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In the paper “Reply to ‘Determining structural identifiability of
parameter learning machines™ [1], the author presented a critical
comment on the results on global identifiability and parameter
redundancy in our previous publication [2]. Based on this com-
ment [1], we summarize the main points addressed by Cole, and
give the answer to each point below.

Point 1: Global identifiability result in Theorem 4 in [2].

Answer: Many thanks for pointing out the incorrect part in the
theorem. We agree with Cole that Theorem 4 is for locally iden-
tifiable rather than for globally identifiable. After a careful check of
the entire theoretical development concerning Theorem 4 in [2],
we see that, the quantity Hg, (@), in Eq. (52) of [2], should be
Hgp(6o), so that this result is merely a criterion for checking local
identifiability with respect to 6.

Point 2: Theorem 6 in [2] is identical to Theorem 2a in [3] but
published 4 years earlier.

Answer: The difference of Theorem 6 in [2] between Theorem
2a in [3] can be recognized from the following aspects:

® Following the naming convention in statistics literature [4],
Definition 4 in [3] means that

5(0y, data) = s(6,, data) = M 6;) = M(6,); €}
this leads to a sufficient partition in parameter space. Never-
theless, Definition 3 in [2] means that

$(61) = $(62) © M(61) = M(62); )

this leads to an identifying partition. Hence, the formal defini-
tions of “exhaustive summary” in [2] and that in [3] are
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fundamentally different concepts. For more details, one can
see [4] and the references therein.

e From Definition 3 in [2], the exhaustive summary is solely the
function of unknown parameter 0. However, the exhaustive
summary used in [3] and the counterexample 1 in [1] consist of
parameter € and data. Therefore, this also indicates the
difference.

® As a matter of fact, if exhaustive summary is defined as in [3],
one cannot derive a sufficient and necessary result; this is just
the reason why the complete proof is not provided in [3].
Nevertheless, we presented a mathematically rigorous proof in

[2].

Point 3: Global identifiability result in Theorem 1 [2].

Answer: It should be noticed that, the authors placed the ad-
ditional assumption that “[4] is a smooth manifold of R¥” in The-
orem 1 in [2], and then derived the result. This assumption means
that the input-output mapping is unvaried along a smooth curve
in parameter space (see [6] for more neuromanifold examples).
Note that this assumption also appeared in [5] (see page. 3383).
Empirically, this condition occurs if the model contains coupled
parameters (see [2,7,8]). However, the counterexample 1 given in
[1] does not meet this requirement, since the observationally
equivalent parameters are two isolated points, namely (a,b) and
(a, — b); these two points cannot form a smooth curve.
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