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a b s t r a c t 

Image classification refers to the task of automatically classifying the categories of images 

based on the contents. This task is typically solved using visual features with the histogram 

based classification scheme. Although effective, this strategy has two drawbacks. On one 

hand, histogram based representation often disregards the object layout which is very im- 

portant for classification. On the other hand, visual features are unable to fully separate 

different images due to the semantic gap. To solve these two problems, in this paper, we 

propose a novel image classification method by explicitly and implicitly representing the 

images with searching strategy. First, to make use of object layouts, we randomly select a 

number of regions and then use these regions for image representations. Second, we gen- 

erate the explicitly semantic representations using a number of pre-learned semantic mod- 

els. Third, we measure the visual similarities with the Internet images and use the text in- 

formation for implicitly semantic representations. Since Internet images are contaminated 

with noise, the resulting representations only implicitly reflect the contents of images. Fi- 

nally, both the explicitly and implicitly semantic representations are jointly modeled for 

image classifications by training bi-linear classifiers. We evaluate the effectiveness of the 

proposed image classification by search with explicitly and implicitly semantic represen- 

tations method (EISR) on the Scene-15 dataset, the MIT-Indoor dataset, the UIUC-Sports 

dataset and the PASCAL VOC 2007 dataset. The experimental results prove the usefulness 

of the proposed method. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

1. Introduction 

To effectively classify images, we need to first discriminatively represent the images. However, this is not an easy task

as visual features do not have explicitly semantic correspondences with the semantic concepts. To bridge this gap, both the

exploration of discriminative visual representations and semantic descriptions of images are studied. 

To explore the visual information, some researchers try to design discriminative features [3,18] while others try to

make various transformations and combinations of these features. The well-designed features can cope with various
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Fig. 1. Flowchart of the proposed image classification method by search with explicitly and implicitly semantic representations (EISR). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

image deformations and are widely used. However, the designing of discriminative and robust features is very hard which

remains a question that needs to be solved. Instead of using visual features directly, the transformation of features be-

comes another choice to boost the classification performances. The spatial layout and context correlation are widely ex-

plored [8,10,12,14,30,36,38,40–44,46,48] . Besides, the combinations of different types of features [4,20,35,50] are also very

popular. Different features are combined for image representations [20,35,50] and classifier training [4] . One problem with

the visually based strategy is the semantic inconsistence between visual information and semantics. Especially when images

are visually similar but have different semantics. 

To alleviate the semantic discrepancy, the use of semantic representations of images becomes popular [5,16,21,22,28,44] .

This helps to represent images in an understandable way and is more consistent with human perceptions than visual fea-

tures. Usually, the semantic space is generated by pre-definitions [37] or by harvesting from training images [5,16,22,28,44] .

Using pre-defined semantics is often labor intensive and requires domain knowledge. Besides, harvesting information from

training images is often limited by the collected images. The use of Internet information helps to cope with the dataset

bias. However, it can only implicitly describe the semantics with noisy information. Moreover, the spatial layouts of differ-

ent semantics are often unconsidered by the semantically based methods. The combination of spatial layout with semantic

representations can help to improve the discriminative power of the final image representations. 

To solve the problems mentioned above, in this paper, we propose a novel image classification method by search with

explicitly and implicitly semantic representations (EISR). We first randomly select image regions as the basic elements for

image representations. For each region, we try to represent it with explicitly and implicitly semantic representations. The

explicitly semantic representation is obtained using the pre-trained models which are learned using images collected by

domain experts. Since images of each class depict the same concept and contain no irrelevant images, the trained model

can help to classify the corresponding concept well. Hence, we use it for explicitly semantic representations. The implicitly

semantic representations are obtained by harvesting from the Internet. This is achieved by searching the visually similar

images for each image region and using the corresponding text information for implicitly semantic representations. Since

web images are often contaminated with irrelevant information, these text information only reflect implicit semantics. We

combine the explicitly and implicitly semantic representations for final image representations and train bi-linear classifiers

to predict image classes. We evaluate the effectiveness of the proposed EISR method on the Scene-15 dataset, the MIT-

Indoor dataset, the UIUC-Sports dataset and the PASCAL VOC 2007 dataset. Experimental results prove the usefulness of the

proposed method. Fig. 1 shows the flowchart of the proposed method. 

