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Optimum Design of Vibrating Cantilevers: 
A Classical Problem Revisited I 

F. Y. W A N G  2 

Communicated by L. Meirovitch 

Abstract. Optimum design of vibrating cantilevers is a classical prob- 
lem widely used in the literature and textbooks in structural optimiza- 
tion. The problem, originally formulated and solved by Karihaloo and 
Niordson (Ref. 5), was to find the optimal beam shape that will 
maximize the fundamental vibration frequency of a cantilever. Upon 
reexamination of the problem, it has been found that the original 
analysis and solution procedure can be simplified and improved sub- 
stantially. Specifically, the time-consuming inner loop devised for solv- 
ing the Lagrange multiplier in the original work has been proved to be 
totally unnecessary and thus should not be considered in the problem 
solution. This conclusion has ted to a new set of simplified equations 
for the construction of iteration schemes. New asymptotic expressions 
for the optimum design solution have been obtained and verified by 
numerical results. Numerical analysis has shown a significant improve- 
ment in convergence rate by the proposed new procedure. Also some 
obvious numerical errors in the original paper have been identified and 
corrected. 

Key Words. Cantilever beams, flexible manipulators, optimum design, 
fundamental frequency, successive iterations. 

I. Introduction 

Since the pioneering works by Beesack (Ref. 1), Schwarz (Refs. 2-3) ,  
and especially Niordson (Ref. 4), considerable progress has been made in 
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the optimum design of vibrating elastic structures. Niordson first showed in 
Ref. 4 that, for simply supported beams with geometrically similar cross 
sections, an increase of 6.6% in the lowest frequency of vibration can be 
achieved through optimum shape design. Later, Karihaloo and Niordson 
(Ref. 5) studied the optimum design of vibrating cantilever beams and 
found considerably larger increases in the lowest frequency. For example, 
the lowest frequency of the optimum cantilever with geometrically similar 
cross sections is 578% larger than that of the corresponding one with a 
uniform cross section. Similar work and extension have also been con- 
ducted by many other researchers (Refs. 6-9). Since then, the problem has 
become a classical one and has been used widely in the literature and 
textbooks in structural optimization. 

Recently, Wang (Ref. 10) has investigated the problem of the optimum 
shape design of flexible manipulators. The objective is to increase the 
fundamental vibration frequency of a flexible manipulator so that a larger 
bandwidth can be obtained for the manipulator control system. The problem 
formulation is almost the same as that in Ref. 5. However, different boundary 
conditions have made the optimization problem for flexible manipulators 
much more difficult than the corresponding one for cantilever beams. 

Initially, we attempted to follow the iteration schemes in Ref. 5 in 
order to solve the corresponding optimization problem for flexible manipu- 
lators. However, for all cases tried, the iterative schemes of Ref. 5 did not 
converge. It was also found that the implicit equation (so-called inner loop) 
for solving the Lagrange multiplier in those schemes took a significant 
amount of computation time. After careful reexamination of the original 
problem, we found that the time-consuming inner loop in the original 
iteration schemes was redundant and could be removed completely in the 
solution process. Eliminating this redundant equation from the iteration 
process leads to a new formulation for the iterations, and consequently to 
substantial simplification of the iteration equations and significant im- 
provement in convergence rates. For example, three simplified iteration 
schemes are needed in this paper to solve the optimum design problem 
completely, whereas five different sophisticated schemes were required in 
Ref. 5. These results have offered useful information for solving the 
optimization problem for manipulators (Refs. 10 and 11). 

As in Ref. 5, we assume throughout this paper the following relation- 
ship between the moment of inertia I and the area A of a cross section of 
the beam: 

I = cAP(x) ,  p > 1, (1) 

where c is a constant. Three cases (viz., p = 1, 2, 3) are especially interesting 
to us, since they correspond to beams with rectangular cross sections of 
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given uniform height, geometrically similar cross sections, and rectangular 
cross sections of given uniform width, respectively. The treatment in this 
paper, however, is valid for all cases with p > 1. 

