknown parameters with
δ1 ∈ [−1, 1], δ2 ∈ [−5, 5], and δ3 ∈ [−3, 3]. We set
R = I and choose dM(x) = ‖x‖ as the bound of the
term d(x).

According to the aforementioned results, for the pur-
pose of obtaining the model-free optimal control of nominal
system

ẋ =
[ −0.5x1 + x2

(
1 + 0.5x2

2

)

−0.8(x1 + x2) + 0.5x2
(
1 − 0.3x2

2

)
]

+
[

0
−0.5

]
u

with cost function defined as

J(x0) =
∫ ∞

0

{
‖x(τ )‖2 + uT(x(τ ))Ru(x(τ ))

}
dτ

we should construct a neural network based on the idea
of ADP. Here, the critic network is built in the form of

Ĵ(x) = ω̂c1x2
1 + ω̂c2x1x2 + ω̂c3x2

2 + ω̂c4x4
1

+ ω̂c5x3
1x2 + ω̂c6x2

1x2
2 + ω̂c7x1x3

2 + ω̂c8x4
2.

We first choose a three-layer feedforward neural network as
an identifier with structure 3–8–2. During the system identi-
fication process, the constant weight νm between input layer
and hidden layer is chosen randomly within [−0.5, 0.5], and
the initial weight ωm is initialized to zero. We train the
neural network identifier by using the update law (15) for
100 s with the learning matrix �m = 0.01I. Via simula-
tion, we find that the neural network identifier can learn the
unknown nonlinear system successfully. Notice that the iden-
tification errors are shown in Fig. 1. Then, we finish the
training process of the neural network identifier and fix its
weights.

Then, the weights of critic network are initialized in [0, 1]
to make the initial control law of policy iteration algorithm
admissible. A probing noise is also brought in to satisfy the
persistency of excitation condition. Let the learning rate of
critic network be αc = 0.8 and the initial state of controlled
plant be x0 = [0.5,−0.5]T. After the simulation process, we
can observe that the convergence of the weights occurs after
2500 s. Then, the probing signal is turned off. From simulation

Fig. 1. Identification error (xe1 and xe2 represent x̃1 and x̃2, respectively).

Fig. 2. Convergence of the weight vector of critic network (ωaci represents
ω̂ci, i = 1, 2, . . . , 8).

results, we can observe that the weights of critic network
converge to

[0.8963, 0.1167, 1.1244, 0.1078,

− 0.2189, 0.3428,−0.1820, 0.1386]T

which is displayed in Fig. 2.
Next, scalar parameters in three different cases are chosen

to evaluate the robust control performance. Under the action
of the robust control strategy, the state trajectories of uncer-
tain system (35) during the first 20 s in three cases are shown
in Fig. 3. In light of Theorem 1, the robust control strategy also
achieves optimality with a cost function defined in (10). These
simulation results verify the effectiveness of the developed
control approach.

Example 2: Consider the following continuous-time nonlin-
ear system:

ẋ =
⎡

⎣
−x1 + x2

0.1x1 − x2 − x1x3
x1x2 − x3

⎤

⎦+
⎡

⎣
0
1
0

⎤

⎦(ū + d̄(x)
)

(36)
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Fig. 3. State trajectories under different system uncertainties. Case 1:
δ1 = 0.8, δ2 = −5, and δ3 = 3. Case 2: δ1 = −1, δ2 = 4, and δ3 = −2.
Case 3: δ1 = 0.5, δ2 = 0, and δ3 = 0.

Fig. 4. Identification error (xe1, xe2, and xe3 represent x̃1, x̃2, and x̃3,
respectively).

where x = [x1, x2, x3]T, ū ∈ R, and d̄(x) = δ1x1 sin(δ2x2 +
δ3x3

3 + δ4) with δ1 ∈ [−1, 1], δ2 ∈ [−3, 3], δ3 ∈ [−1, 1], and
δ4 ∈ [−5, 5].

