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Abstract Gesture recognition has been suffering from

long-term dependencies and complex variations in both

spatial and temporal dimensions. Many traditional methods

use hand cropping and sliding window scheme in the

spatial and temporal space, respectively. In this paper, we

propose a sequentially supervised long short-term memory

architecture, which allows using pose information to guide

the learning process of gesture recognition using variable

length inputs. Technically, we add supervision at each

frame using human joint positions. Our proposed methods

can solve gesture recognition and pose estimation problems

simultaneously using only RGB videos without hand

cropping. Experimental results on two benchmark datasets

demonstrate the effectiveness of the proposed framework

compared with the state-of-the-art methods.

Keywords Gesture recognition � Pose estimation �
LSTM � Sequential classification

Introduction

Gesture recognition has drawn increasing attention within

the computer vision community. Developments have been

driven by many applications such as human–computer

interaction (HCI) [1, 2], robotics [3], sign language trans-

lation [4] as well as security and surveillance. However,

effective gesture recognition is still a challenging task due

to several factors such as different lighting conditions,

cluttered backgrounds, motion blur, the small size of

human hands in images, as well as different spatial and

temporal scales. Traditional hand-designed features are

inefficient to cope with such variations. For this reason,

many traditional methods use a three stages recognition

architecture [5–7] i.e., hand detection, hand tracking and

recognition.

Deep and recurrent neural networks (DNNs and RNNs)

are powerful learning models that achieve tremendous

improvements on tasks such as image classification [8],

object detection [9–11] and segmentation [12] as well as in

the fields of natural language processing (NLP) and speech

recognition [13]. Convolutional neural networks

(CNNs) [14] have won numerous contests such as

ILSVRC [8]. Recently, several works have adapted CNNs

to the field of gesture recognition. Neverova et al. [15]

propose a multi-scale and multi-modal deep architecture

for gesture localization and recognition. They use fixed

number of frames with different step sizes to solve dif-

ferent temporal scales. Pigou et al. [16] propose a MultiNet

architecture based on CNN. They also use fixed frames and

build separate CNN nets using full body images and

cropped hand images. These methods outperform tradi-

tional gesture recognition methods. However, the results

are not so satisfactory compared with the tremendous
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improvements achieved by other tasks like image classifi-

cation. There are several problems to think of:

1. How to discover a feasible strategy to alleviate the

underfitting and overfitting problems [17]. While ges-

tures have complex dependencies and dynamics in

both spatial space and temporal space, deep neural

networks tend to be much bigger for the task of gesture

recognition than tasks like image recognition. What is

more, gesture datasets are relatively smaller given

that gesture labels are much harder to obtain than

image labels. All these make the network hard to

capture representative information which has good

generalization.

2. How to dispose of the dependency of hand positions In

order to get high classification accuracy, most current

deep architectures for gesture recognition use image

patches around human hands. Others may use 3D

skeleton data. While in most real life applications, the

human part positions are hard to obtain.

3. How to distinguish temporal dimension from spatial

dimensions Most current deep architectures treat

temporal dimension as another dimension of spatial

space, which may destroy the characteristics of tem-

poral space. Recurrent neural networks (RNNs) seem

to be good architectures for temporal space; however,

RNNs are mainly used for sequence labeling tasks.

Using RNNs for classification of variable length

sequences is still an open problem.

In this paper, we propose a Sequentially Supervised

Long Short-Term Memory (SS-LSTM) architecture for

gesture classification, which can partially solve the above-

mentioned problems, i.e., the problem of underfitting/

overfitting and the dependency of hand positions as well as

treating temporal dimension separately. Instead of assign-

ing class label to the output layer of RNNs, our SS-LSTM

use auxiliary knowledge at every time step as sequential

supervision. Our main inspiration is: pose estimation and

gesture recognition are naturally correlated with each

other. Specifically, gestures are different combinations of

poses along temporal dimension. We use pose information

as supervision to guide the learning process of gesture

recognition. Our contributions lie in the following aspects:

1. We propose a Sequentially Supervised Long Short-

Term Memory (SS-LSTM) model for classification of

variable length inputs, which allows adding auxiliary

knowledge to the learning process to alleviate under-

fitting and overfitting problems.