2. Basic Equations 

Consider the small harmonic transverse vibrations of a tapered 
cantilever beam carrying a mass Q at its tip. If  both the rotary inertia and 
shear deformations are neglected, the differential equation of motion and 
the boundary conditions can be written in the following dimensionless 
form: 

(~Py")" - 2ay = 0, (2) 

y(1) : y'(1) = 0, aPy"(O) = O, (~Py")'(O) = 2qy(0). (3) 

Here, y is the amplitude of the lateral displacement in the plane of bending 
and the prime indicates differentiation with respect to the dimensionless 
coordinate ( = x/l. The dimensionless area function is denoted as ~ = All  
V, in which l is the length of the beam and V is the total volume of the 
beam. The dimensionless eigenvalue 2 and mass parameter q in the 
boundary conditions are defined as 

2 = r q = Q/TV, (4) 

where 09 is the natural vibration frequency and V the mass density of the 
beam. From the definition, ~ must be nonnegative and satisfy the following 
constraint: 

f0 ~ ~(~)d~ = (5) 1. 

The problem of the optimum design of vibrating cantilevers is to find 
the optimal area function that will maximize the fundamental vibration 
frequency. Using the Rayleigh quotient and variational calculus, we find 
the equation for determining the optimum area function as 

po~p-1(y,,)2 _ ).ye ___ .~a 2, (6) 

where a 2 is the Lagrange multiplier introduced for the constraint (5). 
Equations (2)-(3) and (6) are basic for solving the optimum design 

problem. Note that, in order to be consistent with the original work by 
Karihaloo and Niordson, all notation used in Ref. 5 has been kept in this 
paper. For the detailed derivation of  these equations, the reader is referred 
to their paper (Ref. 5). 
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The Rayleigh quotient can be obtained by multiplying both sides of 
Eq. (2) by y and integrating over the interval [0, 1]. Integrating by parts 
and taking the boundary conditions (3) into account, we have 

A =[~o I .Py"2d~]/[~ o' .y2d~ +qy2(O)}. (7) 

Furthermore, by substituting Eq. (6) in (7), we obtain the following 
implicit equation for the Lagrange multiplier: 

a 2 = (p - I) [2(y2 + a2) /p( y,) 2] 1/(p -Oy2 d~ +pqy2(O). (8) 

Expressions (7) and (8) can be considered as the consequences of Eqs. 
(2)-(3)  and (5)-(6).  That is, as long as y and �9 satisfy (2)-(3) and 
(5)-(6),  both (7) and (8) will be satisfied automatically. Therefore, in order 
to solve the optimization problem, one only needs to work with Eqs. 
(2)-(3)  and (5)-(6). This observation will serve as the basis for the 
development of our new formulations of iteration schemes. Note that, 
except for case p -- 2, the Lagrange multiplier a 2 cannot be expressed in 
terms of y explicitly. For p r 2 the so-called inner loop has been used in 
Ref. 5 to find a 2 for a given y in their iteration schemes. The numerical 
simulation has indicated that most of the computation time has been spent 
on this inner-loop operation. Hence, by removing Eq. (8) completely from 
the solution process, the rate of convergence of the iteration schemes could 
be significantly improved. 

To this end, we notice that, for a given area function and eigenvalue, 
y and a 2 cannot be determined uniquely from Eqs. (2)-(3)  and (5)-(6). 
To see this, let (y, a 2, ~, 2) be a solution of (2)-(3)  and (5)-(6). Then, 
(ny, n2a 2, ~, 2) is obviously another solution for any nonzero constant n. 
This nonuniqueness offers us a way to remove the Lagrange multiplier 
from (6) completely by selecting n = 1/a. In other words, for the optimiza- 
tion problem, we only need to find the unknown function u = y/a, instead 
o f  y and a 2 separately. Another method for solving the nonuniqueness 
problem is to impose some normalization scheme on y. This method has 
been used widely in structural optimization (Refs. 12-13); however, it still 
requires finding the Lagrange multiplier. 

