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In this paper, the continuous-time input-constrained nonlinear ∞H state feedback control under event-
based environment is investigated with adaptive critic designs and neural network implementation. The
nonlinear ∞H control issue is regarded as a two-player zero-sum game that requires solving the Ha-
milton–Jacobi–Isaacs equation and the adaptive critic learning (ACL) method is adopted toward the
event-based constrained optimal regulation. The novelty lies in that the event-based design framework is
combined with the ACL technique, thereby carrying out the input-constrained nonlinear ∞H state
feedback via adopting a non-quadratic utility function. The event-based optimal control law and the
time-based worst-case disturbance law are derived approximately, by training an artificial neural net-
work called a critic and eventually learning the optimal weight vector. Under the action of the event-
based state feedback controller, the closed-loop system is constructed with uniformly ultimately
bounded stability analysis. Simulation studies are included to verify the theoretical results as well as to
illustrate the event-based ∞H control performance.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

When coping with nonlinear optimal regulation designs during
various control practices, we always encounter the difficulty of
solving the Hamilton–Jacobi–Bellman (HJB) equation [1]. In parti-
cular, the input-constrained control design is a more complicated
problem than the traditional unconstrained design task [2,3].
Though dynamic programming is deemed as a basic strategy to
handle optimal control problems, there still exists a serious issue
called the “curse of dimensionality”. Similarly, from the point of
minimax optimization, the ∞H control problem can be formulated
as a two-player zero-sum differential game. In order to obtain a
controller that minimizes the cost function in the worst-case
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disturbance, it is required to find the Nash equilibrium solution by
dealing with the Hamilton–Jacobi–Isaacs (HJI) equation. Never-
theless, it is also intractable to gain an analytic solution of the HJI
equation in case of nonlinear systems. Therefore, various approx-
imate methods have been proposed to overcome the difficulty in
handling the HJB and HJI equations. Among that, by involving
neural networks for function approximation, the adaptive or ap-
proximate dynamic programming (ADP) was founded by Werbos
[4] to solve optimal control problems forward-in-time. As Lewis
and Liu [5] stated, there exists a fundamental idea in ADP which is
similar as designing advanced adaptive systems with neural net-
work technique (see, e.g., [6–9]). Note that therein, various non-
linearities, such as uncertain dynamics, input saturation, and
dead-zone input, were considered and handled by constructing
powerfully adaptive and neural systems. Hence, it is greatly im-
portant to understand and construct more intelligent adaptive
systems, especially optimal adaptive systems, with the help of ADP
methodology. Actually, it is observed that ADP and related fields
have gained much development in various topics, such as adaptive
optimal regulation [10–13], optimal tracking control [14–17], ro-
bust optimal control [18–20] and so on. Recently, the nonlinear ∞H
control and the non-zero-sum game have also been paid special
attention under ADP framework [21–26]. For example, Abu-Khalaf
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et al. [21] performed policy iterations on both players (constrained
control law and disturbance law), so as to solve the HJI equation of

∞H state feedback control problem with input saturation. Liu et al.
[25] studied the neural-network-based zero-sum game for a class
of nonlinear discrete-time systems via the iterative ADP algorithm.
Note that the above results are all derived with the traditional
time-based design manner.

When designing automatic control systems, especially dis-
tributed and networked systems, the event-based approach has
gained much attention in the last decade, since people can benefit
greatly from it in terms of decreasing the computation complexity
and enhancing the control efficiency [27–34]. Eqtami et al. [28]
proposed an event-based strategy for state feedback control of
discrete-time nonlinear systems. Tallapragada and Chopra [29,30]
developed an event-based control algorithm for trajectory tracking
of continuous-time nonlinear systems. Li et al. [31,32] and Dong
et al. [33] studied the event-triggered state estimation and syn-
chronization control for complex networks with the involvement
of time-varying delays, uncertain inner coupling, and state-de-
pendent noises. Ma et al. [34] constructed both centralized and
decentralized event-triggered control protocols for group con-
sensus to cope with energy consumption and communication
constraint that may be encountered in physical implementations.
In particular, the combination of event-based mechanism and ADP
method provides a novel channel for achieving advanced non-
linear optimal control with adaptivity [35–38]. Among them,
Vamvoudakis [35] originally proposed an event-based adaptive
optimal control strategy for continuous-time affine nonlinear
systems. Note that under the new framework, the ADP-based
controller is updated only when an event is triggered, thereby
reducing the computational burden of learning and control.
However, the existing research is conducted either for nonlinear
regulation problem, or without considering the input constraints,
which calls for an extension to input-constrained zero-sum game
design under event-based formulation. This motivates our re-
search. Note that the main difficulty and challenge of introducing
the event-based framework is how to conduct the critic learning
and analyze the closed-loop stability in case that the event-based
state vector is taken into consideration.

This paper focuses on the event-based input-constrained non-
linear ∞H state feedback control with the idea of ADP. In order to
emphasize the ability of adaptivity and self-learning, we call the
ADP architecture established here as adaptive critic learning (ACL).
The main contribution of this paper lies in that the event-based
design framework is combined with the ACL technique, so as to
accomplish the input-constrained nonlinear ∞H state feedback.
The rest of this paper is organized as follows. A brief description of
the input-constrained nonlinear ∞H control problem is provided in
Section 2. The ACL methodology for the event-based input-con-
strained nonlinear ∞H control is developed in Section 3 with
closed-loop stability analysis. The simulation studies and the
concluding remarks are presented in Sections 4 and 5, respectively.