2. Our proposed methods can solve both pose estimation

task and gesture recognition task simultaneously based

on RGB data only, without any hand position

acknowledgement.

Related Work

Traditional approaches for gesture recognition use hand-

designed descriptors followed by classification. Works are

mainly focused on the designing of local spatio-temporal

descriptors and the study of different classification models.

Recently many spatio-temporal descriptors are proposed,

like the Harris3D [18], HOG3D [19] and Cuboids [20].

Wang et al. [21] evaluate different local descriptors at the

same experimental settings. The authors of [22] extract

HOG, HOF, MBHx, MBHy features along dense trajecto-

ries of gesture videos for classification and get state-of-the-

art performance. One of the drawbacks of these hand-de-

signed descriptors is the need of domain expertise. What is

more, hand-designed descriptors are sensitive to variations,

which makes it necessary to firstly detect body parts using

object detection algorithms like [23, 24].

Classification models for gesture recognition are mainly

of two kinds: sequential and non-sequential. Sequential

approaches are mainly focused on how to model temporal

dependencies of gestures. The work [25] combines the

hidden Markov model (HMM) and (DTW) for gesture

classification. In the work of [26], Wu and Cheng propose

a Bayesian Co-Boosting method with Hidden Markov

Mode for gesture recognition. Wu and Shao [27] propose

to combine Deep Neural Networks with Hidden Markov

Model to solve gesture segmentation and recognition

problems simultaneously. Both these methods use multi-

modal data for gesture recognition, especially depth data

and 3D skeleton data of human body. Thanks to devices

such as Kinect, these kinds of data are much easier to

obtain than ever before. However, in most of our daily life,

we have access to RGB data only, which hinders the usage

of these kinds of methods.

Early deep learning methods train separate models for

pose estimation [28, 29] and gesture recognition. Also

there are approaches that use pose information to enhance

the performance of the gesture classifier. These methods

are mainly of two kinds. The first kind is to use articulated

poses as features directly for classification [27]. The sec-

ond case is to extract body part information given articu-

lated poses. In the work of [15, 30], the authors use the

cropped hand images as one modality to train a separate

model to boost the recognition accuracy. All these methods

require accurate tracking of body parts at testing time,

which is a challenging task in its own right.
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In contrast to all works described in this section, our

approach combines human pose estimation and gesture

recognition and learns spatial and temporal features

directly from RGB videos only without hand cropping.

Proposed Method

In this section, we will first present our proposed SS-LSTM

architecture followed by three different settings of how to

use SS-LSTM for gesture recognition. To deal with dif-

ferent spatial variations, we use CNN network to extract

spatial features of each frame. Then the CNN features are

summed over by SS-LSTM network for temporal feature

learning. The SS-LSTM network allows us to use variable

length sequences as input.

Sequentially Supervised Long Short-Term Memory

Traditional RNNs can map input sequence x ¼ ðx1; . . .; xtÞ
to the hidden sequence h ¼ ðh1; . . .; htÞ and then the output

sequence y ¼ ðy1; . . .; ytÞ using the following equations:

ht ¼ HðWxhxt þWhhht�1 þ bhÞ ð1Þ
yt ¼ Whyht þ by ð2Þ

Here the W terms denote weight matrices and b terms

denote bias vectors. RNNs can be difficult to train using

back-propagation algorithm, when there is long-term

dependencies. This is often referred to as vanishing and

exploding gradients problem [31].

These issues motivated the LSTM model which intro-

duces a memory cell structure (Fig. 1, reproduced

from [13]). A memory cell has a linear self-loop whose

weights is 1.0 to force the error flow to be constant. The

information exchanges between the memory cell and its

environment are controlled by three sigmoid gates: the

input gate it, forget gate ft and output gate ot. The carefully

designed memory cell allows the LSTM model to learn

long time intervals while maintaining short time lags. The

updates of the LSTM units for time step t given inputs

xt; ht�1 and ct�1 are as follows:

it ¼ rðWxixt þWhiht�1 þ biÞ ð3Þ
ft ¼ rðWxf xt þWhf ht�1 þ bf Þ ð4Þ

ot ¼ rðWxoxt þWhoht�1 þ boÞ ð5Þ
gt ¼ /ðWxcxt þWhcht � 1 þ bcÞ ð6Þ
ct ¼ ft � ct�1 þ it � gt ð7Þ
ht ¼ ot � /ðctÞ ð8Þ

Here the rðxÞ is the sigmoid non-linear function and /ðxÞ is

the hyperbolic tangent nonlinearity. The � denotes an

element-wise operator.