In terms of the new function u, Eqs. (2)-(3)  and (6) can be rewritten 
as  

(aPu')" - 2~u = 0, 

p a  p -  1(U")2 --  }Lu 2 = t~, 

u(1) = u'(1) = 0, aPu"(O) = O, ( ~ P u ' ) ' ( O ) = 2 q u ( O ) .  

(9) 

(10) 

(11) 
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It follows from these equations that 

Io J fG' ~(~) d~ = (p - 1) [2(u 2 + 1)/p(u,,)2] 1/(p+ 1)u2 d~ +pqu2(O). (12) 

Note that this identity does not require the constraint (5) to hold. 
From (10), for p > 1, we can find ~ in terms of u and 2, 

~(~) = C, bu(~)/ti, ti = (p/,~)'/(P-'), (13a) 

=p/ t ip -  l, (~u(r = [(U2(~) -}- 1)/U"2(~)] 1/(p -1) (13b) 

When the constraint (5) is satisfied, we have 

fo ' ti = ~b.(~) d~. (14) 

The following integral formulas are useful in our discussion (see 
Section 4): 

;f: ;0' a(s)  ,is clx = ~2 (1 - x )a (x~)  ax, (151 

i ' ;  ;o' G ( s ) d s d x  =(1  _~)a  xG[~ +x(1  - r dx. (16) 

By formal integration of (9), after satisfying the boundary conditions at 
= 0, substituting a from (13) into (9), and using (15), we find that 

[U2(~) _}_ l]p/(p+ 1) 

u"(~) = {p~[tiqu(0) + r ~ ( 1 - x)(au(X~)U(X~) dx] } ( P  - 1)/(p + 1)' (17) 

which will be used as the basic formula for the construction of new 
iteration schemes. 

3. Analysis of Singularity at the Free End 

When p ~ 1, the solutions of Eqs. (9)-(11) are singular at the free end 
= 0; therefore, the numerical method cannot be applied to finding the 

solution directly. To make the numerical solution possible, we first have to 
determine the behavior of the solution near the free end. This can be done 
by assuming that the solutions can be expanded in a power series of ~ with 
a characteristic term ~k near the free end. A standard procedure was used 
by Karihaloo and Niordson in Ref. 5 to derive the characteristic equations 
for determining the singularity k. In this paper, however, a direct and much 
simpler method is employed to find the singularity. 
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3.1. Case q ~ 0. In this case, since u is finite at ~ = 0, we can see 
f rom ( 9 ) - ( 1  l) that,  at ~ = 0, 

~Pu"  = O, ( ~ P u " ) '  = finite, (ctPu") " = finite, ~P- l(u")2 = finite. 

Therefore,  in the ne ighborhood  o f  ~ = 0, 

~tPu" = a l ~  + a2~2 + ' ' "  , cC-lu"2=bl + ' " ,  

where al ,  a2, bl are constants.  Solving the above equat ions for  ~ and u" ,  we 
get 

0~(~) = C 1 ~ 2 1 ( p +  1) ..{_ . . . (18) 

U " ( O  = dj  ( - ( P -  I)l~p + 1) + . .  " ,  (19) 

where el and dl are two new constants.  Then, the behavior  o f  u near the 
free end can be found  as 

u(r = d l  ~ ~ p + 3)/(p + I) . . } _ . . . .  (20) 

Therefore,  the singularity o f  u at ~ = 0 is 

k = (p  + 3) / (p  + 1). 

3.2. Case q = 0. Expand  both  u and �9 in a power  series o f  ~ at ~ = 0, 

u(O = u o ~  k + '  �9 ' ,  (21a) 

~(~) = ao~"  + " ' .  (21b) 

Substituting these expressions into (10), we get 

2 k  = m ( p  - 1) + 2(k - 2), 2 = p a ~ -  l k 2 ( k  - 1) 2. 