The main contributions of this paper lie in three aspects: 

• First, we propose a novel image classification method by explicitly and implicitly modeling the semantic representations.

This helps to alleviate the discrepancy between visual information and human understandings to some extent. 
• Second, we model the explicitly and implicitly semantic representations jointly by exploring the information of training

images and the images from the Internet. This helps to harvest the information from various sources and boost the

discriminative power of the final image representations. 
• Third, by representing images more semantically, we can improve the classification accuracy over many visually based

methods. 

Compared with search based methods for image annotation and classification [29,31,32,47] , the improvements of the

proposed method lie in two aspects. First, instead of only using the Internet information, EISR also combines the explicitly

semantic representation using training images for joint representations. Second, we use the matrix based representations to

jointly model the correlations among image regions which is more discriminative than histogram based representations. 

The rest of this paper is organized as follows. We give the related work in Section 2 . In Section 3 , we systematically

describe the details of the proposed image classification method by search with explicitly and implicitly semantic represen-

tations. The experimental results and analysis are given in Section 4 . Finally, we give the conclusions in Section 5 . 

2. Related work 

With the explosion of visual information, how to efficiently analyze the visual content became popular. Many discrimi-

natively designed features were proposed [3,18] . SIFT feature was proposed by Lowe [18] and widely used for various visual
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applications. Dalal and Triggs [3] proposed a simplified version of SIFT as histograms of oriented gradients and used it for

object detection. 

Although effective, the well designed visual features cannot cope with all types of deformations. To increase the dis-

criminative power, the spatial layout and context correlation were also explored [8,10,14,30,36,40–45,48] . Lazebnik et. al.

[14] proposed the spatial pyramid matching technique which was widely used by researchers. Gemert et. al. [10] explored

the distance information for local feature encoding which reduced the quantization loss. Yang et. al. [36] used sparse coding

instead of nearest neighbor assignment for local feature quantization. Wang et. al. [30] restricted the sparse coding process

with locality constraint and improved the efficiency. Zhang et. al. [45] proposed to use non-negative sparse coding while

Gao et. al. [8] used laplacian sparse coding to reduce quantization loss. Zhang et. al. [41] made harr-like transformation

over local features. The low-rank constraint was used to model the correlations of images of the same class [39] . Zhang et.

al. [43] also proposed a bi-linear model for object recognition while Zheng et. al. [48] used graph regularized sparse cod-

ing. Zhang et. al. [39] proposed to use the orientation and location information along with the visual information of local

features for better classification. 

Instead of using one type of feature, the combinations of different features [4,20,35,50] were also used. Xiao et. al.

[35] proposed a kernel reconstruction technique for sparse representation. Zhou et. al. [50] proposed to encode local fea-

tures with super-vector while Rao et. al. [20] tried to recognize actions with view-invariant representations. Darrell et. al.

[4] used interpolated views for specific tasks. 

However, only using visual information cannot alleviate the semantic gap. Hence, the use of semantic representations

became popular [5,16,21,22,28,44] . Rasiwasia and Vasconcelos [21] used holistic context models by mining the semantical

correlations of different concepts. Rasiwasia and Vasconcelos [22] also used low-dimensional semantic spaces for scene

classification while Torresani et. al. [28] used classesmes for object recognition with improved accuracy. The ObjectBank was

proposed by Li et. al. [16] by using the information from the Internet images. Zhang et. al. [44] proposed to classify images

with weak semantic representation by using the discriminative information of exemplar classifier. Dixit et. al. [5] combined

the semantic representation with fisher vector encoding for scene classification. The harvesting of Internet information for

image annotation was also widely studied [29,31,32,47] . Wang et. al. [31] tried to annotate images by search. However, there

were a lot of noisy information which hindered the performance. Hence, the use of duplicate information for semantic

transfer became popular. Wang et. al. [32] improved the annotation with duplicate search while Wang et. al. [29] targeted

the face annotation to incorporate task-specific information. Zhao et. al. [47] also tried to annotate web videos by near-

duplicate search to cope with variations. However,the contamination of noisy information degraded the reliability of this

strategy. 