For nominal system

ẋ =
⎡

⎣
−x1 + x2

0.1x1 − x2 − x1x3
x1x2 − x3

⎤

⎦+
⎡

⎣
0
1
0

⎤

⎦u

with a cost function defined the same as the one of Example 1,
we employ the data-based adaptive critic learning approach
developed in this paper to attain the approximate optimal con-
trol law. In this example, the critic network is constructed in
the following form:

Ĵ(x) = ω̂c1x2
1 + ω̂c2x2

2 + ω̂c3x2
3 + ω̂c4x1x2 + ω̂c5x1x3

+ ω̂c6x2x3 + ω̂c7x4
1 + ω̂c8x4

2 + ω̂c9x4
3

+ ω̂c10x2
1x2

2 + ω̂c11x2
1x2

3 + ω̂c12x2
2x2

3

+ ω̂c13x2
1x2x3 + ω̂c14x1x2

2x3 + ω̂c15x1x2x2
3

+ ω̂c16x3
1x2 + ω̂c17x3

1x3 + ω̂c18x1x3
2

+ ω̂c19x3
2x3 + ω̂c20x1x3

3 + ω̂c21x2x3
3.

Fig. 5. Convergence of the weight vector of critic network: part 1
(ωaci represents ω̂ci, i = 1, 2, . . . , 8).

Fig. 6. Convergence of the weight vector of critic network: part 2
(ωaci represents ω̂ci, i = 9, 10, . . . , 16).

We also choose a three-layer feedforward neural network
identifier with structure 4–8–3. Other parameters are chosen
the same as Example 1. Via simulation, we find that the neural
network identifier can learn the unknown nonlinear system
successfully. The identification error is shown in Fig. 4. Then,
we finish training the neural network and keep the weight
vectors unchanged.

Here, let the initial state vector of the controlled system
be x0 = [1,−1, 0.5]T. During the training process of critic
network, let the learning rate of the critic network be αc = 1.2.
Similar to above, an exploration noise is added to satisfy the
persistency of excitation condition. After a sufficient learning
session, the weights of the critic network converge to

[0.4956, 0.5286, 0.8069, 0.4772, 0.2022, 0.3405, 0.3203,

0.0324, 0.4995, 0.4599, 0.7706, 0.5561, 0.4960, 0.8429,

0.5517, 0.3627, 0.7859, 0.4700, 0.7239, 0.5832, 0.6233]T

as depicted in Figs. 5–7.
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Fig. 7. Convergence of the weight vector of critic network: part 3
(ωaci represents ω̂ci, i = 17, 18, . . . , 21).

Fig. 8. System state.

At last, the scalar parameters δ1 = −1, δ2 = 3, δ3 = −1,
and δ4 = 5 are chosen for evaluating the robust optimal control
performance. The system trajectory is depicted in Fig. 8 when
the obtained control law is applied to the uncertain system (36)
for 20 s. These simulation results authenticate the validity of
the robust optimal control scheme developed in this paper.

VI. CONCLUSION

A novel adaptive critic learning approach for robust optimal
control of a class of uncertain nonlinear systems is developed
in this paper, under the framework of data-based ADP. It is
proved that the robust controller of the original uncertain sys-
tem achieves optimality under a specified cost function. Then,
the robust optimal control problem is transformed into an opti-
mal control problem. The optimal controller of the nominal
system is established without using the system dynamics. The
simulation study verifies the good control performance.

As indicated in Remark 6, the developed algorithm of this
paper relies on an initial admissible control, which provides a

direction for improvement. Although value iteration and policy
iteration are two basic algorithms of reinforcement learning,
Nodland et al. [29] designed an optimal adaptive controller for
tracking a trajectory of an unmanned underactuated helicopter
forward-in-time without using them. Hence, how to reduce
the requirement of the initial admissible control without using
value and policy iterations is of great importance. This should
be considered in the future research when applying the ADP
approach to the framework of nonlinear robust optimal control
under uncertain environment. In addition, since the developed
approach is only suitable for a class of affine nonlinear sys-
tems with matched uncertainties, our future work also contains
extending the obtained results to robust optimal control of
nonaffine nonlinear systems with unmatched uncertainties.

REFERENCES

[1] S. Hussain, S. Q. Xie, and P. K. Jamwal, “Robust nonlinear control of
an intrinsically compliant robotic gait tranning orthosis,” IEEE Trans.
Syst., Man, Cybern. Syst., vol. 43, no. 3, pp. 655–665, May 2013.