Similarly, f rom (9) we get 

2a  o = a ~ k ( k  - 1)(m + k + 2)(m + k + 1). 

By eliminating 2 and ao f rom these equations,  we find that  

m = 4 / ( p  - -  1), (22) 

[ k ( p  - -  1) + 2(p  + 1)][k(p - 1) + p  + 3] - p ( p  - 1)2k(k - 1) = 0. (23) 

Fo r  p = 2, we find k = - 2; and for p = 3, we find k = - 1. In  bo th  cases, 
the results are the same as those obtained in Ref. 5 by the s tandard  
procedure.  



JOTA: VOL: 84, NO. 3, MARCH 1995 641 

4. Solution by Successive Iterations: New Formulation 

In this section, we present a new simplified formulation for solving 
Eqs. (9)-(11) using successive iterations. We first discuss in detail the 
degenerate case in which p = 1 and then investigate the cases where p > 1, 
q = 0 and p > 1, q 4 0, respectively. 

4.1. Case p = 1. For p = 1, function c( drops out of Eq. (10) and we 
have a degenerate case. Equations (9)-(11) now have the form 

(~u")" - 20~u = 0, (24) 

(u") 2 = 2(u 2 + 1), (25) 

u(1) = u'(1) = 0, ctu"(O) = O, (~u")'(O) = ,~qu(O), (26) 

and the identity (12) becomes 

qu2(0) -- 0~(r d~. 

The above equation indicates that, for q = 0, the solution to the 
optimum design problem of a vibrating cantilever beam does not exist, 
since the constraint (5) cannot be satisfied by any solution of (24)-(26). 
Actually, as pointed out in Ref. 5, the vibration frequency of a cantilever 
can be increased indefinitely in this case by selecting ~ appropriately. For 
q # 0, if we choose 

q = l/u2(0), (27) 

then ~ obtained by solving Eq. (24) with boundary conditions (26) will 
satisfy the constraint (5) automatically. This observation leads to an 
inverse approach to solve the problem in this case. In other words, starting 
with a given 2, we determine u by solving (25) with the first two boundary 
conditions in (26) and then calculate the corresponding q by (27). This will 
establish a relationship between the mass parameter q and the optimum 
eigenvalue 2, which will enable us to find 2 for a given q, and hence solve 
the optimization problem. Note that this process does not involve at all the 
computation of ct. Once u and q have been found for a given 2, ct can be 
obtained by solving (24) with the last two boundary conditions in (26). It 
is guaranteed that the resulting ~ will meet the constraint (5). 

For very large q, an asymptotic relationship between q and 2 can be 
obtained. Since 2 is very small in this case, we can use ~ = x/~ as a small 
parameter and solve (25) by the perturbation method (Ref. 14), i.e., expand 
u in a power series of E, 

u(O =Uo(r +Eu~(r 
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Substituting the above expression into (25), we get 

Uo = 0, ul = (1/2)(1 - 4) 2 . . . . .  (28) 

Hence, from (27), (24), and (26), we have 

2q - 4, e(~) - 24, (29) 

when q is very large. 
For a cantilever beam of uniform cross section and the same length 

and volume as the optimum beam, e(r = 1 and the characteristic equation 
for the eigenvalue 2c is (see Ref. 15) 

1 + cos 0 cosh 0 + q0(cos 0 sinh 0 - sin 0 cosh 0) = 0, 0 = ~1/4.  (30) 

From this, we find that, for very large q, 

2cq - 3. (31) 

Therefore, for a large tip mass, a relative increase of 

o)/~oc - 1 = ~/212~ - 1 = x / ~ -  1 = 15.47% 

in the lowest natural frequency can be achieved with the optimum tapering 
of cantilever beams. 