For convenience, the following notations will be utilized
throughout the paper.  represents the set of all real numbers. n

is the Euclidean space of all n-dimensional real vectors. ×n m is the
space of all ×n m real matrices. ∥·∥ denotes the vector norm of a
vector in n or the matrix norm of a matrix in ×n m. In represents
the ×n n identity matrix. λ (·)max and λ (·)min calculate the maximal
and minimal eigenvalues of a matrix, respectively. κC denotes the
class of functions having continuous κ-th derivative. Let Ω be a
compact subset of n and Ψ Ω( ) be the set of admissible controls on
Ω. = { …} 0, 1, 2, denotes the set of all non-negative integers. In
addition, the superscript “ T” is taken for representing the trans-
pose operation and ∇(·) ≜ ∂(·) ∂x/ is employed to denote the gra-
dient operator.
2. Problem description of the input-constrained nonlinear ∞H
control problem

Let us consider a class of continuous-time nonlinear systems
with external perturbations described by

̇ ( ) = ( ( )) + ( ( )) ( ) + ( ( )) ( ) ( )x t f x t g x t u t h x t v t ; 1a

( ) = ( ( )) ( )z t Q x t , 1b

where Ω( ) ∈ ⊂ x t n is the state vector, Ω( ) ∈ ⊂ u t u
m is the

control vector, ( ) ∈ v t q is the perturbation vector with
( ) ∈ [ ∞)v t L 0,2 , ( ) ∈ z t p is the objective output, and (·)f , (·)g , and
(·)h are differentiable in their arguments with ( ) =f 0 0. The con-

strained control set is defined as Ω = { ∈ | | < ¯ = … }u u u i m: , 1, 2, ,u
m

i i .
We let ( ) =x x0 0 be the initial state and x¼0 be the equilibrium
point of the controlled plant.

Assumption 1. The system function f(x) is Lipschitz continuous on
a set Ω in n containing the origin and the system (1a) is
controllable.

With Assumption 1, for nonlinear ∞H control, it is aimed at
obtaining a state feedback control law = ( )u u x such that the
closed-loop form of system (1a) is asymptotically stable, and si-
multaneously, has L2-gain no larger than ϱ, that is

∫ ∫τ τ τ τ∥ ( )∥ + ( ) ≤ ϱ ( ) ( )
( )

∞ ∞
⎜ ⎟⎛
⎝

⎞
⎠Q x Y u v Pvd d ,

20

2 2

0

T

where ∥ ( )∥ = ( ) ( )Q x x t Qx t2 T and Q and P are symmetric positive
definite matrices with appropriate dimensions. If the condition (2) is
satisfied, the closed-loop system is said to have L2-gain no larger than
ϱ. For unconstrained control problem, we often select a quadratic
utility regarding to u as ( ) = ( ) ( )Y u u t Ru tT with R being a symmetric
positive definite matrix. However, for input-constrained control pro-
blem, inspired by [2,21], a non-quadratic utility is adopted by choosing

∫ φ ς ς( ) = ( ) ( )
−Y u R2 d , 3

u

0

T

where φ (·) ∈ m is a m-dimensional function, φ−T denotes φ( )−1 T, and
φ ς φ ς φ ς φ ς( ) = ( ( ) ( ) … ( ))− − − −, , , m m

1
1

1
1 2

1
2

1 T. Meanwhile, φ (·)i is a strictly
monotonic odd function satisfying φ| (·) | < ( = … )i m1 1, 2, ,i and be-
longing to κ( ≥ )κC 1 and Ω( )L2 .

Remark 1. It is important to point out that this kind of non-
quadratic utility is a nominal choice in light of the literature, such
as [2,21]. Clearly, Y(u) is positive definite since φ (·)i is a monotonic
odd function, for instance, φ (·) = (·)tanhi .

As is known, the ∞H control problem can be formulated as a two-
player zero-sum differential game, where the control input is a mini-
mizing player while the disturbance is a maximizing one [21,23,24,38].
Note that the solution of ∞H control problem is the saddle point of
zero-sum game theory, denoted as ( )⁎ ⁎u v, , where ⁎u and ⁎v are the
optimal control and the worst-case disturbance, respectively.

Define the infinite horizon cost function as

∫ τ τ τ τ( ( ) ) = ( ( ) ( ) ( )) ( )
∞

J x t u v U x u v, , , , d , 4t

where

( ) = + ( ) − ϱU x u v x Qx Y u v Pv, , T 2 T

represents the utility function. For the two-player zero-sum dif-
ferential game, our goal is to find the feedback saddle point so-
lution ( )⁎ ⁎u v, , such that the following Nash condition holds:

( ) = ( ) = ( )⁎J x J x u v J x u vmin max , , max min , , .
u v v u

0 0 0
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Note that the proposed two-player optimal control problem has a
unique solution if the above condition is satisfied [22].

For any admissible control law Ψ Ω∈ ( )u , if the associated cost
function (4) is continuously differentiable, then its infinitesimal
version is the nonlinear Lyapunov equation

= ( ) + (∇ ( )) ( ( ) + ( ) + ( ) )U x u v J x f x g x u h x v0 , , T

with ( ) =J 0 0. Define the Hamiltonian of system (1a) as

( ∇ ( )) = ( ) + (∇ ( )) ( ( ) + ( ) + ( ) ) ( )H x u v J x U x u v J x f x g x u h x v, , , , , . 5T

Based on optimal control theory, the optimal cost function ( )⁎J x
satisfies the HJI equation

= ( ∇ ( )) ( )
⁎H x u v J x0 min max , , , . 6u v

The saddle point solution ( )⁎ ⁎u v, satisfies the following two sta-
tionary conditions:

∂ ( ∇ ( ))
∂

= ( )
⁎H x u v J x

u
, , ,

0; 7a

∂ ( ∇ ( ))
∂

= ( )
⁎H x u v J x

v
, , ,

0. 7b

Combining (6) with (7) yields the optimal control law and the
worst-case disturbance law as follows:

φ( ) = − ( )∇ ( )
( )

⁎ − ⁎⎛
⎝⎜

⎞
⎠⎟u x R g x J x

1
2

;
8a

1 T

( ) =
ϱ

( )∇ ( )
( )

⁎ − ⁎v x P h x J x
1

2
.