[2] H. Gao, X. Meng, and T. Chen, “A new design of robust H2 filters
for uncertain systems,” Syst. Control Lett., vol. 57, no. 7, pp. 585–593,
Jul. 2008.

[3] Z. Wang and F. T. S. Chan, “A robust replenishment and production
control policy for a single-stage production/inventory system with inven-
tory inaccuracy,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 45, no. 2,
pp. 326–337, Feb. 2015.

[4] F. Lin, R. D. Brandt, and J. Sun, “Robust control of nonlinear sys-
tems: Compensating for uncertainty,” Int. J. Control, vol. 56, no. 6,
pp. 1453–1459, 1992.

[5] F. Lin and R. D. Brandt, “An optimal control approach to robust con-
trol of robot manipulators,” IEEE Trans. Robot. Autom., vol. 14, no. 1,
pp. 69–77, Feb. 1998.

[6] D. Wang, D. Liu, and H. Li, “Policy iteration algorithm for online design
of robust control for a class of continuous-time nonlinear systems,” IEEE
Trans. Autom. Sci. Eng., vol. 11, no. 2, pp. 627–632, Apr. 2014.

[7] P. J. Werbos, “Approximate dynamic programming for real-time control
and neural modeling,” in Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches, D. A. White and D. A. Sofge, Eds. New York,
NY, USA: Van Nostrand Reinhold, 1992, ch. 13.

[8] F. L. Lewis and D. Liu, Reinforcement Learning and Approximate
Dynamic Programming for Feedback Control. Hoboken, NJ, USA:
Wiley, 2013.

[9] H. Zhang, D. Liu, Y. Luo, and D. Wang, Adaptive Dynamic
Programming for Control: Algorithms and Stability. London, U.K.:
Springer, 2013.

[10] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits Syst. Mag.,
vol. 9, no. 3, pp. 32–50, Sep. 2009.

[11] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time
nonlinear HJB solution using approximate dynamic programming:
Convergence proof,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 38, no. 4, pp. 943–949, Aug. 2008.

[12] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for non-
linear systems with saturating actuators using a neural network HJB
approach,” Automatica, vol. 41, no. 5, pp. 779–791, May 2005.

[13] K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm to
solve the continuous-time infinite horizon optimal control problem,”
Automatica, vol. 46, no. 5, pp. 878–888, May 2010.

[14] S. Bhasin et al., “A novel actor-critic-identifier architecture for approx-
imate optimal control of uncertain nonlinear systems,” Automatica,
vol. 49, no. 1, pp. 82–92, Jan. 2013.

[15] H. Modares, M.-B. Naghibi-Sistani, and F. L. Lewis, “A pol-
icy iteration approach to online optimal control of continuous-time
constrained-input systems,” ISA Trans., vol. 52, no. 5, pp. 611–621,
Sep. 2013.

[16] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Adaptive optimal
control of unknown constrained-input systems using policy iteration and
neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 10,
pp. 1513–1525, Oct. 2013.



1554 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 46, NO. 11, NOVEMBER 2016

[17] D. P. Bertsekas, M. L. Homer, D. A. Logan, S. D. Patek, and
N. R. Sandell, “Missile defense and interceptor allocation by neuro-
dynamic programming,” IEEE Trans. Syst., Man, Cybern. A, Syst.,
Humans, vol. 30, no. 1, pp. 42–51, Jan. 2000.

[18] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE
Trans. Neural Netw., vol. 8, no. 5, pp. 997–1007, Sep. 1997.

[19] J. Fu, H. He, and X. Zhou, “Adaptive learning and control for MIMO
system based on adaptive dynamic programming,” IEEE Trans. Neural
Netw., vol. 22, no. 7, pp. 1133–1148, Jul. 2011.

[20] Z. Ni, H. He, and J. Wen, “Adaptive learning in tracking control based
on the dual critic network design,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 24, no. 6, pp. 913–928, Jun. 2013.

[21] X. Xu, Z. Hou, C. Lian, and H. He, “Online learning control using
adaptive critic designs with sparse kernel machines,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 24, no. 5, pp. 762–775, May 2013.

