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a b s t r a c t

In this paper, energy consumption of an office building is predicted based on echo state networks (ESNs).
Energy consumption of the office building is divided into consumptions from sockets, lights and air-
conditioners, which are measured in each room of the office building by three ammeters installed inside,
respectively. On the other hand, an office building generally consists of several types of rooms, i.e., office
rooms, computer rooms, storage rooms, meeting rooms, etc., the energy consumption of which varies in
accordance with different working routines in each type of rooms. In this paper, several novel reservoir
topologies of ESNs are developed, the performance of ESNs with different reservoir topologies in pre-
dicting the energy consumption of rooms in the office building is compared, and the energy consumption
of all the rooms in the office building is predicted with the developed topologies. Moreover, parameter
sensitivity of ESNs with different reservoir topologies is analyzed. A case study shows that the developed
simplified reservoir topologies are sufficient to achieve outstanding performance of ESNs in the pre-
diction of building energy consumption.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The increasing population, growing industrial production, fast
economic development and rapid social progress in recent years
have brought about huge demands for energy supplies and con-
stantly rising energy consumption across the world, thereby re-
sulting in a large number of environmental problems, including air
pollution, water contamination, greenhouse effect, etc. [1,2]. In
terms of energy consumption, buildings have become a focus of
energy policy and decision making, since energy consumption
from buildings accounts for a significant proportion throughout
the world [3]. The proportion of building energy consumption in
total energy consumption is approaching 40% in Europe [4], while
it was 28% in China in 2011 and is expected to reach 35% by 2020
[5]. In order for decision makers to develop and implement po-
licies to effectively reduce energy consumption from buildings, it is
of great importance to establish accurate prediction of building
energy consumption, with a view to alleviating environmental
pollution to a certain extent and achieving sustainable develop-
ment of human society. However, prediction of energy consump-
tion is a great challenge due to factors including weather
derong@ustb.edu.cn (D. Liu),
conditions, building structure, geographic location, settled popu-
lation, seasonal changes, etc. [6,7].

During the past decades, a variety of techniques were applied
to the prediction of building energy consumption, e.g., engineering
methods [8], data mining techniques [9], neural networks (NNs)
[10], clustering analysis [11], support vector machine (SVM) [12],
fuzzy logic [13], etc. Among existing methods, NNs have been
widely studied and applied to various fields, including system
modeling [14], optimal control [15], fault diagnosis [16], and
adaptive dynamic programming [17]. NNs are commonly divided
into feedforward neural networks (FNNs) and recurrent neural
networks (RNNs). Specifically, RNNs, which were widely used in
nonlinear time-series prediction [18–21], have demonstrated their
application to the prediction of building energy consumption [22].
However, traditional RNNs suffer from a high computational
complexity in their training, which may lead to slow training,
complex performance surfaces, and possible instability [23].

In recent years, echo state networks (ESNs), as a new type of
RNNs proposed by Jaeger et al. [24,25], attracted great attention
among researchers [26–31]. By using Markovian architectural bias
of untrained RNNs to reflect historical inputs, ESNs utilize the
dynamics created by a huge randomly created layer of recurrent
units called reservoir, and only the connections between the re-
servoir and the output layer are modified in the learning process.
In this way, the high computational complexity of traditional RNNs
is significantly reduced, and the training efficiency is remarkably
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Fig. 1. Basic structure of an ESN.
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enhanced. The past decades have witnessed extensive studies on
ESNs both in theory and practice.

Theoretical studies on ESNs focused on reservoir optimization
mainly carried out from structure improvement and parameter
selection. In [32], multiple network topologies were used for the
generation of reservoir, including small-world network, scale-free
network, etc. Deng and Zhang [33] proposed a reservoir topology
with small-world and scale-free properties. Song and Feng [34]
investigated a cortex-like network generation method to construct
the reservoir and therefore discovered an improved design strat-
egy for the reservoir. Rodan and Tino [35] developed three simple
reservoir topologies called delay line reservoir (DLR), DLR with
feedback connections (DLRB) and simple cycle reservoir (SCR),
respectively, which achieved good performance in time-series
processing. In [36], a stochastic gradient descent method was
developed to optimize global learning parameters including input
and output feedback scalings, leaking rate and spectral radius of
ESNs. Steil [37] optimized the reservoir by adopting a biologically
motivated learning rule based on neural intrinsic plasticity (IP). In
[38,39], the learning rule of IP was applied to tuning the prob-
ability density of all the neurons' outputs towards an exponential
distribution and Gaussian distribution, respectively, which rea-
lized maximization of information. On the other hand, ESNs have
achieved wide practical applications in various fields, including
chaotic time-series prediction [40–42], dynamic pattern extraction
[43], speech recognition [44], noise modeling [25] and complex
signal filtering [45]. Specifically, ESNs have demonstrated out-
standing performance in time-series prediction with real-life
measurements [46–49].

