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Learning Relationship for Very High Resolution
Image Change Detection

Chunlei Huo, Member, IEEE, Keming Chen, Kun Ding, Zhixin Zhou, and Chunhong Pan

Abstract—The difficulty of very high resolution image change
detection lies in the low interclass separability between the changed
class and the unchanged class. According to experiments, we found
that this separability can be improved by mining the relationship
contained in the training samples. Based on this observation, a
supervised change detection approach is proposed in this paper
based on relationship learning. The proposed approach begins
with enriching the training samples based on their neighborhood
relationship and label coherence; this relationship is then learned
simultaneously with the classifier, and, finally, the latter classifica-
tion performance benefits from the learned relationship. Experi-
ments demonstrate the effectiveness of the proposed approach.

Index Terms—Change detection, distance tuning, interclass cou-
ple, intraclass couple, relationship learning, target neighborhood.

I. INTRODUCTION

OMPARED with static object information (e.g., shape,
C texture, structure) contained in a single image, the dy-
namic change information between multitemporal images is
more important for certain applications, such as disaster man-
agement, land-cover mapping, urban planning, etc. Generally,
change information is extracted by the image change detection
technique. With the development of very high resolution (VHR)
satellites (e.g., QuickBird 2, WorldView, and GeoEye 1), the
spatial resolution of remote sensing images has been improved
significantly, and detecting changes from VHR multitemporal
images is more attractive since not only the changed region, but
also the changed type, can be recognized.

Remote sensing image change detection has been studied for a
long time, but most early efforts were directed to low-to-medium
resolution images. In the literature [1]-[6], many change detec-
tion approaches have been proposed for low-to-medium resolu-
tion images. Despite substantial efforts by various researchers
on VHR image change detection, the existing techniques fall
short of meeting practical requirements. There are many factors
that make VHR image change detection difficult, such as mis-
registration [7], pan-sharpening impact [8], viewpoint variation,

Manuscript received February 4, 2016; revised April 20, 2016; accepted May
12,2016. Date of publication April 23, 2015; date of current version August 24,
2016. This work was supported in part by Natural Science Foundation of China
under Grant 91438105, Grant 61375024, Grant 61302170, and Grant 91338202.

C. Huo, K. Ding, and C. Pan are with the National Laboratory of Pat-
tern Recognition, Institute of Automation, Chinese Academy of Sciences
Beijing 100190, China (e-mail: clhuo@nlpr.ia.ac.cn; kding@nlpr.ia.ac.cn; ch-
pan@nlpr.ia.ac.cn).

K. Chen is with the Institute of Electronics, Chinese Academy of Sciences,
Beijing 100190, China (e-mail: kmchen.ie @ gmail.com).

Z. Zhou is with the Beijing Institute of Remote Sensing, Beijing 100191,
China (email: zhixin.zhou@mail.ia.ac.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2016.2569598

seasonal change, etc. In this paper, we focus on discussing this
problem from the perspective of the discriminative capabilities
of change features.

Change features are aimed at measuring the change confi-
dence at each element (e.g., pixel, patch, or object). In this con-
text, the change detection performance is determined mainly
by the discriminative capabilities of change features. In other
words, if the feature difference due to the real changes is larger
than that in the unchanged region or the false changes, the
changed class will be easily separated from the unchanged class.
However, compared with the low-to-medium resolution images,
the interclass separability of VHR images between the changed
class and the unchanged one is very low, which forms the key
difficulty in VHR image change detection. To clarify this point,
we analyze the reasons for this difficulty in detail in the follow-
ing paragraphs.

For illustration, two pairs of multitemporal images are shown
in Fig. 1. One pair was acquired by Landsat 5, and the other
by QuickBird 2. As shown by Fig. 1(a) and (b), the changes
between the low-resolution images are mainly expressed by the
radiance variation. As a consequence, the changed class and the
unchanged class can be well separated automatically even by
thresholding the spectral difference [cf. Fig. 1(d)]. However, for
VHR images, the changes are difficult to represent. As illus-
trated by Fig. 1(e) and (f), the spectral difference [Fig. 1(h)] or
the high-dimensional DAISY [9] feature difference [Fig. 1(i)] is
incapable of being the qualified change feature. In other words,
the discriminative capabilities of the change features based on
the spectral difference or the high-dimensional local feature rep-
resentation are low. It is worth noting that the powerful abilities
of the local feature descriptors [such as HOG (histogram of
gradient) or Dense SIFT [10], DAISY [9], etc.] for other appli-
cations such as object recognition and image classification, are
beyond suspicion. Among the possible reasons, one important
factor that causes the low interclass separability is the lack of
mining of the “relationship”! between training samples.