3. Search based explicitly and implicitly semantic representations for image classification 

In this section, we give the details of the proposed image classification by search with explicitly and implicitly semantic

representation method. 

3.1. Randomly selecting image regions 

To make classification of images, we need to represent them first. Instead of using histogram based methods, we use

image region as the basic element for image representation. We randomly select a number of regions to cover the whole

image. These selected image regions contain the spatial layouts of objects to some extent and may overlap with each other.

We use the random selection strategy for three reasons. First, objects may appear on various places of images. Second,

locating the exact positions of objects is computationally expensive and inaccurate. Besides, we are not able to detect every

objects reliably. Third, by randomly selection, we can extract the image regions very quickly. 

After extracting the image regions, we use them for joint image representations by concatenating each region’s represen-

tation together using the selection order in a matrix form. Formally, let x n be the representation of the n th region. Suppose

we select N regions in total for each image, the final image representation is obtained as X = [ x 1 , x 2 , ..., x N ] . To represent

each image region, we combine the explicitly and implicitly semantic representations together. 

3.2. Explicitly semantic representation 

Images of the same class collected by human experts concentrate on the same concept and are free of noise. This in-

formation can be used for explicitly semantic representation. We use these images to train semantic prediction models.

‘explicitly semantic’ means the learned models are specific and free of noisy information. 

Formally, let φm 

( ∗) be the learned semantic prediction model for the m th concept, M is the number of semantics (or

image classes). The explicitly semantic representation for the n th image region x n can then be obtained as: 

x n,ex = [ φ1 ( h n ) ;φ2 ( h n ) ; ... ;φM 

( h n )] (1)

where h n is the visual information of the n th region. Since there are many semantic prediction models, we can use them

directly in this paper. The proposed explicitly semantic representation scheme can also use different image region repre-

sentation methods, e.g. local feature based bag-of-visual-word model, convolutional neural network based model. Besides,
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we can even use different semantic prediction models for different regions. Since each learned model predicts the rele-

vance of the image region with the corresponding concept, the resulting representation x n , ex reflects the semantic likelihood

accordingly. 

3.3. Implicitly semantic representation 

Only using the explicitly semantic representation for image classification is not enough. The images collected by experts

are biased which cannot fully represent different semantics well. It is necessary to harvest information from other sources

for more discriminative representations. The Internet provides plenty of such information which can be used. 

We use the Internet images by search for implicitly semantic representations. Specially, for each selected image region,

we use the Google image search engine in this paper and select the top 10 0 0 images. Each web link of the corresponding

image contains some text description. We use these text information for implicitly semantic representation x n,im 

∈ R ̃

 M ×1 . 

We call this representation as implicitly semantic representation for two reasons. First, the selected images are not always

semantically correlated with the image region to be searched. Due to the semantic gap, visually similar images do not always

belong to the same class. Hence, the retrieved images are only partially semantically correlated with the image region.

Second, for each selected image, its corresponding text descriptions are also contaminated with noisy information. However,

these retrieved text contains some useful information which reflects the semantics of the corresponding image region. Note

that although we use the retrieved text for implicitly semantic representation, other information extraction methods, such

as topic models (probabilistic latent semantic analysis (pLSA) and Latent Dirichlet Allocation (LDA)) can also be used. The

explicitly semantic representation x n , ex and implicitly semantic representation x n , im 

are concatenated for joint representation

as x n = [ x n,ex ; x n,im 

] . 