Inspired by [35], several simplified reservoir topologies of ESNs
are developed in this paper, and then ESNs with these different
reservoir topologies are applied to the prediction of building en-
ergy consumption, which fully utilizes the remarkable perfor-
mance of ESNs in chaotic time-series prediction. The main con-
tributions of this paper are summarized as follows:

(1) A total of six simplified reservoir topologies of ESNs in-
cluding two novel ones are developed and described in detail.

(2) The energy consumption in an office building is predicted
by ESNs with different reservoir topologies, and their prediction
performance is compared.

(3) The parameters of different topologies are summarized, and
a sensitivity analysis is conducted to show the influence of these
parameters on the prediction performance of the ESNs.

The rest of the paper is organized as follows. Basic knowledge
on ESNs is given in Section 2. Several different reservoir topologies
of ESNs are developed in Section 3, and related parameters of the
topologies are summarized. A detailed case study with a para-
meter sensitivity analysis is given in Section 4 to show the per-
formance of the developed topologies in the prediction of building
energy consumption. Finally, the conclusion is drawn and future
work is presented in Section 5.
2. Preliminaries of ESNs

As shown in Fig. 1, an ESN is a discrete-time RNN composed of
an input layer, a reservoir and an output layer. The reservoir
contains a large number of interconnected dynamic units, which
are called reservoir units in this paper. The output layer is a
memoryless linear readout trained to generate the output.

It is assumed that an ESN has K input units, N reservoir units
and L output units. Activations of the input, reservoir and output
units at time step t are denoted by st, xt and ot, respectively, where

∈s Rt
K , ∈x Rt

N and ∈o Rt
L. Connections between input units and

reservoir units are collected in an ×N K weight matrix W in,
connections between reservoir units are collected in an ×N N
weight matrix W, while connections between reservoir units and
output units are collected in an ×N L weight matrix Wout.
Therefore, the activation of reservoir units is updated as

= ( · + · ) ( )−x f W s W x , 1t t t
in

1

where =f tanh is the activation function of the reservoir. The
linear output is calculated as

= ( ) · ( )o W x . 2t
T

t
out

Elements of W in and W are randomly initialized from a con-
tinuous probability distribution before training. In order to guar-
antee the echo state property (ESP) of reservoir units, the reservoir
weight matrix W is usually scaled by η ρ →W W/ , where η< <0 1
is a scaling parameter and ρ is the spectral radius of W.

Remark 1. As given in [50,51], setting the spectral radius of W less
than 1 is only a necessary condition to guarantee the ESP of re-
servoir units, however, the necessary condition is often sufficient
in most practical cases owing to the contractive dynamics of the
reservoir with the nonlinear activation function =f tanh.

During the training of the ESN, W in and W are fixed, and only
Wout is tuned. Therefore, given M training samples and based on
(1) and (2), we can obtain the following equation

= ( )W O, 3out

where the matrix called reservoir output matrix is constructed
as

( )
( ) ( )

( ) ( ) ( )

… … … …

=

· + · ⋯ · + ·

⋮ ⋱ ⋮

· + · ⋯ · + ·

−

−
×

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
4

w w w w s s x x

f w s w x f w s w x

f w s w x f w s w x

, , , , , , , , , , ,

,

N N M M

N N

M N M N M
M N

1
in in

1 1 0 1

1
in

1 1 0
in

1 0

1
in

1 0
in

1

and

( )

( )
= ⋮ = ⋮

( )× ×

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

W

w

w

O
o

o

, and .