First, accurately capturing the relationships (distances) be-
tween samples is essential to improving interclass separability.
Considering the low interclass variation of change features of
VHR images, the high-dimensional DAISY difference vector
is expected to be classified reliably with the help of the train-
ing samples. The result obtained by applying a support vector
machine (SVM) on the DAISY difference vector is shown in

In this paper, relationship means the neighborhood relationship between
training samples and their label coherence. Relationship learning is different
from “relational learning [11],” where “relational” refers to the internal or
external relational structure describing the examples. In detail, in this paper,
relationship is captured by interclass and intraclass couples, and relationship
learning is implemented by metric learning.
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Fig. 1.

Discriminative ability comparison of low resolution and VHR image change detection. (a)—(d) Low-resolution multitemporal images, reference ground

truth, and spectral difference image. (e)—(h) VHR multitemporal images, reference ground truth, and spectral difference image. (i) Magnitude of DAISY difference.
(j) Result achieved by SVM and DAISY-based change features. Training samples are chosen randomly from the ground truth. The red line in (j) is the border
between the changed class and the unchanged class, and it is obtained based on (g).

Fig. 1(j), from which it is seen that the discriminative capa-
bilities of the change features are improved effectively. This
improvement demonstrates the importance of advanced feature
representation and training samples, and this conclusion can
be verified by comparing Fig. 1(h)-(j). Specifically, the uncer-
tainties of the change features are diminished with the help of
the training samples. However, as illustrated by pixels A-D in
Fig. 1(j), it seems that the training samples lost their power
near the border between the changed and unchanged regions.
Although C and D are the nearest neighbors of A and B, re-
spectively, they are being misclassified even with the help of
the training samples. This implies that not only the closeness of
change features in the feature space, but also that in the decision
space, should be considered during the training procedure.

Second, accurately capturing the relationships (similarities)
between samples is important for reducing intraclass difference.
Pixels E and F in Fig. 1(j) are expected to be the changed class
at the same time, but the computed change feature difference
between them is large, which is harmful for the classification.
In other words, the intraclass distance between E and F has to
be diminished, guided by the training samples. Otherwise, the
changed samples will be mixed up with the unchanged ones,
and it is difficult to separate them.

From the above analysis, it can be inferred that it is neces-
sary to learn the relationship contained in the training samples
for improving the interclass separability and reducing the in-
traclass discrepancy. Therefore, a supervised change detection
approach is proposed in this paper. The power of this approach
lies in learning the relationship hidden in the training samples
and tuning the distance between change features, in order to
enlarge the interclass distance and penalize the intraclass differ-
ence. Despite the great efforts made to improve the interclass
separability, the relationship hidden in the training samples is,
as far as we know, usually ignored. To the best of our knowl-
edge, no approaches that address the difficulty by learning the
relationship between the training samples have been reported in
the literature.

The paper is organized as follows: in Section II we describe re-
lated work, and in Section III we discuss the proposed approach.
Experiments are detailed in Section IV, and conclusions drawn
in Section V.

II. RELATED WORK

Unsupervised change detection is preferred for practical ap-
plications, but it is very difficult to achieve due to the user-
specific interests in defining the changes [12] and the low in-
terclass variation between change features. In the context of
supervised or semisupervised change detection, the challenge is
to build a classifier driven by the training samples and to classify
the change feature at each element as the changed or unchanged
class. Specifically, let x; denote the change feature from the
ith element, and y; = —1 and y; = 1 denote the unchanged and
changed class, respectively. The key to change detection is to
learn a decision function f(-) directed by the training samples
{(zs,y:)]i =1,...,N}, where N is the number of training
samples. Based on the decision function f(-), the label of the
test sample @ can be determined. The difference between the
supervised and semisupervised approach lies in the manner of
obtaining the training samples. At present, they are usually ob-
tained by one of the following two ways: manual labeling, the
automatically initial pseudotraining samples selection followed
by the subsequent updating.

Many existing approaches attempt to improve performance
by extracting the representative features or classifying change
features with the help of sophisticated classifiers. To better
understand the proposed approach, this section describes the
related work from the perspectives of feature extraction and
classification.

A. Feature Extraction

Considering the limitation of pixel-based radiometric or
spectral features for representing the complex changes in VHR
images, advanced change features that take into account the
spatial dependence among neighboring pixels are proposed,
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i.e., object-specific change features [13], [14], change features
based on morphological attribute profiles [15], the compensated
change feature based on DAISY features [16], the normalized
moment of inertia feature [17], multilevel features [18], [19],
the morphological building index [20], HOG descriptor based
on multiple support regions [21], etc.

Despite the creativity of the above approaches, as illustrated
by Fig. 1, the performance improvement is limited if the changes
are measured directly based on the elementwise difference and
no distance tuning mechanism utilized. This topic will be dis-
cussed in detail in Section IV.

B. Feature Classification

The labels of change features are usually determined by a
classifier, such as pulse-coupled neural networks [17], [22],
SVM [14], [23]-[25], simultaneous feature learning and change
feature classification [26], high-order distance-based multiview
stochastic learning [27], etc. To clarify the difference between
the proposed approach and existing techniques, we briefly in-
troduce the following three classifiers.