3.4. Image classification 

After obtaining the final image representation X , we can learn the classification model for image classification. We use

subscript the indicate the index of image regions and use superscript to indicate the index of training images. Formally, let

( X 

p , y p ) , p = 1 , ..., P be the P training images with the corresponding labels, we learn a prediction model ψ( ∗) to predict the

classes of images as: 

̂ y p = ψ( X 

p ) (2) 

by minimizing the summed loss over training images as: 

ψ(∗) = argmin ψ(∗) 
P ∑ 

p=1 

� (ψ( X 

p ) , y p ) + λ�(ψ(∗)) (3) 

where � ( ∗, ∗) is the loss function, �( ∗) is the regularization term, λ is the parameter. 

We use bi-linear classifier for image class prediction with ψ( X 

p ) = αT X β, α ∈ R 

(M+ ̃  M ) ×1 is the parameter which com-

bines the influences of semantic elements while β ∈ R 

N×1 considers the correlations of selected regions. Usually, the hinge

loss is used for classification. However, hinge loss is not differentiable. Hence, we use the quadratic hinge loss [5] as: 

� ( αT X β, y p ) = max 2 (0 , 1 − αT X β × y p ) (4) 

As to the regularization term, we use the L 2 norm which is widely used for classification as �(ψ(∗)) = ‖ α‖ 2 + ‖ β‖ 2 . After

the parameters are learned, we can predict the classes of images using Eq. 2 . Algorithm 1 gives the procedures of the

proposed image classification by search with explicitly and implicitly semantic representation method. 

Algorithm 1 Training phrase of the proposed image classification by search with explicitly and implicitly semantic repre-

sentation method. 

Input: 

The training images and labels, λ, random selection number N, initial α, β; 

Output: 

The learned α, β, α ∈ R 

(M+ ̃  M ) ×1 is the parameter which combines the influences of semantic elements while β ∈ R 

N×1 

considers the correlations of selected regions; 

1: Randomly select N regions for each image; 

2: For each region, calculate the explicitly semantic representation x n,ex with Eq. (1) ; 

3: For each region, calculate the implicitly semantic representation x n,im 

by search as described in Subsection 3.3 ; 

4: Concatenate the explicitly and implicitly semantic representations x n,ex and x n,im 

of image regions for image representa-

tion as x n = [ x n,ex ; x n,im 

] ; 

5: Train the classifiers by optimizing over Eq. (3) ; 

6: return The learned α, β. 
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Fig. 2. Example images of (a) the Scene-15 dataset, (b) the MIT-Indoor dataset, (c) the UIUC-Sports dataset and (d) the PASCAL VOC 2007 dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Experiments 

To evaluate the effectiveness of the proposed image classification by search with explicitly and implicitly semantic rep-

resentations method (EISR), we conduct experiments on the Scene-15 dataset [14] , the MIT-Indoor dataset [19] , the UIUC-

Sports dataset [15] and the PASCAL VOC 2007 dataset [7] . Fig. 2 shows example images of the four datasets. 

4.1. Experimental Setup 

For fair comparison, we follow the experimental setup as other researchers and use the reported results for performance

evaluations instead of re-implementing these algorithms. To represent images, we use two methods: (1) local feature based

BoW model, (2) convolutional neural network (CNN) based deep learning model. As to the extraction of local features, we

densely extract color SIFT features [27] with multiple scales. We set the minimum scale to 16 × 16 pixels with 6 pixels

overlap. We use the sparse coding technique for local feature encoding [36] with a codebook of 10 0 0 visual words. As to

the CNN based image representation, we use the six layer networks as [13] . The classifiers are trained in the one-vs-all way.

The final prediction is conducted by assigning the image with the class of the largest response. Classification rate is used

for quantitative evaluations. 

4.2. Scene-15 dataset 

This dataset has 20 0–40 0 images for each class with the fifteen classes as: store, office, tallbuilding, street, opencountry,

mountain, insidecity, highway, forest, coast, livingroom, kitchen, industrial, suburb and bedroom . We randomly select 100 images

per class for training and view the other images as testing samples. The random selection is repeated for ten times for

reliable comparison. 