5

T

N
T

N L

T

M
T

M L

out
1
out

out

1

We can calculate the minimum norm least-square solution of
the linear system (3) as the output weight matrix of the ESN,

^ = ( )†W O, 6
out

where † is the Moore–Penrose generalized inverse of matrix
[52,53].
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Finally, we adopt three statistical indexes, namely mean square
error (MSE), root mean square error (RMSE) and coefficient of
variation of the root mean square error (CV-RMSE), to evaluate the
training effect of an ESN, and their definitions are given as follows

( )∑

∑

= −^

=

= ×

=
( )

=M
o o

A

A
M

o
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1
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t t
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where ôt is the network input, ot is the target output, and M is the
number of training samples.
3. Reservoir topologies

In this section, several simplified reservoir topologies are de-
veloped including those in [35]. We aim to compare the newly
developed topologies with existing ones with respect to perfor-
mance in the prediction of building energy consumption.

3.1. Reservoir topologies

Apart from the traditional ESN reservoir described in Section 2,
six simplified reservoir topologies as follows are developed, as
shown in Fig. 2.
Fig. 2. Reservoir topologies. (a) NCR. (b) DLR
3.1.1. Non-connected reservoir (NCR)
Composed of reservoir units, none of which are connected with

each other, i.e., all the elements in the reservoir weight matrix W
are zero. Specifically, it is exactly the same as the well-known
feedforward neural network (FNN).

3.1.2. Delay line reservoir (DLR)
With units arranged in a line, and only elements on the lower

subdiagonal of the reservoir weight matrix W have non-zero va-
lues =+W ri i1, for = … −i N1, , 1, where r is the weight of all the
feedforward connections.

3.1.3. DLR with feedback connections (DLRB)
With the same structure as DLR, but each reservoir unit is also

connected to the previous one. Elements on the lower and upper
subdiagonals of the reservoir weight matrix W have non-zero
values, i.e., =+W ri i1, and =+W bi i, 1 , where b is the weight of all the
feedback connections.

3.1.4. Simple cycle reservoir (SCR)
Consisting of units arranged in a cycle. Elements on the lower

subdiagonal and at the upper-right corner of W are non-zero with
=+W ri i1, and =W rN1, .

3.1.5. Self-feedback DLR (SDLR)
Besides the same structure as DLR, each reservoir unit is con-

nected to itself. In addition to non-zero elements on the lower
subdiagonal of W, elements on the diagonal of W are non-zero as
well, i.e., =W di i, for = …i N1, , , where d is the weight of all the
self-feedback connections.
. (c) DLRB. (d) SCR. (e) SDLR. (f) SDLRB.



Table 2
Rooms in the office building.

Floor Room

1 2 3 4 5 6
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3.1.6. Self-feedback DLRB (SDLRB)
Structured the same as DLRB with each reservoir unit con-

nected to itself. Besides non-zero elements on the lower and upper
subdiagonals of W, the diagonal of W has non-zero elements as

=W di i, .

Remark 2. Among the six reservoir topologies above, NCR equals
a traditional FNN, DLR, DLRB and SCR were given in [35], and SDLR
and SDLRB are newly developed in this paper. In the next section,
we aim to compare the performance of SDLR and SDLRB in energy
consumption prediction with that of existing reservoir topologies.

3.2. Topology parameters

All the above topologies contain one or more parameters,
which are summarized as follows.

3.2.1. Input connection v

In the topologies in Fig. 2, the input layer is fully connected to
the reservoir. For traditional ESNs, the input weights are usually
generated randomly from a uniform distribution over an interval
[ − ]a a, . For the developed simple reservoirs (NCR, DLR, DLRB, SCR,
SDLR and SDLRB), all the input connections have the same abso-
lute weight value ∈ [ ]v 0, 1 , while the sign of each input weight is
randomly determined.

3.2.2. Feedforward connection r
In the developed topologies (DLR, DLRB, SCR, SDLR and SDLRB),

∈ [ ]r 0, 1 denotes the connection between each reservoir unit and
its following one, namely the value of elements on the lower
subdiagonal of the reservoir weight matrix W.

3.2.3. Feedback connection b
In DLRB and SDLRB, ∈ [ ]b 0, 1 denotes the connection between

each reservoir unit and its previous one, namely the value of
elements on the upper subdiagonal of the reservoir weight matrix
W.

3.2.4. Self-feedback connection d
In SDLR and SDLRB, ∈ [ ]d 0, 1 denotes the connection between

each reservoir unit and itself, namely the value of elements on the
diagonal of the reservoir weight matrix W.