1) kNN: kNN (k-nearest neighbors) algorithm is one of the
most popular classification tools since it does not assume
any particular statistical distribution of the training sam-
ples and requires only one free parameter. The basic idea
of kNN is to assign the test sample x to the class that ap-
pears most frequently within the k-nearest training sam-
ples, i.e.,

k
KNN(zx) = sgn (Z Yyta (i)) (1)

where . (i) is the class label of the ith nearest training
sample. Despite the fact that kKINN converges to the opti-
mal Bayes bound under certain conditions [28], it gener-
ally fails to exploit the potential discrimination because
the geometric relationship within the k-nearest training
samples is ignored in the decision strategy.

2) SVM: Compared with kNN, SVM is more promising due
to its superior generalization capability provided by the
maximal margin principle. SVM aims to maximize the
class-separating margin in the transformed feature space
spanned by the mapping function ¢(-), i.e.,

. 1
min <2||'w|2 + CZ&)

For the sample x, the label is determined by

N
SVM(x) = sgn <Z oy K(x, ) + b) 3)
i=1

where K (x;, ) = ¢(x;) - ¢(x),and N denotes the num-
ber of support vectors. By comparing (1) and (3), it can
be observed that there are significant differences between
kNN and SVM with respect to the decision rule and de-
cision domain. Specifically, the decision domain of SVM
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Fig. 2. Discriminative ability comparison of target neighbors and impostors
before and after relationship learning. (a) Target neighbors and impostors be-
fore relationship learning. (b) Target neighbors and impostors after relationship
learning.

is the entire support vector set, while the decision domain
of kNN is the nearest neighbors. In other words, SVM ig-
nores the local coherence between the test samples and the
training samples by its global decision domain, and kNN
overlooks the geometric structure hidden in the training
samples by the local decision domain.

3) SVM-kNN: The combination of kNN and SVM is expected
to address the above limitations [29], [30]. In particular,
SVM-ANN [30] aims to capture the local structure by
making decision on the local decision domain, i.e.,

k
SVM-KNN(z) = sgn (Z an(z) (D) Yn(z) (1)
i=1

K (@ (i), @) + b) @

where k is the number of nearest training samples. Dif-
ferently than the global decision taken over all of the sup-
port vectors by SVM, SVM-ANN assigns each test sample
based on its nearest support vectors.

III. PROPOSED APPROACH

Asillustrated by Fig. 2, the rationale of the proposed approach
is to improve the overall separability of change features by uti-
lizing the neighborhood relationship between training samples
and enlarging the interclass variation (especially near the border
regions between the changed class and unchanged class). To this
aim, the first step is to redefine the neighborhood relationship
between change features, and the second step is to learn and
tune the distance simultaneously with classifier learning. For
convenience, the proposed approach is abbreviated rRL (robust
Relation Learning).

A. Relationship Representation

Generally, the distance between two samples x; and x; is
determined directly by the feature difference. For instance, in
Fig. 2, the distance between bl and a4 is smaller than that be-
tween a4 and a2, i.e., bl is the nearest neighbor of a4. However,
in the context of supervised learning, a2 is expected to be the
nearest neighbor of a4 rather than b1. For this reason, the rela-
tionships between the training samples are redefined as follows:

Definition 1 (Target Neighbor): The sample x; is the target
neighbor of the sample x; if ; is one of the nearest neighbors of
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Fig. 3. Illustration of interclass and intraclass couples on dataset 1. (a) In-
terclass couples. (b) Intraclass couples. Original training samples are plotted
with red dots and blue dots, respectively. In Fig. 3(a), each interclass couple is
displayed by a green line, which connects two original training samples within
nearest distances but with different labels. In Fig. 3(b), intraclass couples of
changed and unchanged class are displayed by red lines and blue lines, respec-
tively.

x; and shares the same class label with ;,1.e.,x; € /\/’(a:z) and
y; = Y, where y; and y; are the labels of «; and = ;, respectively.
N (x;) means the neighborhood of ;. For convenience, z =
(2, ;) is called an intraclass couple.

Definition 2 (Impostor): The sample x; is an impostor of the
sample x; if «; is one of the nearest neighbors of x; but has a
different class label with x;, i.e., ; € N (z;) and y; # y,. For
convenience, z = (x;, x; ) is called an interclass couple.

The definitions of target neighbor and impostor imply the
following facts:

1) A qualified training sample should be supported by the
samples within its neighborhood, i.e., an isolated training
sample is not stable for training the reliable classifier.

2) The distance between a training sample and its neighbors
should be adjusted adaptively, i.e., the distances between
intraclass samples should be smaller than the distances
between interclass samples. Otherwise, it is difficult for
the learned classifier to separate the samples that are close
but have different labels.

For any training sample (x;,y;), we can find k1(k1 > 1)
target neighbors ], (m = 1,..., k1) and impostors x; , (n =
1,...,k2). The constraints k1 > 1 and k2 > 1 are aimed at
making the changed and unchanged regions smoother. For
high-dimensional change features and a large training set, the
nearest-neighbor searching procedure can be accelerated by
taking advantage of k-dimensional tree strategy, which is usu-
ally used for scale-invariant feature transform (SIFT) feature
matching.