8b2
1 T

Clearly, the formula (8) reveals that

φ(∇ ( )) ( ) = − ( ( )) ( )⁎ − ⁎J x g x u x R2 ; 9aT T

(∇ ( )) ( ) = ϱ ( ) ( )⁎ ⁎J x h x v x P2 . 9bT 2 T

Using the expressions of (8) and (9b), the HJI equation (6), i.e.,
( ∇ ( )) =⁎ ⁎ ⁎H x u v J x, , , 0, turns to be the following form:

= + ( ) − ϱ ( ) ( )

+ (∇ ( )) ( ( ) + ( ) ( ) + ( ) ( ))

= + ( ) + (∇ ( )) ( ( ) + ( ) ( )) + ϱ ( ) ( )

= + ( ) + (∇ ( )) ( ( ) + ( ) ( ))

+
ϱ

(∇ ( )) ( ) ( )∇ ( ) ( ) =
( )

⁎ ⁎ ⁎

⁎ ⁎ ⁎

⁎ ⁎ ⁎ ⁎ ⁎

⁎ ⁎ ⁎

⁎ − ⁎ ⁎

x Qx Y u v x Pv x

J x f x g x u x h x v x

x Qx Y u J x f x g x u x v x Pv x

x Qx Y u J x f x g x u x

J x h x P h x J x J

0

1
4

, 0 0.
10

T 2 T

T

T T 2 T

T T

2
T 1 T

Note that (10) is the traditional time-based HJI equation, which is
difficult to solve in theory. This motivates us to pursue an alternate
avenue to overcome the difficulty. Fortunately, the ADP method is
an effective channel to solve the nonlinear optimization and op-
timal control problems. Hence, in the sequel, we construct a
neural-network-based optimal control method with event-based
design fashion to handle the input-constrained nonlinear ∞H
control problem.
3. Event-based input-constrained nonlinear ∞H state feedback
control design with ACL

In this section, we develop the event-based input-constrained
nonlinear ∞H control law with ACL, which includes three parts:
event-based formulation of the optimal control design, neural
network implementation of the ACL controller, and stability ana-
lysis of the closed-loop system.

3.1. Event-based formulation of the optimal control design

In the general framework of the event-based control design, we
define a monotonically increasing sequence of triggering instants
{ } =

∞sj j 0, where sj represents the jth consecutive sampling instant
satisfying < +s sj j 1 with ∈ j . Then, the output of the sampled-
data component is a sequence of sampled state denoted as

( ) ≜ ^x s xj j for all ∈ [ )+t s s,j j 1 . The event-triggered error function
between the current state and the sampled state is defined as

( ) = ^ − ( ) ∀ ∈ [ ) ( )+e t x x t t s s, , . 11j j j j 1

Usually, under the event-based formulation, the triggering instants
are determined by a certain triggering condition. We say an event
is triggered if it is not satisfied at =t sj. The triggering condition is
often established in terms of the event-triggered error and a state-
dependent threshold. At every triggering instant, the system state
is sampled that resets the event-triggered error ej(t) to zero, and
accordingly, the state feedback controller μ( ( )) = (^ ) ≜ (^ )u x s u x xj j j is

updated. Note that the control μ (^ )xj is a function of the event-
based state vector rather than a time-based manner and the
control sequence μ{ (^ )} =

∞xj j 0 becomes a continuous-time signal via
the function of a zero-order hold. Hence, this control signal can
actually be regarded as a piecewise constant function and during
any time interval [ )+s s,j j 1 , it is μ (^ )xj with ∈ j .

Using the fact that ^ = ( ) + ( )x x t e tj j and applying the control

signal μ (^ )xj , the closed-loop form of system (1a) turns to be the
following form:

μ

μ

̇ ( ) = ( ( )) + ( ( )) (^ ) + ( ( )) ( ( ))

= ( ( )) + ( ( )) ( ( ) + ( )) + ( ( )) ( ( ))

∀ ∈ [ ) ( )+

x t f x t g x t x h x t v x t

f x t g x t x t e t h x t v x t

t s s

,

, . 12

j

j

j j 1

With the event-based formulation, the state feedback control law
(8a) becomes

μ φ(^ ) = − (^ )∇ (^ )
( )

⁎ − ⁎⎛
⎝⎜

⎞
⎠⎟x R g x J x

1
2

.
13j j j

1 T

Note that in this paper, we keep the disturbance law unchanged
between the time/event transformation. Then, applying the time-
based worst-case disturbance law (8b) and the event-based opti-
mal control law (13), the event-based HJI equation can be written
as

μ

μ μ

( (^ ) ( ) ∇ ( ))

= + ( (^ )) + (∇ ( )) ( ( ) + ( ) (^ ))

+
ϱ

(∇ ( )) ( ) ( )∇ ( ) ( ) =

⁎ ⁎ ⁎

⁎ ⁎ ⁎

⁎ − ⁎ ⁎

H x x v x J x

x Qx Y x J x f x g x x

J x h x P h x J x J

, , ,

1
4

, 0 0,

j

j j
T T

2
T 1 T

which, generally, is not equal to zero and thus is not same as the
time-based HJI equation (10).

For the event-based control design, we make the following
assumption and then develop the main theorem for stating the
asymptotic stabilization.

Assumption 2 (cf. [35]). The feedback controller u(x) is Lipschitz
continuous with respect to the event-triggered error ej(t) such that
∥ ( ( )) − (^ )∥ ≤ ∥ ( )∥u x t u x e tj j1 , where 1 is a positive real constant.