3.2.5. Reservoir size N
N, which denotes the number of units in the reservoir, has a

significant influence on the training performance of ESNs.
Parameters of different topologies are summarized in Table 1.

In the next section, ESNs with the above six reservoir topologies
will be applied to the prediction of energy consumption in the
rooms of an office building. The performance of ESNs with dif-
ferent reservoir topologies will be compared and a sensitivity
analysis of the topology parameters will be given.
Table 1
Parameter summarization.

Topology Parameter

v r b d N

NCR n n

DLR n n n

DLRB n n n n

SCR n n n

SDLR n n n n

SDLRB n n n n n
4. Case study

In this section, a detailed case study is given to demonstrate the
performance of ESNs with the developed reservoir topologies. The case
study is based on an office building in one of our practical projects.

4.1. Background introduction

The building concerned in this paper is an office building lo-
cated in a development zone in China and composed of a total of
14 floors with 6 rooms on each floor, excluding the first floor
which is used as the lobby of the building. The building settles a
certain number of companies engaged in information technology,
each of which rent several rooms and use them as office rooms,
computer rooms, storage rooms, meeting rooms, etc. A central air-
conditioning system is adopted in the building, where air-con-
ditioning in each room is controlled by several switches.

The rooms in the office building are summarized in Table 2,
where we define office rooms as “⋆”, computer rooms as “▵”, sto-
rage rooms as “⋄”, and meeting rooms as “�”. We can see that office
rooms account for the majority of all the rooms in the building, so
relevant results of an office room are mainly displayed next.

Three ammeters are installed in each room to measure real-
time energy consumption from sockets, lights and air-conditioners
at an interval of 1 h, while such three types of energy consumption
can basically represent all the energy consumptions in a room.
Given original data of energy consumption measured for 4 years
from January 2011 to December 2014, the data are preprocessed to
eliminate absence, incompleteness, repetition and other defects,
thus obtaining complete hourly data of energy consumption. Next,
because nobody works in the office building on weekends in our
study, and therefore almost no energy consumption is generated
then, the data from weekends are deleted. Furthermore, the re-
maining data on working days are randomly divided into training
data and testing data with an approximate proportion of 7:3.

Specifically, we separate the prediction of energy consumption
to different months, namely we focus on the data in the same
month to carry out prediction. In the following, relevant results of
energy consumption in July for 4 years are presented as an ex-
ample. The average outside air temperature and building occu-
pancy on the working days of July in each year are shown in Fig. 3
(a) and (b), respectively. It can be seen that both factors generally
present stable fluctuations with few changes in different years
with the temperature varying within the range of 23–26 °C and
the occupancy 78–91%. Therefore, the impacts of these factors on
the prediction could be ignored by using the method in this paper.
2 ⋆ ⋆ ⋆ ▵ ⋆ ⋆
3 ⋆ ⋆ ⋄ ⋆ � ▵
4 ⋆ ⋆ ⋆ ⋄ ⋆ �
5 ⋆ ⋆ ▵ ⋄ ⋆ ⋆
6 ⋄ ⋆ ⋆ ▵ ⋄ ⋆
7 ⋆ ⋆ � ⋆ ⋆ �
8 ⋆ ⋆ ▵ ⋆ � ⋆
9 ⋆ ⋆ ⋆ ⋄ ⋆ �
10 ⋆ ⋆ ⋄ ⋆ ▵ ⋆
11 ⋆ ⋆ ▵ ⋆ � �
12 ⋆ ⋆ ⋆ ▵ ⋆ ⋆
13 ⋆ ⋆ ⋄ ⋆ � ⋆
14 ⋆ ⋆ ▵ � ⋆ ⋄

⋆: office room ▵: computer room ⋄: storage room �: meeting room.