Recurrent neural networks, including LSTM, are suc-

cessfully used in time series prediction problems, such as

machine translation, natural language process and music

composition. In all these tasks, the outputs of RNNs are

time series. But for classification, the output is a constant

class label. There are two commonly used strategies to

utilize RNNs for classification. We refer these two strate-

gies as Lastly Supervised LSTM (LS-LSTM, Fig. 2a) and

Deeply Supervised LSTM(DS-LSTM, Fig. 2b). Here vt
indicates input vector at time step t and y indicates the class

label of current input sequence. The supervision of the LS-

LSTM method is at the final LSTM cell. The effect of the

supervision gets weaker for the earlier time steps. In order

to learn meaningful features, we need more training data

and more training iterations. On the other hand, the DS-

LSTM ‘‘pushes too hard’’ on the classifier. It demands the

classifier to assign the right class label without seeing the

whole sequence. This will introduce inaccurate supervising

information for the earlier feature learning stages of the

RNNs. For example, considering a toy example of two

class gesture classification task: Class-A, move right and

then go up (Fig. 3a), and Class-B, move right and then go

down (Fig. 3b). The earlier stages of these two classes are

almost the same and the only difference is in the later

stages. If we assign different labels for the similar earlier

stages of sequences from the two classes, the classifier will

learn the tiny difference of the details which is noise for

distinguish the two classes.

Our proposed SS-LSTM, on the other hand, can assign

‘‘right label’’ to every time step in the sequence (Fig. 2c).

Here the ‘‘right label’’ is not the class label, but the human

knowledge for the classification learning process. Consid-

ering the toy example again, we assign ‘‘moving right’’

label for the earlier stages of both classes, while assign

‘‘moving up’’ label for later stages of Class-A and ‘‘moving

down’’ label for later stages of Class-B. More specifically,Fig. 1 Long short-term memory cell
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for our gesture classification task, we choose the human

joint positions as the ‘‘right label’’.

Sequentially Supervised LSTM for Gesture

Recognition

Our proposed SS-LSTM for gesture recognition model

includes three different settings: (1) pose pre-trained fea-

ture learning for gesture recognition; (2) encoder–decoder

SS-LSTM for gesture recognition and (3) multi-task

learning for gesture recognition and pose estimation. The

whole architecture includes four blocks: the input block,

the CNN block, the LSTM block, and the output block (see

Fig. 4). The input block includes sequences of different

lengths. The CNN block is used to extract spatial appear-

ance features of each frame. Our SS-LSTM architecture

corresponds to the last two blocks, i.e., the LSTM block

and the output block. We utilize human joint positions as

the sequential supervision for our SS-LSTM. The differ-

ence between these three settings lies in the output blocks.

SS-LSTM-1: Pose Pre-trained Feature Learning

An intuitive approach to incorporate pose information for

gesture recognition is to use the pre-training and fine-tun-

ing scheme. The intuition behind this method is that ges-

tures are combinations of different poses, so we can

transfer knowledge learnt from pose estimation to gesture

recognition. Based on this view, the parameters learnt from

pose estimation task should be good initializations for the

task of gesture recognition.

We first train the network as a pose regression problem.

More precisely, given a sequence of frames, we pass it

through the CNN block and then the LSTM layers and

output the estimated locations of the human upper-body

joints at each time step. We employ the l2 loss function,

which penalizes the l2 distance between the pose predic-

tions and the ground truth. Note that we normalize the

locations of human joints to the range of [0, 1].