In addition to the mechanism of utilizing the training samples
for distance learning and tuning, the other advantage of the
above relationship representation approach is enrichment of the
training information by introducing additional virtual training
couples (i.e., interclass and intraclass couples). As illustrated by
Fig. 3, when 1000 training samples are chosen, 1000 x (k1 +
k2) interclass and intraclass training couples will be generated.
For this reason, richer training information can be utilized: more
training samples are generated, and the intraclass similarity and
interclass variability are simultaneously captured.
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training time(s)

k
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Fig. 4. Relation between the number of nearest neighbors & and classification
performance as well as training time. (a) Classification accuracy versus k1 and
k2. (b) Training time versus k = k1 + k2. Plotis based on dataset 3, and similar
conclusions can be drawn from other datasets.

B. Relationship Learning

Given an interclass or intraclass couple (x;, z; ), relationship
learning aims at learning and tuning the distance by M as
follows:

dM(wi,il:]‘) = (iBZ — 13j>TM<£L'Z‘ — iL‘j). (5)

Specifically, dps(x;, ;) < 7 is expected to hold if (x;, x; )
is an intraclass couple, and das(x;, ;) > 7 if (x;, ;) is an
interclass couple, where 7 is a relatively small value and 7 is
a sufficiently large one. In other words, the distance between
change features should not be computed directly based on the
feature difference, but learned and tuned adaptively driven by
the relationship hidden in the training samples.

In the literature, there are many novel approaches [31]—[37]
for distance learning. For instance, Du [37] tried to increase the
separability between anomalous pixels and other background
pixels by exploiting a robust anomaly degree metric. Despite
the great potential of metric learning for VHR image change
detection, there are, to our knowledge, no related techniques in
the literature.

Motivated by [34], a kernel-based metric learning approach
is utilized for our relationship learning task. Other effective
metric learning approaches can be used without any problem.
However, since the focus of this paper is on improving the
interclass separability of change features for VHR image change
detection, the comparison of different approaches is beyond the
scope of our discussion. More specifically, distance learning
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and tuning functions are implemented by M, and it is obtained
simultaneously with the classifier learning, i.e.,

1 )
Jnin S{IM — I +C§l:&

st. hy((z — @0) M (2 —x10) +0) > 1 &,

xip >0 Vi (©6)
where || - || denotes the Frobenius norm, and I is the iden-
tity matrix. iy = —1 if (21,2 2) is an intraclass couple and

hi = 1if (21, @ 2) is an interclass couple. It is worth noting
that || M — I||% is to be minimized in the objective function,
which is different from [34], where || M ||% is used. The role of
| M — I|% is to prevent the transformed change features from
being distorted too much and to enhance the stability of the
solution (distorted transformation means a high generalization
error). The effectiveness of this modification will be verified in
the next section.

Compared with the traditional training technique, the
above matrix M is helpful for penalizing large distances
between samples within the same class and small dis-
tances between samples from different classes. Considering
the fact that d3; (i, z;) = (z; — ;)T M (z; — ;) = (x; —
)T WIW (x; — x;) = |[Wx; — Wz;||3, the other role of
M is to seek a transformation W that projects each sample x;
into a new subspace, under which the overall separability of the
change features is improved.

To solve the above problem, the Lagrangian version is derived
as follows:

1
L(M?b’£7a7ﬁ) = iHM_I”% +CZ£]
l

- Z o [h((mr — @ 2)" M (21 — @12)
]
+0) =1+ &)= B4 (7)
]

where « and /3 are the Lagrange multipliers that satisfy o > 0
and 3 >0 VI. To convert the original problem to its dual
version, we set the derivative of the Lagrangian version with
respect to M, b, and £ to be 0

OL(M’ b7 §7 a? /6)
oM

= (M — I) — Zoth(mu — ml‘g)(ml‘l — ml,g)T =0 (9)
1

=0 (8)

aL(M7b7€7a7ﬁ) _
—a (10)
=Y ah =0 an
1
aL(M’b7§7a7/6)
h$ %P 12
76, (12)
#C*Qz*ﬂ]ZO (13)
=0<oq<C V. (14)
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Equation (8) implies that the relationship between M and «
can be represented as follows:

M=1+ Zalhl(ml,l — wzﬁg)(ml,l — $112)T.
l

Substituting (8)—(12) back into L(M,b, &, «, 3), we obtain
the Lagrange dual problem as follows:

5)

1
Hl(iiX—i ZaiajhithD(zi7 Zj) + Z Oli(]. — hZZZTZl)
i,] 7

st. 0< oy <C VI,
Zalh[ =0
l

where Kp(zi,z;) = [2] z;]>, and 2z, =x;; —x;». The
above problem is a standard quadratic program, and it can be
solved by a variety of approaches, such as the interior point
method, active set method, etc., [38]. Considering the similarity
between (16) and the Lagrange dual problem of (2), the above
problem is solved using LibSVM [39].