Fig. 3. (a) Average outside air temperature on the working days of July in 2011–
2014. (b) Building occupancy on the working days of July in 2011–2014.
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4.2. Office room

The original energy consumption of an office room in the
building in 5 working days is shown as an example in Fig. 4, where
the energy consumptions from sockets, lights and air-conditioners
are shown by three curves, respectively. As indicated by Fig. 4, all
three types of energy consumption present a periodic property
with a typical “double-peak” characteristic; that is to say, all the
three curves reach their peak values in mid-morning around 11:00
and mid-afternoon around 16:00 on a working day, and achieve a
low point at noon since part of staff who often punctually go out
for lunch then may switch off some electrical appliances using
sockets, turn off some lights or adjust the temperature set for the
air-conditioners, while some others who have their lunch inside
the room may still consume some energy. Before and after work,
however, due to no special requirements on energy consumption,
all the appliances consuming energy are turned off when nobody
Fig. 4. Original energy consumption of the office room in 5 working days. (a) En-
ergy consumption from sockets. (b) Energy consumption from lights. (c) Energy
consumption from air-conditioners.
stays in the room, so the energy consumption in non-working
hours is close to zero. The means and variances of the entire time
series are shown in Fig. 5.

ESNs with different reservoir topologies are established and
then trained with the training data. With a fixed reservoir size N
each time, network parameters, including input connection

∈ [ ]v 0, 1 , feedforward connection ∈ [ ]r 0, 1 , feedback connection
∈ [ ]b 0, 1 and self-feedback connection ∈ [ ]d 0, 1 , are randomly

initialized from a uniform distribution over corresponding ranges
in each training, respectively. After 100 times of training, we cal-
culate the network outputs as the prediction results by the ESNs
and regard the values of testing data as the real energy con-
sumption. Next, we calculate the MSE, RMSE and CV-RMSE be-
tween predicted and real energy consumptions as the prediction
errors of the ESNs. The results of energy consumption prediction in
the office room by ESNs with different reservoir topologies are
shown in Fig. 6, where only the average real energy and energy
predicted by the newly developed SDLR and SDLRB are illustrated
to simplify the display. The variances of the predicted and real
time series are shown in Fig. 7. In case of negative prediction re-
sults, the results are adjusted to zero merely to satisfy practical
conditions, but this adjustment is not considered in the calculation
of prediction errors. Particularly, the reservoir topology of NCR, i.e.,
FNN, fails to achieve accurate prediction by using the training
approach in this paper, so related results of NCR are omitted. In
addition, the prediction errors of ESNs with different reservoir
topologies are shown in Fig. 8.

As shown in Figs. 6–8, all the ESNs with different reservoir
topologies achieve comparable performance in the energy con-
sumption prediction of the office room with slight differences,
while the training errors are high when the reservoir size N is
small and low when N is large, but become stable when N is suf-
ficiently large. The minimum prediction errors of ESNs with dif-
ferent reservoir topologies with N¼50 are summarized in Table 3,
where it can be seen that the traditional ESN generally achieves
the minimum errors in the prediction, followed by SDLR and
SDLRB which perform better than DLR, DLRB and SCR, and gen-
erally the more complex the reservoir topology, the smaller the
prediction error.

Further, the original data of three types of energy consumption
are added up to predict the entire energy consumption of the of-
fice room. By using the same approach above, the prediction re-
sults by SDLR and SDLRB are shown in Fig. 9, and the minimum
prediction errors of the two topologies are summarized in Table 4.

4.3. Computer room

Generally speaking, a computer room is equipped with hosts,
servers, switches and other computer equipments. The original
energy consumption of a computer room in the building in
5 working days is shown in Fig. 10, where the energy consump-
tions from sockets, lights and air-conditioners are shown by three
curves, respectively. The most remarkable difference between the
computer room and the office room above lies in the energy
consumption from sockets, which basically remains unchanged
during a working day, since all the computer equipments con-
suming energy from sockets require 24-h stable running. However,
for energy consumptions from lights and air-conditioners, both of
them present the same “double-peak” characteristic as those in the
office room considering similar working routines of staff in the
computer room. Moreover, it is noteworthy that energy con-
sumption from air-conditioners in the computer room remains at a
constant non-zero value at night given the requirement on tem-
perature from some computer equipments.

Similarly, we establish ESNs with different reservoir topologies
and train them with the training data of the computer room.



Fig. 5. Means and variances of energy consumption of the office room in July in 2011–2014. (a) Mean of energy consumption from sockets. (b) Variance of energy con-
sumption from sockets. (c) Mean of energy consumption from lights. (d) Variance of energy consumption from lights. (e) Mean of energy consumption from air-conditioners.
(f) Variance of energy consumption from air-conditioners.