To develop a successive iteration scheme for general q ~ 0, we for- 
mally integrate (24) and (25) with boundary conditions (26). Application 
of formulas (15) and (16) leads to 

fo u(O = x/~( 1 - ~)2 xx/u2[r + x( 1 - O] + 1 dx, (32) 

e(~) = x / ~  l/u(0) + r S~ ( 1 - x)o~(x~)u(xr dx (33) 

~ + 1  

Based on Eqs. (32) and (33), the iteration scheme can now be outlined as 
follows. 

Step 1. For a given 2, select an initial Uo(O. Update ui until a 
specified accuracy is obtained, 

fo ui+,(~) = x/~(1 - ~)z xx/u~[~ +x(1  -- 4)1 + 1 dx. 

Step 2. For u obtained in Step 1, calculate q according t o E q .  (27). 

Step 3. Select an initial Cr162 ) and update e~ until a specified accuracy 
is obtained, 

~i+ ,(~) = x / ~  l/u(0) + ~ I~ (1 - x)ct,(x~)u(xr dx 

~u2(r + 1 
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Clearly, compared with the corresponding scheme presented in Ref. 5, 
the new formulation in this case is simpler. 

4.2. Case p > 1 and q = 0. In order to avoid the singularity of u at 
r = 0, we introduce two new functions, 

f ( r  = {eu(r z(r = ck+2u"(~) ,  (34) 

where k is the singularity of u at ~ = 0 determined from (23). Both f and 
z are regular over the entire interval 0 < ~ < 1. It is easy to show that 

f (1 )  = f ' ( 1 )  =0 ,  f (0 )  = z(O)/k(k + 1). (35) 

In terms o f f  and z, the function qS, and parameter/3 can be rewritten as s 
([9u(r = r162 , /3 = r n~b(r ) de, (36a)  

~b({) = [(f2({) + r162 1/(p-1) (36b) 

From Eq. (34) and Eqs. (15), (16), and (17), we get 

fo' xz[r + x( 1 - r , 0 < f ( r  = r - r [~ ~-x71-7r 2 ax, < r _ 1, (37) 

[f2(~) + ~q,/(.+')  
Z(r = [p ~ (1 -- X)X 4/(p- ')-a:49(xr162 dx] (p- 1)/(?+ 1)" (38) 

Now, the scheme for successive iterations can be specified as follows: 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Select an initial Zo(r ). 

Update f (r according to 

fo' f i+  1(r = ck(1 _~)2 xzi[r +x(1  --r 

f~+, (0) = zi(O)/k(k + 1). 

Update (hi (r 

~ i+  1 (~) = [(f2+, (r + r (r 1/(p- l) 

Update zi(r 
2 .~_r 

[f,+,(r 
z , + ,  (r - 

0 < r  

[p ~ ( 1 - x ) x  4/(p- l)-k•i+, (xr  1 (Xr (Ix] (p-I)/(p+ 1 )" 

If  a given accuracy is not obtained, go back to Step 2. Step 5. 

O n c e f a n d  z have been obtained within the specified accuracy, one can 
find the parameter/3. Then, the optimum eigenvalue 2, the function Cu, and 
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the optimum e can be determined according to (36), (14), and (13), 
respectively. Obviously, the proposed new procedure is much simpler than 
the one developed in Ref. 5. 

4.3. Case p > 1 and q ~ 0. In this case, we need only to take care of 
the singularity of u" at ~ = 0. To this end, we introduce the new function 

z(~) = r162 (39) 

where k = (p + 3)/(p + 1), according to the expression (20). The function 
z is regular over the entire interval 0 < r < 1. 

In terms of z, we can find that 

fo ' x z [~  + x ( 1  - O] 0 < < 1. 
u(r  = ( 1 - r 2 [{  + x (  1 - -  {)]  2 -  k d x ,  _ ~ _ (4O) 

For the purpose of numerical calculation, we need to specify u(O) explicitly, 

u(O) = x 2/(p+ l)z(x) dx. (41) 

Similarly, for q~u and fl, we have 

;0' ~ ( ~ )  = ~2/(p+ 1)~(~), fl = ~z/(p+ o~( 0 d~, (42a) 

~b(~) = [(u2(~) + 1)/z2(O] 1/(p-'). (42b) 

From Eq. (17), we get 

[u2(~) + llP/(p+ 1) 

z(~) - {p[flqu(O) + ~ (p + 3)/(p +1) ~1 ( 1 - -  x )x  2](p + l )~b(x~)u(x~)  dx] }(P - l ) [ (p  + 1)" 
/ 

(43) 

The iteration scheme here is similar to that of the previous case and is given 
below. 