[22] Y. Luo, Q. Sun, H. Zhang, and L. Cui, “Adaptive critic design-based
robust neural network control for nonlinear distributed parameter sys-
tems with unknown dynamics,” Neurocomputing, vol. 148, pp. 200–208,
Jan. 2015.

[23] D. Wang and D. Liu, “Neuro-optimal control for a class of unknown
nonlinear dynamic systems using SN-DHP technique,” Neurocomputing,
vol. 121, pp. 218–225, Dec. 2013.

[24] M. Palanisamy, H. Modares, F. L. Lewis, and M. Aurangzeb,
“Continuous-time Q-learning for infinite-horizon discounted cost lin-
ear quadratic regulator problems,” IEEE Trans. Cybern., vol. 45, no. 2,
pp. 165–176, Feb. 2015.

[25] D. Wang, D. Liu, Q. Wei, D. Zhao, and N. Jin, “Optimal control of
unknown nonaffine nonlinear discrete-time systems based on adaptive
dynamic programming,” Automatica, vol. 48, no. 8, pp. 1825–1832,
Aug. 2012.

[26] D. Liu, D. Wang, and H. Li, “Decentralized stabilization for a class
of continuous-time nonlinear interconnected systems using online learn-
ing optimal control approach,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 2, pp. 418–428, Feb. 2014.

[27] D. Liu, H. Li, and D. Wang, “Online synchronous approximate optimal
learning algorithm for multi-player non-zero-sum games with unknown
dynamics,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 44, no. 8,
pp. 1015–1027, Aug. 2014.

[28] T. Dierks and S. Jagannathan, “Online optimal control of affine nonlinear
discrete-time systems with unknown internal dynamics by using time-
based policy update,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23,
no. 7, pp. 1118–1129, Jul. 2012.

[29] D. Nodland, H. Zargarzadeh, and S. Jagannathan, “Neural network-
based optimal adaptive output feedback control of a helicopter UAV,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 7, pp. 1061–1073,
Jul. 2013.

[30] A. Heydari and S. N. Balakrishnan, “Finite-horizon control-constrained
nonlinear optimal control using single network adaptive critics,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 24, no. 1, pp. 145–157, Jan. 2013.

[31] J. Liang, G. K. Venayagamoorthy, and R. G. Harley, “Wide-area
measurement based dynamic stochastic optimal power flow control
for smart grids with high variability and uncertainty,” IEEE Trans.
Smart Grid, vol. 3, no. 1, pp. 59–69, Mar. 2012.

[32] B. Luo, H. N. Wu, T. Huang, and D. Liu, “Data-based approximate pol-
icy iteration for affine nonlinear continuous-time optimal control design,”
Automatica, vol. 50, no. 12, pp. 3281–3290, Dec. 2014.

[33] Z.-P. Jiang and Y. Jiang, “Robust adaptive dynamic programming for
linear and nonlinear systems: An overview,” Eur. J. Control, vol. 19,
no. 5, pp. 417–425, Sep. 2013.

[34] Y. Jiang and Z.-P. Jiang, “Computational adaptive optimal control for
continuous-time linear systems with completely unknown dynamics,”
Automatica, vol. 48, no. 10, pp. 2699–2704, Oct. 2012.

[35] Y. Jiang and Z.-P. Jiang, “Robust adaptive dynamic programming and
feedback stabilization of nonlinear systems,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 25, no. 5, pp. 882–893, May 2014.

[36] D. Liu, D. Wang, F.-Y. Wang, H. Li, and X. Yang, “Neural-network-
based online HJB solution for optimal robust guaranteed cost control
of continuous-time uncertain nonlinear systems,” IEEE Trans. Cybern.,
vol. 44, no. 12, pp. 2834–2847, Dec. 2014.

[37] D. Wang, D. Liu, H. Li, and H. Ma, “Neural-network-based robust opti-
mal control design for a class of uncertain nonlinear systems via adaptive
dynamic programming,” Inf. Sci., vol. 282, pp. 167–179, Oct. 2014.

[38] J. Na and G. Herrmann, “Online adaptive approximate optimal tracking
control with simplified dual approximation structure for continuoustime
unknown nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 4,
pp. 412–422, Oct. 2014.