Theorem 1. For the nonlinear system (1a) with cost function (4), the
sampled-data closed-loop system is formed as (12). The disturbance
law is given by (8b) while the sampled-data control law is developed
by (13) for all ∈ [ )+t s s,j j 1 with ∈ j . In case that the triggering
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condition is defined as

( )
η λ λ

λ
∥ ( )∥ ≤

( − ) ( )∥ ∥ + ( ) − − ϱ ( ) ( )

( )
≜

⁎ ⁎ ⁎

14
e t

Q x Y u v x Pv x

R R
e

1
,j T

2 1
2

min
2

1
2 T

max
T

1
2

where eT is the positive threshold and η ∈ ( )0, 11 is a designed
parameter of the sample frequency, then the closed-loop system (12)
is asymptotically stable.

Proof. Choose ( ) = ( ( ))⁎L t J x t1 as the Lyapunov function. With the
disturbance law (8b) and the sampled-data control law (13), we
take the derivative of the Lyapunov function ( )L t1 along the tra-
jectory of system (12) and obtain that ̇ ( ) = ( ( ))⁎L t J x t td /d1 equals to

( )μ̇ ( ) = (∇ ( )) ( ) + ( ) (^ ) + ( ) ( ) ( )
⁎ ⁎ ⁎L t J x f x g x x h x v x . 15j1

T

According to the time-based HJI equation (10), we have

(∇ ( )) ( ( ) + ( ) ( )) = − − ( ) − (∇ ( )) ( ) ( )

+ ϱ ( ) ( )

⁎ ⁎ ⁎ ⁎ ⁎

⁎ ⁎

J x f x h x v x x Qx Y u J x g x u x

v x Pv x

T T T

2 T

which, combined with (9a), yields the reduction of (15) to

( )φ μ̇ ( ) = − − ( ) + ( ( )) ( ) − (^ )

+ ϱ ( ) ( )

⁎ − ⁎ ⁎ ⁎

⁎ ⁎

L t x Qx Y u u x R u x x

v x Pv x

2 j1
T T

2 T

By applying the Cauchy–Schwarz inequality to the term

( )φ μ( ( )) ( ) − (^ )− ⁎ ⁎ ⁎u x R u x x2 j
T and using Assumption 2, we further

obtain

φ λ

μ

η λ η λ λ

λ

̇ ( ) ≤ − − ( ) + ∥ ( ( ))∥ + ( )∥ ( )

− (^ )∥ + ϱ ( ) ( )

≤ − ( )∥ ∥ + ( − ) ( )∥ ∥ − ( ) +

+ ( ) ∥ ( )∥ + ϱ ( ) ( ) ( )

⁎ − ⁎ ⁎

⁎ ⁎ ⁎

⁎

⁎ ⁎

L t x Qx Y u u x R R u x

x v x Pv x

Q x Q x Y u

R R e t v x Pv x

1

, 16

j

j

1
T 1 2

max
T

2 2 T

1
2

min
2

1
2

min
2

1

max
T

1
2 2 2 T

where the bounded term λ1 is introduced when considering the
inequality

( ) ( )∑ ∑φ φ φ λ∥ ( ( ))∥ = ( ( )) ≤ ( ¯ ) ≜
( )

− ⁎

=

− ⁎

=

−u x u x u .
17i

m

i i
i

m

i i
1 2

1

1 2

1

1 2
1

In case the triggering condition (14) holds, (16) implies that
η λ̇ ( ) ≤ − ( )∥ ∥ <L t Q x 01 1

2
min

2 for any ≠x 0. As a result, the con-
ditions for Lyapunov local stability theory are satisfied, which ends
the proof. □

3.2. Neural network implementation of the ACL controller

In neural network implementation, let us denote lc as the
number of neurons in the hidden layer. According to the universal
approximation property, the cost function J(x) can be re-
constructed by a neural network with a single hidden layer on a
compact setΩ as ω σ ε( ) = ( ) + ( )J x x xc c c

T , where ω ∈ c
lc is the ideal

weight vector, σ ( ) ∈ xc
lc is the activation function, and ε ( ) ∈ xc is

the reconstruction error. Then, the gradient vector is

σ ω ε∇ ( ) = (∇ ( )) + ∇ ( ) ( )J x x x . 18c c c
T

Since the ideal weight is unknown, a critic neural network is built

to approximate the cost function as ω σ^ ( ) = ^ ( )J x xc c
T , where ω̂ ∈ c

lc

denotes the estimated weight vector. Similarly, we have the gra-
dient vector

σ ω∇^ ( ) = (∇ ( )) ^ ( )J x x . 19c c
T

Under the circumstance of neural network expression, according
to (8b), (13), and (18), the event-based optimal control law and the
time-based worst-case disturbance law are written as
( )μ φ σ ω ε(^ ) = − (^ ) (∇ (^ )) + ∇ (^ )
( )

−⎛
⎝⎜

⎞
⎠⎟x R g x x x

1
2

;
20aj j c j c c j

1 T T

σ ω ε( ) =
ϱ

( ) (∇ ( )) + ∇ ( )
( )

⎛
⎝⎜

⎞
⎠⎟v x h x x x

1
2

.
20b

c c c2
T T

By combining (8b) and (13) with (19), the approximate values of
the event-based optimal control law (20a) and time-based worst-
case disturbance law (20b) are

μ φ σ ω^(^ ) = − (^ )(∇ (^ )) ^
( )

−⎛
⎝⎜

⎞
⎠⎟x R g x x

1
2

;
21aj j c j c

1 T T

σ ω^( ) =
ϱ

( )(∇ ( )) ^
( )

v x h x x
1

2
.