Fig. 6. Energy consumption prediction of the office room. (a) Prediction of energy consumption from sockets. (b) Prediction of energy consumption from lights. (c) Prediction
of energy consumption from air-conditioners.

G. Shi et al. / Neurocomputing 216 (2016) 478–488 483



Fig. 7. Variances of predicted and real energy consumption of the office room. (a) Energy consumption from sockets. (b) Energy consumption from lights. (c) Energy
consumption from air-conditioners.

Fig. 8. Energy consumption prediction errors of the office room. (a) Prediction errors of energy consumption from sockets. (b) Prediction errors of energy consumption from
lights. (c) Prediction errors of energy consumption from air-conditioners.

Table 3
Minimum errors of ESN, DLR, DLRB, SCR, SDLR and SDLRB for separate prediction of
the office room with reservoir size N¼50.

Consumption
Type

Error ESN DLR DLRB SCR SDLR SDLRB

Sockets MSE (�10�4) 1.02 3.61 3.26 3.41 2.34 1.79
RMSE (�10�2) 1.01 1.90 1.81 1.85 1.53 1.34
CV-RMSE (%) 4.00 7.54 7.16 7.33 6.07 5.31

Lights MSE (�10�4) 0.56 1.72 1.64 1.79 1.13 0.84
RMSE (�10�2) 0.75 1.31 1.28 1.34 1.06 0.92
CV-RMSE (%) 4.52 7.94 7.77 8.10 6.43 5.55

Air-conditioners MSE (�10�4) 0.37 1.28 1.22 1.25 1.03 0.74
RMSE (�10�2) 0.61 1.13 1.10 1.12 1.01 0.86
CV-RMSE (%) 3.62 6.70 6.54 6.62 6.00 5.09

Fig. 9. Prediction of entire energy consumption in the office room.
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Network parameters v, r, b and d are randomized in each training
with a fixed N. After 100 times of training, network outputs are
calculated as energy consumption predicted by the ESNs, and the
values of testing data are regarded as real energy consumption.
The results of energy consumption prediction in the computer
room by ESNs with different reservoir topologies are shown in
Fig. 11, which also only includes the real energy and energy pre-
dicted by SDLR and SDLRB. In view of similar effects with the office
room, the curves and data of prediction errors are omitted here.
4.4. Storage room

A storage room is generally stored with items requiring a
constant temperature for storage. The original energy consump-
tion of a storage room in the building in 5 working days is shown



Table 4
Minimum errors of SDLR and SDLRB for entire prediction of the office room with
reservoir size N¼50.

Error SDLR SDLRB

MSE (�10�4) 11.55 7.69
RMSE (�10�2) 3.40 2.77
CV-RMSE (%) 5.80 4.73

Fig. 10. Original energy consumption of the computer room in 5 working days.
(a) Energy consumption from sockets. (b) Energy consumption from lights.
(c) Energy consumption from air-conditioners.

Fig. 12. Original energy consumption of the storage room in 5 working days.
(a) Energy consumption from sockets. (b) Energy consumption from lights.
(c) Energy consumption from air-conditioners.
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in Fig. 12, where the energy consumptions from sockets, lights and
air-conditioners are shown by three curves, respectively. It can be
seen that all the three curves display entirely different character-
istics, none of which still takes on the “double-peak” characteristic,
but the energy consumption from air-conditioners remains con-
stant in view of special storage requirements of items stored in-
side, while the other two curves of energy consumption are close
Fig. 11. Energy consumption prediction of the computer room. (a) Prediction of ener
(c) Prediction of energy consumption from air-conditioners.
to zero since nobody regularly works in the storage room, and
therefore almost no energy consumption from sockets and lights is
generated inside the room.

The energy consumption of the storage room is predicted with the
same approach as above, and the prediction results only with real
energy and energy predicted by SDLR and SDLRB are shown in Fig. 13.

4.5. Meeting room

The original energy consumption of a meeting room in the
building in 5 working days is shown in Fig. 14, where the energy
consumptions from sockets, lights and air-conditioners are shown
by three curves, respectively. Since the meeting room is occa-
sionally used without a fixed pattern, it can be seen that all the
three curves of energy consumption are close to zero. Therefore, it
is unnecessary to predict the energy consumption in the meeting
room.
gy consumption from sockets. (b) Prediction of energy consumption from lights.