To quantitatively evaluate the performances of the proposed EISR method, we give the performance comparisons on the

Scene-15 dataset with the baseline methods in Table 1 . The use of local features and CNN based methods are denoted as

EISR-SC and EISR-CNN respectively. Besides, we also give the performances without search (EISR-SC(no search) and EISR-

CNN(no search)) in Table 1 . The boxplots of per-class performance are also given in Fig. 3 . 

From Table 1 and Fig. 3 , we can have four conclusions. First, EISR is able to outperform many baseline methods ranging

from visually based methods [8,10,14,30,36] to semantically based methods [1,16,21,22,34,39,44] . The semantically based rep-
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Table 1 

Performance comparison of EISR with other methods on the Scene-15 dataset. Nu- 

merical values stand for mean and standard derivation respectively. 

Algorithms Classification rate 

pLSA [1] 72 .7 

LScSPM [8] 89 .75 ± 0.50 

KC [10] 76 .67 ± 0.39 

KSPM [14] 81 .40 ± 0.50 

ObjectBank [15] 80 .9 

Contextual Models [21] 77 .20 ± 0.39 

LDA [22] 59 .0 

Semantic Space [22] 73 .95 ± 0.74 

LLC [30] 81 .50 ± 0.87 

pLSA [34] 63 .3 

ScSPM [36] 80 .28 ± 0.93 

S 3 R [39] 83 .72 ± 0.78 

WSR-EC [44] 81 .54 ± 0.59 

Search-Only 46 .72 ± 3.85 

EISR-SC 90 .15 ± 0.83 

EISR-CNN 94 .53 ± 0.76 

EISR-SC (no search) 86 .65 ± 0.80 

EISR-CNN (no search) 92 .18 ± 0.86 

Fig. 3. Boxplot of the per-class performance of EISR-CNN on the Scene-15 dataset. From left to right: store, office, tallbuilding, street, opencountry, moun- 

tain, insidecity, highway, forest, coast, livingroom, kitchen, industrial, suburb and bedroom. 

 

 

 

 

 

 

 

 

 

 

resentations help to cope with the discrepancy between visual information and human perception. Second, without search

for implicitly semantic representation, EISR still be able to improve over other semantically based methods. The use of over-

complete regions for image representation helps to encode more spatial correlations. Third, text based semantic analysis

methods cannot alleviate the semantic gap of visual features. Hence, directly using pLSA and LDA cannot achieve compara-

ble performances as visually based methods. However, by generating the semantic representations using visual information,

we are able to improve the performances over visually based methods. Fourth, EISR also improves over ObjectBank which

also uses Internet images. This is because we also try to generate the semantic representations with carefully collected

images. The search results are contaminated with various noise which degenerates the performances. The large variation

also indicates using search results only is not very robust. However, by combing the explicitly semantic representation, we

can alleviate this problem. Overall, these results prove the effectiveness of the proposed EISR method for improving the

classification performances. 
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Table 2 

Mean classification rate comparisons of EISR with other methods on the 

MIT-Indoor dataset. 

Methods Classification rate 

Doersch [6] 66 .87 

Gong [11] 68 .90 

Lin [17] 68 .50 

KSPM [14] 34 .40 

Quattoni [19] 26 .50 

Razavian [23] 69 .00 

LPR-LIN [25] 44 .84 

CENTRIST [33] 36 .90 

Zhou [49] 70 .08 

EISR-SC 50 .37 

EISR-CNN 71 .62 

EISR-SC (no search) 43 .58 

EISR-CNN (no search) 66 .25 

Table 3 

Performance comparisons of EISR with other methods on the UIUC- 

Sports dataset. 

Algorithms Performance 

LScSPM [8] 85 .31 ± 0.51 

CSDL [9] 86 .54 ± 0.56 

LLC [30] 83 .09 ± 1.30 

ScSPM [36] 82 .74 ± 1.46 

LRSC [44] 88 .17 ± 0.85 

EISR-SC 87 .46 ± 0.62 

EISR-CNN 92 .73 ± 0.55 

EISR-SC (no search) 85 .39 ± 0.58 

EISR-CNN (no search) 89 .65 ± 0.73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. MIT-Indoor dataset 

There are 67 classes of indoor images in the MIT-Indoor dataset with a total of 15,620 images. We follow the data split

setup as Quattoni and Torralba [19] and use 80 images per-class for training. Table 2 gives the mean classification rate

comparisons of EISR with other baseline methods on the MIT-Indoor dataset. 