We denote (x, y, J) as a training sample, where y denotes

gesture label and J stands for the vector of normalized

coordinates of k joints in the image x. Given a training set

M = {(x, y, J)}, the training objective is to estimate the

network parameters by minimizing the loss function:

L ¼
XM

m¼1

XT

t¼1

k Ĵ
m

t � Jmt k2
2 ð9Þ

Once the pose regression network is learnt, we could

then use it either as an initialization or a fixed feature

extractor for the task of gesture recognition. In the later

case, we will remove the last fully connected layer as well

as the l2 loss layer, then treat the rest of the network as a

fixed feature extractor to obtain the last LSTM output at the

(a) (b) (c)

Fig. 2 LSTM classification model. a LS-LSTM, b DS-LSTM and c SS-LSTM

(a) (b)

Fig. 3 A toy example of gesture classification. a Class-A and

b Class-B
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last time step T. Here, we adopt the former approach, i.e.,

to fine-tune the gesture classifier with the learnt parameters.

There are several advantages of this setting. First, using

pose information to supervise the learning process can

achieve boosted recognition accuracy by avoiding under-

fitting and overfitting. Second, this method allows using

datasets which have only joint positions but not gesture

labels. Thanks to devices such as Kinect, this kind of

samples are much easier to obtain because there is no need

for tedious human labelling work.

SS-LSTM-2: Encoder–Decoder Feature Learning

In this section, we describe the encoder–decoder frame-

work to learn efficient representations for gesture recog-

nition. The LSTM encoder–decoder frameworks obtain

tremendous improvements in machine translation. The task

of machine translation is to map a sentence written in a

source language to a sentence of the target language. Our

SS-LSTM encoder–decoder method can be seen as a spe-

cial kind of machine translation from the view that, both

the frame flow and pose flow can be seen as a ‘‘language’’

describing the specific gesture.

The encoder LSTM takes in the input frames and gen-

erates the representation which is the output of the last

LSTM cell at time step T. The decoder LSTM, on the other

hand, takes the representation as input and outputs the

user’s joint positions of each frame. Note that the output of

the decoder LSTM is in reverse order of the input frames.

What is more, the decoder LSTM cells receive the last

generated output joint positions as input, i.e., the dotted

line shown in Fig. 5. The benefit is to make the learning

process much easier. In this way, we force the network to

remember the configurations of human body in each frame

while discarding information that is irrelevant to the task of

gesture classification such as the background and the dif-

ferent body sizes.

SS-LSTM-3: Multi-task Feature Learning

Gesture recognition and pose estimation are naturally

correlated with each other. Different gestures are the dif-

ferent combinations of poses in the temporal space. How-

ever, existing deep learning models either treat them

separately or combine them in a loose way. In this section,

we propose to train a single network for the two tasks

simultaneously. The network architecture is shown in

Fig. 6.

The loss function for the network is of two parts, the

Regression Loss Lr and the Classification Loss Lc.

Fig. 4 Our CNN-LSTM model
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Lr ¼
XM

m¼1

XTm

t¼1

k Ĵ
m

t � Jmt k2
2 ð10Þ

Lc ¼
XM

m¼1

� exp ðym½k�Þ
PK

k0¼1 exp ðym½k0�Þ
ð11Þ

L ¼ aLr þ bLc ð12Þ

Our proposed SS-LSTM model allows us to use pose

information at every time step as supervision. By incor-

porating ‘‘the right’’ supervision at every time step, as well

as the ultimate supervision at the last time step, the model

can learn relevant spatial–temporal features for the task of

gesture recognition. Note that although our model is cap-

able of learning two tasks simultaneously, our final purpose

is to enhance the classification ability. So the pose

regression task can also be seen as a regularization term for

the gesture classification task.

Experiments and Results

To evaluate the effectiveness of avoiding underfitting and

overfitting problems of our proposed SS-LSTM framework,

we conduct experiments on a relatively smaller dataset, i.e.,

the ChaAirGest dataset [32]. We also conduct experiments

on the Chalearn LAP2014 dataset [33], which is among the

largest public dataset for gesture recognition. Comparisons

between our methods and current state-of-the-art methods

demonstrate the effectiveness of our proposed methods.

Datasets

ChAirGest [32]

The ChAirGest dataset contains 1200 gesture instances

from 10 different gestures. The gestures are recorded in

two different lighting conditions by 10 different subjects.