[39] D. Liu, X. Yang, D. Wang, and Q. Wei, “Reinforcement-learning-based
robust controller design for continuous-time uncertain nonlinear sys-
tems subject to input constraints,” IEEE Trans. Cybern., vol. 45, no. 7,
pp. 1372–1385, Jul. 2015.

[40] D. Liu, H. Li, and D. Wang, “Error bounds of adaptive dynamic
programming algorithms for solving undiscounted optimal control
problems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 6,
pp. 1323–1334, Jun. 2015.

[41] X. Yang, D. Liu, and Y. Huang, “Neural-network-based online optimal
control for uncertain nonlinear continuous-time systems with control
constraints,” IET Control Theory Appl., vol. 7, no. 17, pp. 2037–2047,
Nov. 2013.

[42] B. Luo, H.-N. Wu, and H.-X. Li, “Adaptive optimal control of highly
dissipative nonlinear spatially distributed processes with neuro-dynamic
programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 4,
pp. 684–696, Apr. 2015.

[43] D. Wang, D. Liu, D. Zhao, Y. Huang, and D. Zhang, “A neural-
network-based iterative GDHP approach for solving a class of nonlinear
optimal control problems with control constraints,” Neural Comput.
Appl., vol. 22, no. 2, pp. 219–227, Feb. 2013.

[44] R. Song, W. Xiao, and C. Sun, “A new self-learning optimal con-
trol laws for a class of discrete-time nonlinear systems based on ESN
architecture,” Sci. China Inf. Sci., vol. 57, no. 6, pp. 1–10, Jun. 2014.

[45] X. Zhong, H. He, H. Zhang, and Z. Wang, “Optimal control for unknown
discrete-time nonlinear Markov jump systems using adaptive dynamic
programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 12,
pp. 2141–2155, Dec. 2014.

[46] D. Wang, D. Liu, H. Li, H. Ma, and C. Li, “A neural-network-
based online optimal control approach for nonlinear robust decentralized
stabilization,” Soft Comput., vol. 20, no. 2, pp. 707–716, Feb. 2016.

[47] Z. Ni, H. He, X. Zhong, and D. V. Prokhorov, “Model-free dual heuristic
dynamic programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26,
no. 8, pp. 1834–1839, Aug. 2015.

[48] D. Liu and Q. Wei, “Finite-approximation-error-based optimal control
approach for discrete-time nonlinear systems,” IEEE Trans. Cybern.,
vol. 43, no. 2, pp. 779–789, Apr. 2013.

[49] X. Yang, D. Liu, and D. Wang, “Reinforcement learning for adaptive
optimal control of unknown continuous-time nonlinear systems with
input constraints,” Int. J. Control, vol. 87, no. 3, pp. 553–566, 2014.

[50] H. Zhang, L. Cui, X. Zhang, and Y. Luo, “Data-driven robust approx-
imate optimal tracking control for unknown general nonlinear systems
using adaptive dynamic programming method,” IEEE Trans. Neural
Netw., vol. 22, no. 12, pp. 2226–2236, Dec. 2011.

Ding Wang (M’15) received the B.S. degree in
mathematics from the Zhengzhou University of
Light Industry, Zhengzhou, China, in 2007, the
M.S. degree in operations research and cybernet-
ics from Northeastern University, Shenyang, China,
in 2009, and the Ph.D. degree in control the-
ory and control engineering from the Institute of
Automation, Chinese Academy of Sciences, Beijing,
China, in 2012.

He is currently an Associate Professor with the
State Key Laboratory of Management and Control

for Complex Systems, Institute of Automation, Chinese Academy of Sciences.
He has published over 50 journal and conference papers, and co-authored two
monographs. His current research interests include neural networks, adaptive
and learning systems, and complex systems and intelligent control.