For each test couple z, the label is determined by

(16)

rRL(z) = sgn (Z ah Kp(z,z) + b) . (17)

l

For each change feature x to be classified, k1 + k2 vir-
tual couples zx; = (x,x;) can be constructed, where x; (i =
1,...,k1 4+ k2) are the nearest neighbors of x within the
original training set {(x;,y;)[i =1,...,N}. IRL(zx;) = —1
means that the label of « is the same as x;, and rRL(zx;) = 1
means that the label of x is different from ;. The final label
of x is determined by voting on the above k1 + k2 decisions.
Noting that the above decision procedure can be implemented
on the global decision domain or on the local decision domain.

IV. EXPERIMENTS
A. Experiments Description

To validate the effectiveness of the proposed approach, many
experiments were conducted on different datasets. Owing to
space limitations, only the results for three datasets are illus-
trated in this paper. The images, taken over Beijing (China),
were acquired by the QuickBird 2 and Pleiades 1A satellites.
The details of the images are described in Table 1. The panchro-
matic image and multispectral image of the same time are reg-
istered by multilevel SIFT matching [40] and merged based on
sparse matrix-vector multiplication [41]. For change detection,
the multitemporal pan-sharpened images are registered by Ref.
[40]. Pan-sharpened RGB images are shown in Figs. 5(a), (b),
6(a), (b), 7(a), and (b). As stated in Section II, for VHR images,
not all the changes are of the user’s interests. In this paper, we
focus on the addition and removal of buildings. For this reason,
the vegetation changes caused by seasonal variations are not
considered.

The main advantages of the proposed approach lie in the
exploitation of relationship learning and distance tuning for im-
proving the ability to discriminate between the change features.



HUO et al.: LEARNING RELATIONSHIP FOR VERY HIGH RESOLUTION IMAGE CHANGE DETECTION 3389

TABLE I
DATASET DESCRIPTION

Dataset Image Sensor GSD resolution Date Resolution and size of coregistered pan-sharpened images
1 Fig. 5(a) QuickBird 2 Pan: 0.61 m/pixel, mul: 2.44 m/pixel ~ Feb. 12, 2004 0.63 m/pixel, 1167 x 1260
Fig. 5(b) QuickBird 2 Pan: 0.63 m/pixel, mul: 2.52 m/pixel ~ Oct. 18, 2005 0.63 m/pixel, 1167 x 1260
2 Fig. 6(a) QuickBird 2 Pan: 0.61 m/pixel, mul: 2.44 m/pixel Feb. 12, 2004 0.63 m/pixel, 1120 x 1120
Fig. 6(b) QuickBird 2 Pan: 0.63 m/pixel, mul: 2.52 m/pixel Oct. 18, 2005 0.63 m/pixel, 1120 x 1120
3 Fig. 7(a) QuickBird 2 Pan: 0.61 m/pixel, mul: 2.44 m/pixel ~ Feb. 12, 2004 0.61 m/pixel, 1190 x 1404
Fig. 7(b) Pleiades 1A Pan: 0.50 m/pixel, mul: 2.00 m/pixel Feb. 8, 2012 0.61 m/pixel, 1190 x 1404
Sh= TSNS ST ST
:‘E:‘: == ‘;\.‘k\\, S SRS RS WY &
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= ol =
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= ey O Toasaasy B 1
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Fig. 5. Results comparison for dataset 1. (a) and (b) Multitemporal images, 1167 x 1260; (c) ground truth; (d) rRL; (e) RL-SVM; (f) SVM; (g) SVM-ANN;
(h) CF; (i) SHC; and (j) ANN.

1N
FHAL

=il

“(h)

Fig. 6. Results comparison for dataset 2. (a) and (b) Multitemporal images, 1120 x 1120; (c) ground truth; (d) rRL; (e) RL-SVM; (f) SVM; (g) SVM-ANN; (h)
CF; (i) SHC; and (j) kNN.

2) SVM: The SVM classifier is used directly on the original
training samples(not interclass and intraclass couples),
and the unlabeled change features are classified by the
learned model. In this paper, the radial basis function
kernel is used.

3) SVM-kNN: The change features are classified by SVM-
kNN [30], which considers the local relationship between

To validate the effectiveness of the proposed approach, it is
compared to six related approaches.

1) kNN: Different from the unsupervised kNN approach for
the traditional clustering task, kNN is used as a supervised
classifier in this paper, i.e., each unlabeled change feature
is assigned to the label based on the majority voting rule
and the k closest labeled training samples.
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()

Fig. 7.
CF; (i) SHC; and (j) ANN.

the test sample and the nearest training samples. When
k is the number of support vectors, SVM-ANN will be
equivalent to SVM.