The dataset is captured with a Kinect camera and 4 inertial

motion units (IMUs) attached to the right arm and the neck

of the subject. In our experiments we use only the RGB

data of the Kinect camera, which makes it more chal-

lenging than using IMU data and skeleton data. To avoid

seeing the same subject at both training and testing stages,

we randomly select 8 of the 10 subjects for training and the

other 2 subjects for testing.

LAP2014 [33]

The Chalearn LAP2014 dataset is composed of total 940

sequences (470 training, 230 validation, and 240 test

sequences). Specifically, there are total 13,856 instances of

Italian conversational gestures performed by different

Fig. 5 Pose encoder–decoder feature learning: output block

Fig. 6 Multi-task feature learning: output block
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people and recorded with a consumer RGB-D sensor. It

includes color, depth video, articulated pose streams, and

manually annotated gesture labels. The gestures are drawn

from 20 categories of Italian sign gestures. The lengths of

gestures range from 16 frames to 100 frames. This is one of

the largest public datasets for gesture recognition.

Implementation Details

Network Architecture

The spatial network is used to extract static appearance

features from each frame. In our implementation, we

choose the AlexNet [8] architecture. Note that we only

need the five convolutional layers and discard the fully

connection layers as well as the softmax layer. The tem-

poral network is composed of two LSTM layers, each has

1024 hidden units. For final classification, the last LSTM

unit (with time step T) of the last LSTM layer is connected

to a softmax layer.

Training

All gestures are resized to have a frame size of 256 � 256.

On training, we randomly crop input videos into the size of

227 � 227. For the dataset of LAP2014, we also horizon-

tally flip them with 50 % probability. We do not flip the

ChAirGest dataset because all subjects use their left hand.

For temporal consistency, we do the same crop or mirror

for all frames of a video. We use SGD with momentum 0.9

for training our network. With current GPU memory, we

choose the batch size of 10. To make all sequences within a

batch the same length, we pad the shorter ones with empty

frame (which have all values of zero). For each sequence,

we use a binary vector of the same length to indicate

whether the frames are valid or empty frame. Our imple-

mentation is under the framework of Theano [34, 35].

Comparison of Different Models

In this section, we will compare the different settings of our

proposed method and the current state-of-the-art methods.

Our Three SS-LSTM Settings

(1) Pose pre-trained SS-LSTM for gesture recognition; (2)

encoder–decoder SS-LSTM for gesture recognition and (3)

multi-task SS-LSTM for gesture recognition and pose

estimation.

In all of our experiments, we use whole RGB sequences

only without hand cropping for the final gesture

classification.

HMM-Based Methods

We compare our methods with HMM-based methods to

show that our methods can model temporal information

more efficiently. Here we use the results published in the

work of [36].

LRCN Color

We also choose the LRCN [37] model, which is very like

to our SS-LSTM model, as the baseline to see if the SS-

LSTM model can help improve performance on gesture

recognition task. We use the same setting of their released

model. The input video is cropped to a fixed length of 16

frames. To train the LRCN model, they firstly train the

spatial net (the CNN layers) using each frames which share

the same label with the gesture video. They also pre-train

the spatial net using ILSVRC-2012 [38] classification

training subset of the ImageNet dataset to prevent over-

fitting. After the spatial net is trained, they fine-tune the

whole net end-to-end.

CNN MultiNet

Many previous deep learning for gesture recognition

approaches use sliding window method and crop out

human body parts for classification. The winner [15] of

Chalearn LAP2014 challenge also use this method, which

they call ‘‘path’’, as part of their network for the final

fusion. But they did not published their classification result.

Here we use the results published in the work of [16]. They

train two CNNs, one for extracting hand features and one

for extracting upper-body features. Then they combine the

results together for the final classification.

Results

Results on ChAirGest

The comparison results of our proposed methods and the

baseline method on ChAirGest dataset are shown in

Table 1.

Table 1 Comparison results on ChAirGest

Model Gesture accuracy Pose error Modalities

LRCN color [37] 69.7 – RGB

SS-LSTM-1 90.6 0.026 RGB

SS-LSTM-2 91.8 0.032 RGB

SS-LSTM-3 93.9 0.037 RGB

988 Cogn Comput (2016) 8:982–991
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From the results we can see that all our methods out-

perform the LRCN color baseline method. During our

experiments, we notice that the LRCN color model overfits

easily on the training set even with high dropout. By

contrast, all our methods can learn effective representations

without dropout, which shows the effectiveness of pre-

venting overfitting.