We can have similar conclusions as on the Scene-15 dataset. First, EISR is again able to improve over both visually and

semantically based methods. Second, the searching strategy helps to improve the performances better than that on the

Scene-15 dataset. We believe this is because images of the MIT-Indoor dataset are more complicated and concentrate on the

indoor scenes. Third, CNN based representations are more discriminative than local feature based methods. Hence, the EISR-

CNN can improve over EISR-SC dramatically. The experimental results on the MIT-Indoor dataset again prove the usefulness

of the proposed EISR method. 

4.4. UIUC-Sports dataset 

The UIUC-Sports dataset has sport images of eight classes as: badminton, bocce, croquet, polo, rock climbing, rowing, sailing

and snow boarding . There are 1792 images with the number of each class ranges from 137 to 250. We follow the experimen-

tal setup of [15] and randomly select 70 images per class for training and use the other images for testing. Table 3 shows

the performance comparisons of EISR with other methods on the UIUC-Sports dataset. To show the per-class performance,

we also give the boxplot of the performance in Fig. 4 . 

Since images of this dataset are relatively easier to classify than the MIT-Indoor dataset, the relative improvement of

EISR over other methods is small. However, EISR is still able to improve the performances over these baseline methods.

Besides, by combining with the search strategy, we are able to further improve the classification performances. Moreover,

the per-class performances of EISR are stable for different classes which shows the robustness of the proposed method. 

4.5. The PASCAL VOC 2007 dataset 

This dataset has more than 10,0 0 0 images which consist of twenty classes ( aeroplane, bicycle, boat, bottle, bus, bird, car,

cat, cow, chair, dining table, dog, horse, person, sheep, motorbike, train, potted plant, soft and tv/monitor ). The images are pro-

vided with train/validate/test splits. Classifiers are firstly trained using the train split and the optimal parameters are selected

with the validate split. The train and validate splits are then merged to re-train the classifiers with the learned parameters.

The final performance is evaluated on the test split. Average precision is used for performance evaluation. 



132 C. Zhang et al. / Information Sciences 376 (2017) 125–135 

Fig. 4. Boxplot of the per-class performance of EISR-CNN on the UIUC-Sports dataset. From left to right: badminton, bocce, croquet, polo, rock climbing, 

rowing, sailing and snow boarding. 

Table 4 

Performance comparisons on the PASCAL VOC 07 dataset. 

object class LLC [30] Best07 [7] FV [26] DECAF [2] CNN [2] SPM [24] OCP [24] EISR-SC EISR-CNN 