4) RL-SVM (Relation Learning With SVM): In RL-SVM,
the change features are classified by the doublet-SVM
[34]. The difference between rRL and RL-SVM lies in
the constraint over M, i.e., the objective function of RL-
SVMis [ M} +C Y, &

5) Change Field (CF): Change features are extracted under
the CF framework [16], i.e., change features consist of
the compensated DAISY difference magnitude and the
changes with respect to the feature shift along the X and
Y directions. For fair comparison, the change features are
classified by SVM.

6) Sparse Hierarchical Clustering (SHC): The change fea-
tures are classified by SHC [42], where the clustering
procedure is directed by the same training samples as the
proposed approach.

In this paper, the change feature is extracted based on DAISY
[9] difference vector. For fair comparison, all the above seven
approaches used the same training samples. Specifically, 30%
of the changed pixels were selected randomly from the ground
truth, and they were viewed as the positive training samples.
Similarly, 30% of the unchanged pixels were selected and taken
as the negative training samples. The entire change feature set
comprised the test sample. A fivefold cross-validation strategy
was utilized to tune the parameters for SVM, RL-SVM, SVM-
kNN, and CF. The above supervised procedures were repeated
five times, and the averaged performance over the five runs used
as the final indicator of performance.

B. Parameter Setting

For RL-SVM and rRL, the numbers of target neighbors and
impostors, k1 and k2, are important parameters that affect the
classification performance and training time. On one hand, the
size of the kernel matrix K p is increased proportionally to the
increase of the number of interclass and intraclass couples, k =
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Results comparison for dataset 3. (a) and (b) Multitemporal images, 1190 x 1404; (c) ground truth; (d) rRL; (e) RL-SVM; (f) SVM; (g) SVM-ANN; (h)

k1 + k2. As can be observed from Fig. 4(b), the training time is
approximately linear with k. On the other hand, with larger k,
more intraclass couples and interclass couples are added into the
training set, and the similarities between the intraclass samples
and the differences between the interclass samples are enhanced,
which is helpful for improving the discrimination of the trained
classifier. However, the ambiguities will be imported into the
training samples if k is too large, where the margin between
interclass couples and intraclass couples will be narrowed and
the classification hyperplane will be impacted. The influences of
k1 and k2 on the classification accuracy are shown in Fig. 4(a),
from which it can be observed that the peak A is achieved at k1 =
3 and k2 = 4. In the following experiments, this configuration
is set for RL-SVM and rRL. By experiments, we found that the
best performance is achieved at k£ = 1 for kNN and k£ = 200 for
SVM-kNN.

C. Experiments Analysis

Comparison is made qualitatively by visually checking the
final change maps and quantitatively by computing false posi-
tive (FP), false negative (FN), total error (TE), CPU time, and
Kappa coefficient (Kappa) and its variance. The core algorithms
are implemented in C++, and they are evaluated on a desktop
computer (Intel Core i7-2720QM CPU, 2.20GHz, 8-GB DDR
RAM). The performances are listed in Table II, and the results
using different approaches are shown in Figs. 5-7. To check
how the results obtained by each approach coincide with the
ground truth, the edges of the ground truth are shown in red.

Table II indicates that the proposed approach outperforms
the other techniques. For instance, for the dataset 1, Kappa of
kNN is 0.67, which is the worst among the seven approaches.
As illustrated by the regions B and C in Fig. 5(j), due to the
low interclass variability between the changed class and un-
changed class, many FNs and FPs are difficult to avoid by the
simple decision strategy. By taking advantage of the maximal
margin principle, SVM can achieve the better performance. For
example, TE is reduced from 173224 to 53 332, and Kappa



HUO et al.: LEARNING RELATIONSHIP FOR VERY HIGH RESOLUTION IMAGE CHANGE DETECTION

TABLE II
PERFORMANCE COMPARISON

Dataset ~ Approach TE FN FP Kappa =+ variance ~ CPU (s)
rRL 12792 6516 6276 0.97 £0.0031 435
RL-SVM 19 964 6524 13 440 0.95+0.0039 439
1 SVM 53332 43352 9980 0.88 £0.0037 354
SVM-kNN 36264 20052 16212 0.92 +£0.0029 366
CF 33788 30916 2872 0.92£0.0035 268
SHC 37984 28336 9648 0.92 £0.0025 298
kNN 173224 38004 135220 0.67£0.0191 61
rRL 11248 1624 9624 0.98 £0.0034 440
RL-SVM 34604 15596 19008 0.92 £0.0042 437
2 SVM 118480 71168 47312 0.73 £0.0056 341
SVM-kNN 34328 32792 1536 0.91£0.0051 362
CF 72920 48868 24052 0.83 £0.0039 259
SHC 108700 17196 91 504 0.78 £0.0024 292
kNN 250480 42452 208 028 0.54 £0.0274 59
rRL 22556 304 22252 0.76 £0.0056 496
RL-SVM 24 808 380 24 428 0.74 £0.0073 490
3 SVM 147064 4696 142 368 0.27 £0.0062 377
SVM-kNN 36316 2584 33732 0.64 £0.0059 379
CF 27 936 840 27 096 0.71 £0.0046 269
SHC 62216 304 61912 0.52 +0.0039 301
kNN 110516 13404 97112 0.27 £0.0629 63