Results on LAP2014

Table 2 illustrates the experimental results on LAP2014

dataset. Our method can solve the pose estimation task at

the same time. So we also give the normalized pose

regression error, which is the mean pixel error divided by

image width or height. It is clear that our proposed method

outperforms the baseline LRCN model and the CNN

MultiNet model which combines the nets trained using

upper-body image and the cropped hand image separately.

The results of our three settings are reasonable. We will

give a detailed discussion below.

Benefiting from the sequential supervision of the pose

information at every frame, all our methods outperform the

baseline method. The more intuitive pose pre-training

method incorporates pose information but cannot manage

to learn temporal dependencies required by gesture clas-

sification. Because we can predict the joint positions just

from the current frame. We can get the same conclusion

from the pose estimation accuracy of our methods. Our

pose pre-training method learns too much information

about the joint positions but does not care about the final

task of gesture recognition. In other words, it overfits for

the pose estimation task, resulting bad generalization for

gesture classification.

The encoder–decoder method gets better result for the

task of gesture recognition. We argue that the encoder–

decoder method forces the network to remember all the

joint positions. This helps a lot for gesture classification.

The problem here is that the pose guidance is only at the

decoder part of the network. This can be hard for the

training of the encoder LSTM.

Our multi-task method obtains best result of all meth-

ods. This method combines pose guidance with the final

gesture supervision. The pose estimation task encourages

the net to learn along the ‘‘right direction’’, while the

gesture recognition task makes the net to learn only rele-

vant features and discard noise for the task of gesture

recognition.

Conclusions and Summary

In this paper, we propose a SS-LSTM method for gesture

recognition. We use the pose information as the guidance

for the learning process, which makes the network to

capture representative information that generalize well.

Note that the pose information is only used during the

training stage. The benefit is that we can use samples with

only pose information but no gesture labels. This kind of

samples are easy to get thanks to devices like Kinect. We

only use RGB data for final gesture recognition. This is

important because most of actual life applications have

only RGB cameras. Our method can also solve pose esti-

mation task at the same time. This is another contribution

of our work.
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4. Kröger BJ, Birkholz P, Kannampuzha J, Kaufmann E, Mittelberg

I. Movements and holds in fluent sentence production of Amer-

ican sign language: the action-based approach. Cogn Comput.

2011;3(3):449–65.

5. Rautaray SS, Agrawal A. Vision based hand gesture recognition

for human–computer interaction: a survey. Artif Intell Rev.

2015;43(1):1–54.

6. Shi MY, Zhan DC. Multi gesture recognition: a tracking learning

detection approach. In: Sun C, Fang F, Zhou Z-H, Yang W, Liu

Z-Y, editors. Intelligence science and big data engineering.

Berlin: Springer; 2013. p. 714–21.

7. Fang Y, Wang K, Cheng J, Lu H. A real-time hand gesture

recognition method. In: 2007 IEEE international conference on

multimedia and expo. USA: IEEE; 2007. p. 995–98

8. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification

with deep convolutional neural networks. In: Advances in neural

information processing systems (NIPS). 2012. p. 1106–14

9. Girshick RB, Donahue J, Darrell T, Malik J. Rich feature hier-

archies for accurate object detection and semantic segmentation.

In: IEEE conference on computer vision and pattern recognition

(CVPR). 2014. p. 580–7

10. Girshick RB. Fast R-CNN. CoRR abs/1504.08083 (2015)

11. Ren S, He K, Girshick RB, Sun J. Faster R-CNN: towards real-

time object detection with region proposal networks. CoRR abs/

1506.01497 (2015)

12. Long J, Shelhamer E, Darrell T. Fully convolutional networks for

semantic segmentation. CoRR abs/1411.4038 (2014)

13. Graves A, Mohamed Ar, Hinton G. Speech recognition with deep

recurrent neural networks. In: 2013 IEEE international confer-

ence on acoustics, speech and signal processing (ICASSP). USA:

IEEE; 2013. p. 6645–9.

14. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based

learning applied to document recognition. In: Haykin S, Kosko B,

editors. Intelligent signal processing. USA: IEEE; 2001.

p. 306–51.

15. Neverova N, Wolf C, Taylor GW, Nebout F. Multi-scale deep

learning for gesture detection and localization. In: Computer

vision-ECCV 2014 workshops. Berlin: Springer; 2014. p. 474–90.

16. Pigou L, Dieleman S, Kindermans PJ, Schrauwen B. Sign lan-

guage recognition using convolutional neural networks. In:

Computer vision-ECCV 2014 workshops. Berlin: Springer; 2014.

p. 572–8.

17. Sutskever I, Martens J, Dahl G, Hinton G. On the importance of

initialization and momentum in deep learning. In: Proceedings of

the 30th international conference on machine learning (ICML-

13); 2013. p. 1139–47.

18. Sipiran I, Bustos B. Harris 3D: a robust extension of the harris

operator for interest point detection on 3d meshes. Vis Comput.

2011;27(11):963–76.

19. Klaser A, Marszałek M, Schmid C. A spatio-temporal descriptor

based on 3d-gradients. In: BMVC 2008—19th British Machine

Vision Conference. British Machine Vision Association; 2008.

p. 275–1.

20. Dollár P, Rabaud V, Cottrell G, Belongie S. Behavior recognition

via sparse spatio-temporal features. In: 2nd joint IEEE interna-

tional workshop on visual surveillance and performance evaluation

of tracking and surveillance, 2005. USA: IEEE; 2005. p. 65–72.

21. Wang H, Ullah MM, Klaser A, Laptev I, Schmid C. Evaluation of

local spatio-temporal features for action recognition. In: BMVC

2009—British Machine Vision Conference. BMVA Press; 2009.

p. 124–31.

22. Peng X, Wang L, Cai Z, Qiao Y. Action and gesture temporal

spotting with super vector representation. In: Computer vision-

ECCV 2014 workshops. Berlin: Springer; 2014. p. 518–27.

23. Zhang H, Bai X, Zhou J, Cheng J, Zhao H. Object detection via

structural feature selection and shape model. IEEE Trans Image

Process. 2013;22(12):4984–95.

24. Tu Z, Zheng A, Yang E, Luo B, Hussain A. A biologically inspired

vision-based approach for detecting multiple moving objects in

complex outdoor scenes. Cogn Comput. 2015;7(5):539–51.

25. Wu J, Cheng J, Zhao C, Lu H. Fusing multi-modal features for

gesture recognition. In: Proceedings of the 15th ACM on inter-

national conference on multimodal interaction. New York: ACM;

2013. p. 453–60.

26. Wu J, Cheng J. Bayesian co-boosting for multi-modal gesture

recognition. J Mach Learn Res. 2014;15(1):3013–36.

27. Wu D, Shao L. Leveraging hierarchical parametric networks for

skeletal joints based action segmentation and recognition. In:

2014 IEEE conference on computer vision and pattern recogni-

tion (CVPR). USA: IEEE; 2014. p. 724–31.

28. Toshev A, Szegedy C. Deeppose: Human pose estimation via

deep neural networks. In: 2014 IEEE conference on computer

vision and pattern recognition (CVPR). USA: IEEE; 2014.

p. 1653–60.

29. Tompson JJ, Jain A, LeCun Y, Bregler C. Joint training of a

convolutional network and a graphical model for human pose

estimation. In: Advances in neural information processing sys-

tems; 2014. p. 1799–807.

30. Neverova N, Wolf C, Paci G, Sommavilla G, Taylor GW, Nebout

F. A multi-scale approach to gesture detection and recognition.

In: 2013 IEEE international conference on computer vision

workshops (ICCVW). USA: IEEE; 2013. p. 484–91.

31. Hochreiter S, Schmidhuber J. Long short-term memory. Neural

Comput. 1997;9(8):1735–80.

32. Ruffieux S, Lalanne D, Mugellini E. Chairgest: a challenge for

multimodal mid-air gesture recognition for close HCI. In: Pro-

ceedings of the 15th ACM on international conference on mul-

timodal interaction. USA: ACM; 2013. p. 483–88.
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