21b
c c2

T T

As for the Hamiltonian (5), when taking the neural network ex-
pression (18) into account, it becomes

( )
( ) ( )

μ ω μ

ω σ μ

(^ ) ( ) = ( (^ ) ( ))

+ ∇ ( ) ( ) + ( ) (^ ) + ( ) ( ) ≜ 22

H x x v x U x x v x

x f x g x x h x v x e

, , , , ,

,

j c j

c c j cH
T

where

( )ε μ= − (∇ ( )) ( ) + ( ) (^ ) + ( ) ( )e x f x g x x h x v xcH c j
T

represents the residual error due to the neural network approx-
imation. Using (19), the approximate Hamiltonian is

( )
( ) ( )

μ ω μ

ω σ μ

^ (^ ) ( ) ^ = ( (^ ) ( ))

+ ^ ∇ ( ) ( ) + ( ) (^ ) + ( ) ( ) ≜ 23

H x x v x U x x v x

x f x g x x h x v x e

, , , , ,

.

j c j

c c j c
T

Let the error vector between the ideal weight and the estimated
value be ω ω ω˜ = − ^c c c. Combining (22) with (23) yields

( )ω σ μ= − ˜ ∇ ( ) ( ) + ( ) (^ ) + ( ) ( ) + ( )e x f x g x x h x v x e . 24c c c j cH
T

For training the critic network, we design ω̂c to minimize the
objective function = ( )E e e1/2c c c

T . Note that the approximated
control law (21a) and disturbance law (21b) are often used during
the learning process because of the unavailability of the optimal
control law μ (^ )xj and the worst-case disturbance law v(x). Based
on (23), we adopt the normalized steepest descent algorithm to
tune the weight vector as follows:

( )
ω α

ϕ ϕ ω

α ϕ
ϕ ϕ

μ ϕ ω

^ ̇ = −
( + )

∂
∂ ^

= −
( + )

( ^(^ ) ^( )) + ^
( )

⎛
⎝⎜

⎞
⎠⎟

E

U x x v x

1
1

1
, , ,

25

c c
c

c

c j c

T 2

T 2
T

where α > 1/2c is the learning rate, the vector ϕ is used to denote

( )σ μ∇ ( ) ( ) + ( ) ^ (^ ) + ( ) ^ ( )x f x g x x h x v xc j , and the term ϕ ϕ( + )1 T 2 is

employed for normalization. According to [39], if the set σ{ } =ci i
l

1
c is

linearly independent and the control law μ̂ can stabilize system
(1a), then the set ϕ{ } =i i

l
1

c is also linearly independent with i being

the i-th element of the vectors involved. Then, recalling ω ω˜ ̇ = − ^ ̇
c c

and (24), we further derive that the error dynamics is

ω α ϕ
ϕ ϕ

ϕ ω˜ ̇ = −
( + )

( ˜ − )
( )

e
1

.
26

c c c cHT 2
T

Under the event-based control mechanism, the closed-loop sam-
pled-data system includes a flow dynamics for all ∈ [ )+t s s,j j 1 and a
jump dynamics for all = +t sj 1 with ∈ j . When defining an aug-

mented state vector as ω= [ ^ ˜ ] ∈ +x x, ,j c
n lT T T T 2 c and based on (11),
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(12), and (26), the dynamics of the impulsive system can be de-
scribed by
where ( ) =−
ϵ→t lim 0 . (t � ϵ). Note that as an impulsive system,

the related stability issue should be directed against two cases for
a complete discussion.

3.3. Stability analysis of the closed-loop system

In what follows, the uniformly ultimately bounded (UUB) sta-
bility of the closed-loop system is analyzed. Before proceeding, we
present a fact as follows.

Fact 1. With the description of the non-quadratic utility (3), it is
clear that φ (·) is Lipschitz continuous such that for any m-dimen-
sional vectors ξ1 and ξ2, we have φ ξ φ ξ ξ ξ∥ ( ) − ( )∥ ≤ ∥ − ∥1 2 2 1 2 ,
where 2 is a positive real constant.

In addition, the following assumptions are required for UUB
stability, as usually stated in ADP literature like [36,38].

Assumption 3. For the control matrix g(x), it is Lipschitz con-
tinuous such that ∥ ( ) − (^ )∥ ≤ ∥ ( )∥g x g x e tj j3 , where 3 is a po-
sitive constant and it is also upper bounded such that
∥ ( )∥ ≤g x gmax, where gmax is a positive constant.

Assumption 4. The derivative of the activation function is Lip-
schitz continuous such that σ σ∥∇ ( ) − ∇ (^ )∥ ≤ ∥ ( )∥x x e tc c j j4 , where

4 is a positive constant. The derivative term σ∇ ( )xc is upper
bounded such that σ σ∥∇ ( )∥ ≤ ∇xc c max, where σ∇ c max is a positive
constant. The derivative of the reconstruction error is upper
bounded such that ε ε∥∇ ( )∥ ≤ ∇xc c max, where ε∇ c max is a positive
constant. The residual error term is upper bounded by a positive
constant, i.e., | | ≤e ecH cH max.

Theorem 2. For nonlinear system (1a), we suppose that Assumptions
3 and 4 hold. The event-based approximate optimal control law and
time-based approximate worst-case disturbance law are given by
(21a) and (21b), respectively, where the constructed critic network is
tuned by (25). Then, under their conjunct actions, the closed-loop
system (12) is asymptotically stable and the weight estimation error
is UUB if the triggering condition

η λ λ
λ ω λ

∥ ( )∥ ≤
( − ) ( )∥ ∥ − − ϱ ^ ( ) ^( )

( ) ∥ ∥ ∥ ^ ∥
≜ ^

( )−
e t

Q x v x Pv x

R R R
e

1
,

28
j

c
T

2 2
2

min
2

1
2 T

max
T

2
2 1 2 2

2

and the inequality

ω λ
λ

∥ ˜ ∥ >
( )29

c
4

3

are satisfied, where êT is the positive threshold, η ∈ ( )0, 12 is the
parameter to be designed for reflecting the sample frequency, and the
terms λ2, λ3, and λ4 are given in (35) and (42) with the learning rate
being chosen as α > 1/2c .