is improved from 0.67 to 0.88. This demonstrates the impor-
tance of the relationship for improving the overall separability.
However, due to ignoring the intraclass similarity in training
the classifier and the local coherence in the decision procedure,
the performance improved by SVM is limited. SHC is superior
to SVM in that it takes the complex structures of the change
features into account (i.e., SHC considers not only the ability
to discriminate between the changed class and unchanged class,
but also the separability between the subclasses of the changed
class), which is another important factor for improving the over-
all separability between change features. FN is decreased from
43 352 by SVM to 28 336 by SHC. CF outperforms SVM in
that it compensates for the misregistration impact, and FP is
reduced from 9980 by SVM to 2872 by CF. SVM-kNN is su-
perior to SVM. The underlying reason lies in the neighborhood
relationship between the test sample and training samples being
considered. With the help of the simple local decision strategy,
Kappa is improved from 0.88 to 0.92. Moreover, by taking ad-
vantage of the adaptive distance tuning mechanism, RL-SVM
outperforms SVM-ANN, and RL-SVM achieved the lower TE
(19964) and higher Kappa (0.95). Furthermore, by utilizing the
robust Mahalanobis matrix estimation, the Kappa of rRL is im-
proved to 0.97. The advantage of rRL over RL-SVM can be
validated by the higher Kappa and lower variances.

Similar conclusions can be drawn from dataset 2. For ex-
ample, kNN is still worse than other approaches, and Kappa is
0.54. SVM, whose Kappa is 0.73, is slightly better than KNN.
CF and SHC are superior to SVM, and Kappa coefficients are
increased to 0.83 and 0.78, respectively. CF is robust for the
misregistration impact since the feature difference is computed
based on the compensated correspondence. As a consequence,
CF achieves lower FP (24 052) than that of SHC (91 504). How-
ever, CF is limited in enhancing the weak change features, and it
is prone to obtaining a higher number of FNs. For instance, the
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changes within region A of Fig. 6(a) are undetected. In contrast,
SVM-kNN reduces FP and FN significantly by capturing the
local relationship in the decision procedure. TE is reduced from
118 480 by SVM to 34 328 by SVM-ANN. On the other hand,
RL-SVM and rRL capture the relationship in the classifier train-
ing procedure, and thus obtain better performances. RL-SVM
obtained a lower FN (15 596) and higher Kappa (0.92), and rRL
achieved the lowest TE (11 248) and the highest Kappa (0.98).
The above comparisons illustrate the importance and effective-
ness of relationship representation and relationship learning. In
short, rRL addresses overall discriminative capacity from two
perspectives: the neighborhood relationships of change features
with respect to the feature difference and the label, and the adap-
tive distance learning and tuning driven by the training samples.
As expected, these two factors are promising in processing the
complex change features. The advantages of the proposed ap-
proach can also be validated by the visual comparison of the
results obtained by the different approaches shown in Figs. 5-7.

Compared with the first two datasets, change features ex-
tracted from dataset 3 are more difficult to separate since the
ratio of the changed areas is very small (about 1/45). More-
over, the false changes caused by different sensors and long-
term intervals are overwhelming. For instance, as illustrated
by Fig. 7(a), the appearance differences within regions D-G
are even stronger than that in region H. In fact, from the se-
mantic perspective, regions D-G are “unchanged.” In this case,
the performances of three creative approaches (CF, SHC, and
SVM-kNN) are not as promising as before. For instance, the
Kappa of SVM-ANN is 0.64, and it is even worse than that
of CF. In contrast, the performance of rRL is still the best.
To investigate how the proposed approach improves perfor-
mance, we compare different approaches from the following two
aspects.

1) Relationship Representation: The purpose of a relation-
ship representation is to capture the intraclass similarity
and interclass variability. To verify the effectiveness of the
relationship representation, Fig. 8 illustrates the difference
in overall separability before and after relation learning.
kNN and SVM-kNN measure the relationship between
samples based on the Euclidean distance (noting that the
Gaussian kernel leads to an ordering function that is equiv-
alent to using the Euclidean metric). For the test sample
ule.g., point w in Fig. 7(a)], two of three nearest training
samples chosen by kNN are from the changed class since
the Euclidean metric ignores the latent discrimination in-
formation hidden in the training labels. At the point c,
only one of three nearest neighbors is from the changed
class. For this reason, improper nearest neighbors are ob-
tained for SVM-kNN, and they will be propagated in the
subsequent decision procedure. The naive Mahalanobis
distance driven by the training samples is more robust
than the Euclidean distance, and three nearest neighbors
of u are found correctly; however, it is limited to capturing
the complex relations. For instance, two of three nearest
neighbors of ¢ are found incorrectly. In contrast, under
the Mahalanobis metric learned by rRL and RL-SVM, no
incorrect nearest neighbors are found at ¢ or u. The above
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Fig. 8. Difference in overall separability before and after relationship learn-
ing. For illustration, three nearest neighbors within the training samples are
obtained for the unchanged change feature u and the changed feature ¢. Under
the Euclidean distance metric, three nearest neighbors of u are k1, k2, and k3,
and three nearest neighbors of ¢ are K1, K2, and K3. Under the Mahalanobis
distance metric, where M is computed based on the training samples, three
nearest neighbors of u are m1, m2, and m3, and three nearest neighbors of ¢ are
M1, M2, and M3. Under the Mahalanobis distance metric where M is learned
by relationship learning driven by the training samples, three nearest neighbors
of u are k1, k2, and k3, and three nearest neighbors of ¢ are R1, R2, and R3.