Dr. Wang was a recipient of the Excellent Doctoral Dissertation Award of
the Chinese Academy of Sciences in 2013, and the nomination of the Excellent
Doctoral Dissertation Award of the Chinese Association of Automation (CAA)
in 2014. He was the Secretariat of the 2014 IEEE World Congress on
Computational Intelligence and the Registration Chair of the 5th International
Conference on Information Science and Technology and the 4th International
Conference on Intelligent Control and Information Processing. He served as
the Program Committee Member of several international conferences. He is
the Finance Chair of the 12th World Congress on Intelligent Control and
Automation. He has been an Associate Editor of Neurocomputing since 2015.
He is a member of Asia-Pacific Neural Network Society and CAA.



WANG et al.: DATA-BASED ADAPTIVE CRITIC DESIGNS FOR NONLINEAR ROBUST OPTIMAL CONTROL WITH UNCERTAIN DYNAMICS 1555

Derong Liu (S’91–M’94–SM’96–F’05) received
the Ph.D. degree in electrical engineering from the
University of Notre Dame, Notre Dame, IN, USA,
in 1994.

He was a Staff Fellow with General Motors
Research and Development Center, Detroit, MI,
USA, from 1993 to 1995. He was an Assistant
Professor with the Department of Electrical
and Computer Engineering, Stevens Institute of
Technology, Hoboken, NJ, USA, from 1995 to 1999.
He joined the University of Illinois at Chicago,

Chicago, IL, USA, in 1999, and became a Full Professor of Electrical and
Computer Engineering and Computer Science in 2006. He served as the
Associate Director of the State Key Laboratory of Management and Control
for Complex Systems, Institute of Automation, Beijing, China, from 2010
to 2015. He is currently a Full Professor with the School of Automation
and Electrical Engineering, University of Science and Technology Beijing,
Beijing. He has published 15 books (six research monographs and nine
edited volumes).

Dr. Liu was a recipient of the Faculty Early Career Development Award
from the National Science Foundation in 1999, the University Scholar Award
from the University of Illinois from 2006 to 2009, the Overseas Outstanding
Young Scholar Award from the National Natural Science Foundation of
China in 2008, and the Outstanding Achievement Award from Asia Pacific
Neural Network Assembly in 2014. He was selected for the “100 Talents
Program” by the Chinese Academy of Sciences in 2008. He is an elected
AdCom Member of the IEEE Computational Intelligence Society and he is
the Editor-in-Chief of the IEEE TRANSACTIONS ON NEURAL NETWORKS

AND LEARNING SYSTEMS. He was the General Chair of the 2014 IEEE
World Congress on Computational Intelligence and is the General Chair of
the 2016 World Congress on Intelligent Control and Automation. He is a
Fellow of the International Neural Network Society.

Qichao Zhang received the B.S. degree in automa-
tion from Northeastern Electric Power University,
Jilin, China, in 2012, and the M.S. degree in con-
trol theory and control engineering from Northeast
University, Shenyang, China, in 2014. He is cur-
rently pursuing the Ph.D. degree in control the-
ory and control engineering with the State Key
Laboratory of Management and Control for Complex
Systems, Institute of Automation, Chinese Academy
of Sciences, Beijing, China.

His current research interests include reinforce-
ment learning, game theory, and multiagent systems.

Dongbin Zhao (M’06–SM’10) received the Ph.D.
degree in materials processing engineering from
the Harbin Institute of Technology, Harbin, China,
in 2000.

He was a Post-Doctoral Fellow with Tsinghua
University, Beijing, China, from 2000 to 2002. He
has been an Associate Professor with the Institute of
Automation, Chinese Academy of Sciences, Beijing,
China, since 2002, where he has been a Professor
with the State Key Laboratory of Management and
Control for Complex Systems since 2012. He has

published four books, and published over 50 international journal papers. His
current research interests include computational intelligence, adaptive dynamic
programming, robotics, intelligent transportation systems, and smart grids.

Dr. Zhao has been an Associate Editor of the IEEE TRANSACTIONS ON

NEURAL NETWORKS AND LEARNING SYSTEMS since 2012 and the IEEE
COMPUTATION INTELLIGENCE MAGAZINE since 2014. Since 2015, he has
been the Chair of Adaptive Dynamic Programming Technical Committee,
Multimedia Subcommittee, and Travel Grant Subcommittee of the IEEE
Computational Intelligence Society. He was a Guest Editor of several interna-
tional journals. He is involved in organizing several international conferences.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