Proof. Considering the impulsive dynamical system (27), we
choose a Lyapunov function candidate composed of three terms as
( ) = ( ) + ( ) + ( )L t L t L t L t2 21 22 23 , where ( ) = ( )⁎L t J x21 , ( ) = (^ )⁎L t J xj22 ,
and ω ω( ) = ( ) ˜ ˜L t 1/2 c c23

T .
Case 1: The events are not triggered, i.e., ∀ ∈ [ )+t s s,j j 1 . Taking the

time derivative of the Lyapunov function along the trajectory of
the system (27), it obtains

( )μ̇ ( ) = (∇ ( )) ( ) + ( ) ^(^ ) + ( ) ^( ) ( )
⁎L t J x f x g x x h x v x ; 30aj21

T

̇ ( ) = ( )L t 0; 30b22

( )α ω ϕ
ϕ ϕ

ϕ ω̇ ( ) = − ˜
( + )

˜ −
( )

L t e
1

.
30c

c c c cH23
T

T 2
T

For the first term ̇ ( )L t21 , based on (9) and (10), we can obtain the
following formula:

μ

φ μ

̇ ( ) = − − ( ) − ϱ ( ) ( )

− (∇ ( )) ( )( ( ) − ^(^ )) + (∇ ( )) ( ) ^ ( )

= − − ( ) − ϱ ( ) ( )

+ ( ( )) ( ( ) − ^(^ )) + ϱ ( ) ^( ) ( )

⁎ ⁎ ⁎

⁎ ⁎ ⁎

⁎ ⁎ ⁎

− ⁎ ⁎ ⁎

L t x Qx Y u v x Pv x

J x g x u x x J x h x v x

x Qx Y u v x Pv x

u x R u x x v x Pv x2 2 . 31

j

j

21
T 2 T

T T

T 2 T

T 2 T

Letting =P T , where is also a symmetric positive definite
matrix, considering the inequality

( )ϱ ( ) ^( ) ≤ ϱ ( ) ( ) + ^ ( ) ^( )⁎ ⁎ ⁎v x Pv x v x Pv x v x Pv x2 ,2 T 2 T T

and eliminating the effect of the term − ( )⁎Y u , it follows from (31)
that

( )

φ μ

λ λ μ

̇ ( ) ≤ − + ϱ ^ ( ) ^ ( ) + ( ( )) ( ( ) − ^ (^ ))

≤ − + ϱ ^ ( ) ^ ( ) + + ( )∥ ( ) − ^ (^ )∥

− ⁎ ⁎

⁎ 32

L t x Qx v x Pv x u x R u x x

x Qx v x Pv x R R u x x

2

,

j

j

21
T 2 T T

T 2 T
1 max

T 2

where λ1 is given in (17). Considering (8a) and (18), the time-based
optimal control can be rewritten as

φ σ ω ε( ) = − ( ) (∇ ( )) + ∇ ( )
( )

⁎ −
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟u x R g x x x

1
2

.
33

c c c
1 T T

Adopting the neural network expression of μ̂ (^ )xj and ( )⁎u x , i.e.,
(21a) and (33), and observing Fact 1, we have

( )
μ

σ ω σ ω ε

∥ ( ) − ^(^ )∥ ≤ (^ )

(∇ (^ )) ^ − ( ) (∇ ( )) + ∇ ( )

⁎ −

−

u x x R g x

x R g x x x

1
2

,

j j

c j c c c c

2
1 T

T 1 T T

which can be combined with the relationship ω ω ω= ^ + ˜c c c to
further yield

( )
( )

μ σ ω σ ω

σ σ ω

σ ω ε

∥ ( ) − ^(^ )∥ ≤ (^ )(∇ (^ )) ^ − ( )(∇ ( )) ^ −

≤ (^ )(∇ (^ )) − ( )(∇ ( )) ^

+ ( ) (∇ ( )) ˜ + ∇ ( )
( )

⁎ − −

−

−

⎛
⎝⎜

⎞
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u x x R g x x R g x x

R g x x g x x

R g x x x

1
4
1
2

.
34

j j c j c c c

j c j c c

c c c

2
2
2 1 T T 1 T T

2
2 1 T T T T

2

1 T T 2

By using the bounded conditions in Assumptions 3 and 4, we can
find that

( )
( )

σ σ

σ σ σ

σ σ σ

σ λ

(^ )(∇ (^ )) − ( )(∇ ( ))

= (∇ (^ ) − ∇ ( )) (^ ) + ∇ ( )( (^ ) − ( ))

≤ ∥(∇ (^ ) − ∇ ( )) (^ )∥ + ∥∇ ( )( (^ ) − ( ))∥

≤ ∇ + ∥ ( )∥ ≜ ∥ ( )∥ ( )

g x x g x x

x x g x x g x g x

x x g x x g x g x

g e t e t

2

2 2 , 35

j c j c

c j c j c j

c j c j c j

c j j

T T T T 2

2
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2

4
2
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2 2

2
2



Fig. 1. Convergence process of the weight vector. Fig. 3. Adjustment of the triggering condition.
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where the constant λ2 is introduced to denote the bounded term
σ∇ + gc3

2
max

2
4
2

max
2 . Besides, it can be observed that

σ ω ε σ ω ε(∇ ( )) ˜ + ∇ ( ) ≤ (∇ ∥ ˜ ∥ + ∇ ) ( )x x 2 . 36c c c c c c
T 2

max
2 2

max
2

Then, according to (34)–(36), we further obtain the reduction of
(32) as follows:

(
)

λ

λ ω λ

σ ω ε

̇ ( ) ≤ − + ϱ ^ ( ) ^( ) +

+ ( ) ∥ ∥ ∥ ^ ∥ ∥ ( )∥

+ ∇ ∥ ˜ ∥ + ∇ ( )

−

L t x Qx v x Pv x

R R R e t

g g . 37

c j

c c c

21
T 2 T

1

max
T

2
2 1 2 2

2
2

max
2

max
2 2

max
2

max
2

For the term ̇ ( )L t23 , we expand the time derivative (30c), introduce
a lc-dimensional column vector ϕ ϕ ϕ ϕ= ( + )/ 11

T and a scalar
ϕ ϕ ϕ= +12

T , and then find that

α ω ϕ ϕ ω α
ω ϕ

ϕ
̇ ( ) = − ˜ ˜ +

˜
( )

L t e .
38

c c c c
c

cH23
T

1 1
T

T
1

2

Fig. 2. The state trajectory during the learning phase.
When applying Young's inequality to the second term of (38), we
can derive that

α
ω ϕ

ϕ
ω ϕ ϕ ω α

ϕ
˜

≤ ˜ ˜ +
( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟e

e1
2

.
39

c
c

cH c c c
cH

T
1

2

T
1 1

T 2
2

2
2

By recalling Assumption 4 and taking account of the fact that
ϕ ϕ ϕ= + ≥1 12

T , it follows from (38) and (39) that

α ω ϕ ϕ ω α
ϕ

α λ ϕ ϕ ω α

̇ ( ) ≤ − − ˜ ˜ +

≤ − − ( )∥ ˜ ∥ +
( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

L t
e

e

1
2 2

1
2

1
2

.
40

c c c c
cH

c c c cH

23
T

1 1
T 2 max

2

2
2

min 1 1
T 2 2

max
2

Note that if the persistence of excitation like condition is satisfied,
we have λ ϕ ϕ( ) > 0min 1 1

T .
By combining (30), (37), and (40), we can obtain the overall

time derivative as

( )

λ λ ω λ

λ ω λ

η λ η λ λ

λ ω λ

λ ω λ

̇ ( ) ≤ − + + ϱ ^ ( ) ^( ) − ∥ ˜ ∥ +

+ ( ) ∥ ∥ ∥ ^ ∥ ∥ ( )∥

≤ − ( )∥ ∥ + − ( )∥ ∥ +

+ ( ) ∥ ∥ ∥ ^ ∥ ∥ ( )∥
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−
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R R R e t
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where the positive terms λ3 and λ4 are

λ α λ ϕ ϕ

λ σ

= − ( )

− ( ) ∥ ∥ ∇ ( )−

⎛
⎝⎜

⎞
⎠⎟

R R R g

1
2

; 42a

c

c

3 min 1 1
T

max
T

2
2 1 2

max
2

max
2

λ λ ε α= ( ) ∥ ∥ ∇ + ( )
−R R R g e

1
2

. 42bc c cH4 max
T

2
2 1 2

max
2

max
2 2

max
2

Then, we can find that if the triggering condition (28) and the
inequality (29) are satisfied, the time derivative inequality (41)
becomes η λ̇ ( ) ≤ − ( )∥ ∥ <L t Q x 02 2

2
min

2 for any ≠x 0. In other
words, the derivative of the Lyapunov function candidate is ne-
gative during the flow for all ∈ [ )+t s s,j j 1 .



Fig. 5. The control input.

Fig. 6. Adjustment of the ratio function.Fig. 4. The state trajectory.
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Case 2: The events are triggered, i.e., ∀ = +t sj 1. The difference of
the chosen Lyapunov function candidate is

Δ ( ) = (^ ) − ( ( )) = Δ ( ) + Δ ( ) + Δ ( )+ +
−L t L x L x s L t L t L t .j j2 2 1 2 1 21 22 23

According to (28), (29), and (41), we know that ̇ ( ) <L t 02 for all
∈ [ )+t s s,j j 1 . Since the system state and cost function are con-

tinuous, we can obtain the time differences

Δ ( ) = (^ ) − ( ( )) ≤ ( )⁎
+

⁎
+

−L t J x J x s 0; 43aj j21 1 1

Δ ( ) = (^ ) − (^ ) ( )⁎
+

⁎L t J x J x ; 43bj j22 1

ω ω ω ωΔ ( ) = ˜ (^ ) ˜ (^ ) − ˜ ( ( )) ˜ ( ( )) ≤
( )+ + +

−
+

−⎛
⎝⎜

⎞
⎠⎟L t x x x s x s

1
2

0.
43cc j c j c j c j23

T
1 1

T
1 1

Based on (43) we derive Δ ( ) ≤ − (∥ ( )∥)+L t e sj j2 1 , where (·) is a

class- function and ( ) = ^ − ^
+ +e s x xj j j j1 1 . This implies that the

Lyapunov function candidate ( )L t2 is also decreasing at the
triggering instants ∀ = +t sj 1.
Considering Case 1 and Case 2, the triggering condition (28)

and the inequality (29) ensure that the closed-loop impulsive
system is asymptotically stable and the weight estimation error is
UUB. At this point, the proof is finished.□

Remark 2. Observing (42a), we find that the learning rate should
be chosen satisfying α > 1/2c , so as to ensure that the term λ3 is
positive. According to (29), we find that a larger learning rate can
lead to a greater value of λ3 and meanwhile, a smaller bound of ω̃c .
In practical, we really want to decrease the bound of UUB stability
as much as possible. In this sense, we can increase the learning
rate as much as possible. However, we cannot do that due to the
inherent weakness of neural network technique, such as the local
minimum point. Consequently, it is always an experimental choice
with engineering experience and intuition after considering a
tradeoff between control accuracy and computation complexity.