difference indirectly demonstrates the effectiveness of the
relationship representation.

2) Decision Strategy: On one hand, the impacts of improper
decision domain will be propagated to the decision func-
tion. For instance, u is wrongly classified as the changed
class by kNN. On the other hand, a robust decision strategy
is helpful for reducing the impacts. For instance, SVM-
kNN has the same nearest neighbors with kNN, but it
makes the correct decision on u by taking advantage of
the local decision strategy. However, this decision strat-
egy is limited for the high overlap between the changed
and unchanged class. For instance, it makes the wrong
decision at ¢ guided by the improper decision domain.
Noting that rRL can also make decisions on local domain
as SVM-kNN; however, through experiments we found
that the performance difference between global decision
domain and local decision domain can be ignored. The
possible reason lies in the fact that the local decision hy-
perplane nearly coincides with the global one after rRL
adjustment of the distances between the training couples.
For comparison, the decision strategies of different ap-
proaches are illustrated in Fig. 9.

Owing to the above two important factors, the other advantage
of the proposed approach is the high fidelity in preserving the re-
gion shape, especially near the borders between the changed and
unchanged regions. It is worth noting that even for small regions,
such as region A in Fig. 5(d), the proposed approach, rRL, can
detect the changes correctly and preserve the shape with high
confidence. In contrast, such small regions are missed by other
approaches due to their ignoring of the local relationship. From
Fig. 7(d), it can be observed that the shape-preserving ability of
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Fig. 9. Differences between different approaches in decision strategy. (a)
kNN, (b) SVM, (c) SVM-kNN, (d) rRL. Training samples of different classes
are plotted by different colors. SVM-ANN is superior to SVM due to the robust
local decision domain. However, this improvement is limited for the high overlap
of different classes. rRL achieves the robust decision hyperplane by dynamically
tuning the distances between the interclass and intraclass couples.

rRL on dataset 3 is not as good as the first two datasets. The
underlying reason is that the interclass variability is impacted by
the imbalanced training samples of different classes, i.e., some
pixels in the unchanged regions are “forcibly dragged” across
the border by the overwhelming number of unchanged training
samples. Even so, compared with other approaches, rRL is still
promising for such a difficult task. This fact implies that the
overall discriminative ability of the changed features is indeed
improved by the proposed approach.

Regarding computation time, rRL and RL-SVM are inferior
to other approaches. Specifically, rRL, RL-SVM, CF, and SVM-
kNN are essentially SVMs. However, CF is computationally
faster than SVM due to its classification of the low-dimensional
features (for CF, the dimension of change features is 3), and rRL
and RL-SVM are computationally slower than SVM due to the
extra computation time for training on the increased interclass
and intraclass training couples, which are multiple times greater
in number than the original training samples. There are no differ-
ences between SVM-ANN and SVM in the training procedure,
and the complexity difference in the decision procedure can be
ignored. For this reason, SVM-kNN is comparable to SVM. The
core operation of SHC is sparse clustering, and the efficiency is
improved by the hierarchical strategy. kNN is fastest since there
are only two simple operators involved in: distance computation
and distance comparison. Considering the overall performance,
rRL and RL-SVM are more promising for practical applications.

V. CONCLUSION

The low interclass separability between change features has
been an obstacle for VHR image change detection. However,



HUO et al.: LEARNING RELATIONSHIP FOR VERY HIGH RESOLUTION IMAGE CHANGE DETECTION

traditional efforts have focused on change feature extraction
and/or feature classification, and the latent relationships hidden
in training samples are usually neglected. Through experimen-
tation, we found that the overall separability can be improved
significantly by learning the relationships between change fea-
tures. Training information can be enriched by utilizing the
compensated neighborhood relationships between the consid-
ered training samples and their neighbors, and the distance be-
tween change features can be tuned automatically driven by
the learned projections. Experiments demonstrate the effective-
ness of the proposed approach. In light of the creative direction
embodied by relationship learning, more efforts should be di-
rected to further strengthening interclass separability. Our future
work will focus on relationship learning in the context of unsu-
pervised or semisupervised change detection, or on enhancing
the interclass separability by other advanced techniques such
as semisupervised distance learning [43] and multiple kernel
learning [44], [45].
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