Step 1. Select an initial z0(~). 

Step 2. Update ui (0  according to 

fo t xzi [r + x( 1 , 0] , u,+,(r = (1 -- r 2 ~--~-.,~i--r 0 < r  

i' ui+, (O)  = x 2 / (p§  dx. 

Step 3. Update q~i(~), 

q~,+, (~1 = [(u~+ 1 (r + 1)/z~ (OI'/~P- , .  
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Step 4. Update z,(~), 

[U2+ 1(~) "~- l]p/<p+ l) 
Z i+l(~) : {t 9[~qu i+l(O) "~ ~ (p +3)/(p+I) ~1 (1 - - X ) X 2 / ( p + I )  

~i +1 (X~)Ui +1 (X~) dx] }(P-')/(r +') 

Step 5. If  a given accuracy is not obtained, go back to Step 2. 

Again, the new iteration scheme in this case is simpler than one used in 
Ref. 5. 

5. Numerical Examples 

To verify the correctness and efficiency of our new formulation, several 
numerical examples have been conducted. Some results are described in this 
section. 

5.1. Case p = 1. The iteration processes in this case are subject to the 
following accuracy criteria: 

To simplify the numerical computation, we have approximated both u and 
a by spline functions through interpolation over their values at N + 1 
uniformly distributed discrete points in 0 __<_ r < 1. Throughout this section, 
N = 10 and e = 10 -4 have been used in all examples. The numerical 
integrations in the iterations are carried out using the recursive Simpson 
formula. 

The iteration for u starts with Uo, found by solving (25) using the 5th 
order Runge-Kut t a  formulas. The iteration for a starts with ~o(~) = 1. For 
various values of the nondimensional mass parameter q, Table 1 summa- 
rizes the percentage increase in the lowest frequency in comparison with 
that of the cantilever beam having uniform rectangular cross sections and 
having the same length, volume, and material as the optimum beam. The 
corresponding results obtained in Ref. 5 have also been included in the 

Table 1. Values of ~ for various values of q (p = 1). 

q = 0.0375 q = 0.2233 q = 1.1027 q = 4 • 104 

p = 1 2.3235 1.5025 1.2388 1.1547 
p = 1 28.42? 2.56? 0.28? - -  

?Results obtained by Karihaloo and Niordson (ReE 5). 
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, 

(a) q=0.0375 

(b) q-0.2233 

(c) q=/./0~ 

(d) q=400~ 
i ~ i r i i r p i 

I) 0.2 0.4 0.6 0.8 

Fig. 1. Optimum tapering of  rectangular cross section of  given height (p = 1). 

table. As one can see, a large discrepancy exists between the two results. 
We believe that our results are more accurate, since they agree with the 
prediction from the asymptotic expressions (29) and (31); i.e., for large q, 

= x / ~  = 1.1547. 

It is also obvious that, for q = 1.1027, the result 2 x / ~  = 0.28 in Ref. 5 is 
simply not logical, since 2 should always be larger or equal to 2c. 

Figure 1 illustrates the corresponding variation in width of  the rectan- 
gular cross section as a function of nondimensional coordinate ~. Figure 2 
presents the relationship between the eigenvalue 2 and the mass parameter 
q for the optimum beam. The dashed curve in the figure is the correspond- 
ing result obtained from Eq. (30) for the cantilever beam of  uniform cross 
section. From these curves, one can find the eigenvalue 2, and hence the 
lowest frequency of  beams for a given mass parameter q. The percentage 
increase in the lowest frequency achieved through the optimum design is 
given in Fig. 3. Clearly, the results here have verified the asymptotic 
expressions (29) and (31). 