Remark 3. Note that the two triggering thresholds eT and êT de-
signed in Theorems 1 and 2 are different from each other. In
general, êT is employed to help to learn the critic weight and then
facilitate conducting the input-constrained ∞H control im-
plementation with the involvement of eT.
4. Simulation studies

In this section, an example is provided to verify the effective-
ness of the ACL strategy for event-based nonlinear ∞H control with
input constraints. We consider an input-affine nonlinear system
with an external perturbation as follows:

̇ =
− −

− +
+ ( )

+
−

( )
( )

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

x
x x

x x x x x
u x

x
v x

2

0.5 cos sin

1
sin

cos
0

,
44

1
3

2

1 2 1
2

2
3 1

2

where = [ ] ∈ x x x,1 2
T 2, ( ) ∈ u x , and ( ) ∈ v x are the state, con-

trol, and perturbation variables, respectively. The control input is
constrained to bound as | | ≤ ¯ =u u 0.5. As for the infinite horizon
cost function (4), the utility function is chosen as

∫ ς ς( ) = + ( ) − ϱ−U x u v x Qx R v Pv, , 2 tanh d ,
u

T

0

T 2 T
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where ϱ = 1.5, =Q I2 2, R¼ I, and =P I0.5 with I being the identity
matrix with suitable dimension.

We adopt the idea of ACL to design the event-based optimal
control. Let the number of neurons in the hidden layer be lc¼3. We
denote the weight vector of the critic network as the form
ω ω ω ω^ = [ ^ ^ ^ ], ,c c c c1 2 3

T. The activation function of the critic network is
experimentally selected as σ ( ) = [ ]x x x x x, , .c 1

2
1 2 2

2 T Besides, set the
learning rate of the critic network as α = 0.9c and let the initial
state of the controlled plant be = [ − ]x 1, 10

T. As for other pre-
specified parameters of the triggering condition (28), we choose

= 12 , η = 0.52 and λ = 92 . In addition, the sampling time of the
learning process is set as 0.1 s experimentally. During simulation,
we add a probing noise to guarantee the persistency of excitation
condition and observe that the weight vector of the critic network
finally converges to ω̂ = [ − ]1.4985, 1.1734, 2.0055c

T, as shown in
Fig. 1. In fact, we can observe that the convergence of the weight
vector has occurred after 550 s. Then, the probing signal is turned
off. The adjustment of the state trajectory during the learning
phase is presented in Fig. 2. We see that the state vector converges
to zero after the probing noise is turned off. Additionally, the ad-
justment of the triggering condition is depicted in Fig. 3.

Next, we turn to evaluate the ∞H control performance with the
obtained control law μ (^ )⁎ xj and the triggering condition (14). We
set the prespecified parameters as = 11 and η = 0.51 and select
the sampling time as 0.05 s. We apply the obtained control law to
the controlled plant (44) for 20 s with the following external
perturbation being introduced:

( ) =
( − ) >−( − )⎧⎨⎩v t

e t t t t3 cos , if ;
0, else.

t t
0 00

The corresponding simulation results are displayed in Figs. 4 and 5
when selecting =t 00 s. In detail, Fig. 4 shows the system state
trajectory while Fig. 5 displays the curve of event-based state
feedback controller. Here, we can observe that the control sig-
nal does not reach the constrained bound all the time (i.e.,
| | ≤ < ¯ =u u0.4108 0.5).

Finally, let us define a ratio function ϱ̄( )t , which is used to re-
flect the disturbance attenuation and formed as

( )∫ ∫

∫

τ τ ς ς τ

τ τ τ
ϱ̄ ( ) =

( ) ( ) + ( )

( ) ( )

τ( ) −

t
x Qx R

v Pv

2 tanh d d

d
.

t

t u

t

t
2

T
0

T

T

0

0

Via simulation, it is found that the ratio ϱ̄( )t converges to 0.9872 as
illustrated in Fig. 6. This implies that the ∞H control law designed in
this paper can attain a prespecified L2-gain performance level when
regarding the closed-loop system (i.e., ϱ̄( ) ≤ < ϱ =t 0.9935 1.5).

The above experimental results demonstrate that the obtained
event-based optimal controller possesses an excellent ability of
disturbance rejection.
5. Concluding remarks

An event-based input-constrained ∞H state feedback control
approach of nonlinear dynamical systems is developed with ACL.
The nonlinear ∞H control problem is transformed into a two-
player zero-sum differential game, which is solved by introducing
the event-based control mechanism and adopting the ACL-based
optimization methodology. The approximated event-based opti-
mal control law and time-based worst-case disturbance law are
derived via training a single critic network with closed-loop sta-
bility proof.

Note that in the current study, the control function derived by
(8a) is usually limited to a range | | ≤⁎u 1i when selecting
φ (·) = (·)tanhi , = …i m1, 2, , . In fact, we can introduce a diagonal
matrix ¯ = { ¯ ¯ … ¯ }U u u udiag , , , m1 2 and adopt a non-quadratic utility
function as the form

∫ φ ς ς( ) = ( ¯ ) ( )
− −Y u U R2 d , 45

u

0

T 1

such that the control function can be obtained by a more general
formulation

φ( ) = − ¯ ( )∇ ( )
( )

⁎ − ⁎⎛
⎝⎜

⎞
⎠⎟u x U R g x J x

1
2

,
46

1 T

where g(x) is the known control matrix. Then, how to obtain the
triggering condition in case that (45) and (46) are considered de-
serves further study in the future work. Additionally, how to re-
duce the requirement of relying on the system dynamics is also a
potential research direction.
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