airplane 74 .8 77 .5 80 .0 87 .4 95 .3 72 .5 74 .2 76 .5 96 .8 

bicycle 65 .2 63 .6 67 .4 79 .3 90 .4 56 .3 63 .1 67 .2 92 .2 

bird 50 .7 56 .1 51 .9 84 .1 92 .5 49 .5 45 .1 54 .8 93 .1 

boat 70 .9 71 .9 70 .9 78 .4 89 .6 63 .5 65 .9 73 .3 91 .7 

bottle 28 .7 33 .1 30 .8 42 .3 54 .4 22 .4 29 .5 33 .5 57 .3 

bus 68 .8 60 .6 72 .2 73 .7 81 .9 60 .1 64 .7 71 .4 83 .5 

car 78 .5 78 .0 79 .9 83 .7 91 .5 76 .4 79 .2 80 .7 92 .8 

cat 61 .7 58 .8 61 .4 83 .7 91 .9 57 .5 61 .4 62 .5 93 .3 

chair 54 .3 53 .5 56 .0 54 .3 64 .1 51 .9 51 .0 57 .8 68 .5 

cow 48 .6 42 .6 49 .6 61 .9 76 .3 42 .2 45 .0 52 .2 79 .4 

table 51 .8 54 .9 58 .4 70 .2 74 .9 48 .9 54 .8 53 .1 77 .6 

dog 44 .1 45 .8 44 .8 79 .5 89 .7 38 .1 45 .4 46 .8 90 .2 

horse 76 .6 77 .5 78 .8 85 .3 92 .2 75 .1 76 .3 78 .8 92 .7 

motorbike 66 .9 64 .0 70 .8 77 .2 86 .9 62 .8 67 .1 69 .2 88 .1 

person 83 .5 85 .9 85 .0 90 .5 95 .2 82 .9 84 .4 85 .4 95 .8 

plant 30 .8 36 .3 31 .7 51 .1 60 .7 20 .5 21 .8 33 .5 63 .9 

sheep 44 .6 44 .7 51 .0 73 .8 82 .9 38 .1 44 .3 46 .4 84 .2 

sofa 53 .4 50 .9 56 .4 57 .0 68 .0 46 .0 48 .8 55 .8 71 .4 

train 78 .2 79 .2 80 .2 86 .4 95 .5 71 .7 70 .7 82 .3 96 .3 

tv 53 .5 53 .2 57 .5 68 .0 74 .4 50 .5 51 .7 57 .4 76 .8 

mAP 59 .3 59 .4 61 .7 73 .4 82 .4 54 .3 57 .2 61 .9 84 .3 

 

 

 

 

 

 

 

 

We give the performance comparisons on the PASCAL VOC 2007 dataset in Table 4 . Since the search base strategy has

been proven useful on the other datasets, we only give the performances of EISR-SC and EISR-CNN in Table 4 . We can see

from Table 4 that EISR is again able to improve the classification performances over many methods. For example, when

local features are used, EISR-SC improves over other sparse coding based methods [7,26,30] . When the CNN based strategy

is used, the performance can be further improved. This is because the resulting explicitly semantic representations are more

discriminative than sparse coding based methods. The final representations are more separable which helps to improve the

average precision. Besides, the improvements of EISR over non-rigid objects are larger than rigid objects. We believe this is

for two reasons. First, non-rigid objects are more difficult to classify using visual features but can be better represented with
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semantics. Second, by randomly selecting image regions, we can model the correlations of different parts of images better

and help to model the inter-class variation. 

4.6. Influences of region selection 

We give the influences of region number and the size of regions in Figs. 5 and 6 respectively. We can see from Fig. 5 that

different region numbers have varied influences on the performances. If the region number is too small, we may not be

able to fully combine the discriminative information. This problem can be alleviated with the increment of region number.

Besides, different datasets require different region numbers. The PASCAL VOC 2007 dataset and MIT-Indoor dataset are more

difficult to classify than the Scene-15 dataset and the UIUC-Sports dataset. From Fig. 6 , we can see that the size of image

region is not as important as the region number as long as the region is not too small. This is because we can compensate

the size problem by selecting more regions. However, if we do not select enough regions, the increment of region size

cannot achieve satisfiable performances. We can have the conclusion that we should select more image regions to improve

the classification performances. 

5. Conclusion 

In this paper, we proposed an image classification method by search with explicitly and implicitly semantic representa-

tions. We first randomly selected image regions as the basic element for representation to make use of the spatial layouts of

images. The explicitly semantic representation was then obtained using the learned semantic models which combined the

discriminative information of training images. Besides, the implicitly semantic representation was collected by measuring

the similarities between each image region and the Internet images. The corresponding text was used for implicitly seman-

tic representations. Finally, we combined both the explicitly and implicitly semantic representations for joint representation.

The bi-linear classifier was trained for prediction. We evaluated the proposed method on the Scene-15 dataset, the MIT-

Indoor dataset, the UIUC-Sports dataset and the PASCAL VOC 2007 dataset with the results proved the effectiveness of the

proposed method. 
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