Fig. 13. Energy consumption prediction of the storage room. (a) Prediction of energy consumption from sockets. (b) Prediction of energy consumption from lights.
(c) Prediction of energy consumption from air-conditioners.

Fig. 14. Original energy consumption of the meeting room in 5 working days.
(a) Energy consumption from sockets. (b) Energy consumption from lights.
(c) Energy consumption from air-conditioners.

Fig. 15. Prediction of energy consumption in the whole office building.
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4.6. Whole building

Finally, the energy consumption of all the rooms in the office
building is added up and then predicted by the developed topol-
ogies SDLR and SDLRB. The results of prediction are shown in
Fig. 15. The minimum CV-RMSEs of the two topologies are 4.97%
and 3.72%, respectively, showing that the two topologies are suf-
ficient to achieve high accuracy in the prediction of energy con-
sumption of all the rooms in the whole building.

4.7. Sensitivity analysis

Furthermore, a sensitivity analysis on the ESNs with different
topologies is conducted, the purpose of which is to evaluate the
influence of topology parameters on the performance of ESNs in
energy consumption prediction. In order to simplify the display,
only the prediction of energy consumption from sockets in the
aforementioned office room is given as a typical example. The
reservoir size is set to N¼50 for each ESN with a different re-
servoir topology. In each training, network parameters, including
input connection ∈ [ ]v 0, 1 , feedforward connection ∈ [ ]r 0, 1 ,
feedback connection ∈ [ ]b 0, 1 and self-feedback connection

∈ [ ]d 0, 1 , are incrementally initialized within corresponding ran-
ges at an interval of 0.1 or fixed as appropriate. The results of
sensitivity analysis are shown in Fig. 16. In respect of DLR, per-
formance sensitivity of input connection v and feedforward con-
nection r is shown in Fig. 16(a). For DLRB, Fig. 16(b) shows the
performance sensitivity to changes in two parameters, namely the
feedforward connection r and feedback connection b, while the
input connection v is fixed. Sensitivity of the input connection v

and feedforward connection r with fixed self-feedback connection
d in SDLR is given in Fig. 16(c), and performance changes with
respect to variations in the self-feedback connection d while the
input connection v and feedforward connection r remain un-
changed are shown in Table 5. For SDLRB, Fig. 16(d) illustrates the
performance sensitivity of feedback connection b and self-feed-
back connection d with unchanged input connection v and feed-
forward connection r. In general, all the developed reservoir
topologies present sufficient robustness with respect to small
variations in the parameters.



Fig. 16. Sensitivity analysis. (a) DLR. (b) DLRB. (c) SDLR. (d) SDLRB.

Table 5
Best input connection and feedforward connection for SDLR with different self-
feedback connections in prediction of energy consumption from sockets in the
office room.

v r d MSE (�10�4)

0.4 0.9 0.2 5.12
0.4 0.9 0.4 3.84
0.4 0.9 0.6 3.03
0.4 0.9 0.8 3.71
0.4 0.9 1 4.88
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5. Conclusion and future work

In this paper, several simplified reservoir topologies of ESNs are
developed and applied to the prediction of energy consumption in an
office building, where rooms are classified into several types, including
office rooms, computer rooms, storage rooms, meeting rooms, etc. The
performance of ESNs with different reservoir topologies is compared,
and a sensitivity analysis on the parameters of reservoir topologies is
conducted. A case study is given to show the excellent performance of
ESNs with the developed simplified reservoir topologies in energy
consumption prediction of an office building.

However, several important factors may affect the energy
consumption in an office building, including the weather condi-
tions, building envelope, internal loads, outdoor air flow rate and
infiltration rate, etc. Only the available data of outside air tem-
perature and building occupancy are presented in this paper. In
future work, we will try to collect and incorporate more input data
into the prediction models, with a view to further improving the
prediction accuracy. On the other hand, we focus on the energy
consumption in working rooms in this paper, but we will collect
the data of energy consumption in public areas in the future, in-
cluding the passages, restrooms, etc., so that the entire energy
consumption of the building can be predicted.

In addition, based on the prediction results of energy con-
sumption in the office building, a control algorithm may be
developed to optimize the energy consumption in the office
building by installing an energy storage equipment in each room
as the control variable. Moreover, renewable resources such as
solar and wind energies may be introduced into the control system
for further optimization of energy consumption.
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