5.2. Cases p = 2 and p = 3. The iteration processes are continued 
until 
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50 

203040 , .  

10 

I l I I 

0.2 0.4 0.6 0.8 

q 

Fig. 2. Fundamental frequencies vs mass parameter q (p = 1). 

647 

1 

\ 
0 - -  i I I I I I I I 

0 0.2 0.4 0.6 0.8 

Fig. 3. 

q 
Ratio of 2x//~, vs mass parameter q (p = 1). 
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Table 2. Values of ~ for various values of q (p = 2, 3). 

p = 2 q ~ 0 q =0.0003 q =0.03 q = I00 

p = 2 7.0025 4.5984 2.3450 1.2432 
p = 2 6.78t 5.48t 3.36t 1.27t 
p = 3 4.2937 3.3201 2.2868 1.2998 
p = 3 4.25? 3.717 2.30t 1.337 

tResults obtained by Karihaloo and Niordson (Ref. 5). 

+,  II/11 § II or  I lu,+,  - u, I I / l lu ,§  < 

- z, I I / I k , + ,  fl < 

As in the previous case, f (or  u for q ~ 0) and a are approximated by spline 
functions through interpolation over their values at N + 1 un i formly  
distributed discrete points on 0 < ~ _< 1. 

The iterations always start with Zo(~) = 1 for all the cases. For  various 
values of  the nondimensional mass parameter  q, Table 2 summarizes the 
increase in the lowest frequency in comparison with that of  the correspond- 
ing cantilever beam of  uniform cross section. The results of  Ref. 5 have 
also been included. 

For  large q, using the perturbation method, we can find that 

~.q - - [ (p  + 3)/(p + 1)] p+I, ~(~) ~ [(p + 3)/(p + 1)]~ 2/(p+') (44) 

Equation (29) is a special case of  Eq. (44). F rom Eqs. (44) and (31), for 
large tip mass one can find by simple calculation that increases of  24.23% 
and 29.90% in the lowest natural frequency can be achieved by the 
opt imum tapering of  the cantilever beams for p = 2 and p = 3, respectively. 
F rom Table 2, the results for q = 100 by the new iteration scheme are quite 
close to these two values, whereas a relatively large discrepancy can be 
found for the results given in Ref. 5. 

Figures 4 and 5 present the corresponding variation of linear dimen- 
sion of the cross section as a function of nondimensional coordinate ~. 
Figure 6 describes the changes of  the eigenvalue 2 versus the mass 
parameter  q for the opt imum beam (p = 2 only). The dashed curve in the 
figure is the corresponding result obtained from (30) for the cantilever 
beam of  uniform cross section. The percentage increase in the lowest 
frequency achieved through opt imum design is illustrated in Fig. 7 (p = 2 
only). 

Numerical computat ions have shown that the new successive iteration 
formulations converge much faster than those used in Ref. 5. For  example, 
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in the case p = 2 and q = 0, it takes 134 iterations to achieve the specified 
accuracy by using the iteration scheme in Ref. 5, whereas only 33 iterations 
are needed with the new scheme. 

6. Conclusions 

By eliminating the implicit equations for the Lagrange multiplier in the 
iteration processes, new simplified iteration schemes have been devised for 
solving the problem of the optimum design of vibrating cantilever beams. 
The results of numerical computation have clearly indicated that a signifi- 
cant improvement in convergence rate has been achieved by the new 
schemes. The numerical results agree well with the analytical asymptotic 
expressions. 

This investigation was begun while examining the problem of maxi- 
mizing the fundamental frequency of a one-link flexible manipulator under 
a specified total weight constraint. The revisiting of the optimum design of 
vibrating cantilevers has provided us useful results for the corresponding 
problem for flexible manipulators. 
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