
Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Improving handwritten Chinese text recognition using neural network
language models and convolutional neural network shape models

Yi-Chao Wua, Fei Yina, Cheng-Lin Liua,b,c,⁎

a National Laboratory of Pattern Recognition (NLPR), Institute of Institute of Automation of Chinese Academy of Sciences, 95 Zhongguancun East Road,
Beijing 100190, PR China
b University of Chinese Academy of Sciences, Beijing, China
c CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China

A R T I C L E I N F O

Keywords:
Handwritten Chinese text recognition
Feedforward neural network language model
Recurrent neural network language model
Hybrid language model
Convolutional neural network shape models

A B S T R A C T

Handwritten Chinese text recognition based on over-segmentation and path search integrating multiple
contexts has been demonstrated successful, wherein the language model (LM) and character shape models play
important roles. Although back-off N-gram LMs (BLMs) have been used dominantly for decades, they suffer
from the data sparseness problem, especially for high-order LMs. Recently, neural network LMs (NNLMs) have
been applied to handwriting recognition with superiority to BLMs. With the aim of improving Chinese
handwriting recognition, this paper evaluates the effects of two types of character-level NNLMs, namely,
feedforward neural network LMs (FNNLMs) and recurrent neural network LMs (RNNLMs). Both FNNLMs and
RNNLMs are also combined with BLMs to construct hybrid LMs. For fair comparison with BLMs and a state-of-
the-art system, we evaluate in a system with the same character over-segmentation and classification techniques
as before, and compare various LMs using a small text corpus used before. Experimental results on the Chinese
handwriting database CASIA-HWDB validate that NNLMs improve the recognition performance, and hybrid
RNNLMs outperform the other LMs. To report a new benchmark, we also evaluate selected LMs on a large
corpus, and replace the baseline character classifier, over-segmentation, and geometric context models with
convolutional neural network (CNN) based models. The performance on both the CASIA-HWDB and the
ICDAR-2013 competition dataset are improved significantly. On the CASIA-HWDB test set, the character-level
accurate rate (AR) and correct rate (CR) achieve 95.88% and 95.95%, respectively.

1. Introduction

For the past 40 years, the field of handwritten Chinese text
recognition (HCTR) has observed tremendous progresses [1,2].
However, it remains a challenging problem due to the diversity of
writing styles, the character segmentation difficulty, large character set
and unconstrained language domain. The recognition approach based
on over-segmentation by integrating character classifier, geometric and
linguistic context models has been demonstrated successful in hand-
written text recognition [3], among which both the linguistic context
model (i.e., language model) and the character shape models are of
great importance.

Statistical language models, which give the prior probability of a
sequence of characters or words, play an important role in many
applications such as character and speech recognition, machine
translation and information retrieval, etc. Although back-off N-gram

language models (BLMs) were proposed over 20 years ago [4,5] and
have been used in handwritten text recognition for more than 10 years,
they are still considered as a favorable choice and have performed
superiorly for decades. BLMs have been widely applied in a vast variety
of text recognition systems [3,6–13], and have boosted the recognition
performance substantially.

Generally, higher order language models can capture longer context
patterns so as to estimate the sequence probability more accurately.
Carpenter [14] found that the performance of character N-gram can be
significantly improved until 8-gram, given sufficient training samples.
However, traditional BLMs suffer from the data sparseness problem,
as the number of parameters increases exponentially with the length of
the context (i.e., the curse of dimensionality), preventing these models
from estimating context stably. Recently, a new type of language model
called neural network language model (NNLM) has been proposed to
address the data sparseness based on a continuous representation of

http://dx.doi.org/10.1016/j.patcog.2016.12.026
Received 26 February 2016; Received in revised form 23 December 2016; Accepted 24 December 2016

⁎ Corresponding author at: National Laboratory of Pattern Recognition (NLPR), Institute of Institute of Automation of Chinese Academy of Sciences, 95 Zhongguancun East Road,
Beijing 100190, PR China.

E-mail addresses: yichao.wu@nlpr.ia.ac.cn (Y.-C. Wu), fyin@nlpr.ia.ac.cn (F. Yin), liucl@nlpr.ia.ac.cn (C.-L. Liu).

Pattern Recognition 65 (2017) 251–264

Available online 29 December 2016
0031-3203/ © 2016 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/00313203
http://www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2016.12.026
http://dx.doi.org/10.1016/j.patcog.2016.12.026
http://dx.doi.org/10.1016/j.patcog.2016.12.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2016.12.026&domain=pdf

words [15], and achieves great perplexity reduction compared with
BLMs. Since then, NNLMs have been successfully used in speech
recognition [16,17], machine translation [18,19], and handwriting
recognition [20,21]. Meanwhile, many extensions of NNLMs and
related algorithms have been proposed, with the aim of improving
the model performance [17,22–25] or reducing the time
complexity [26–29]. Particularly, the previous work has focused on
either feedforward NNLMs (FNNLMs) [15,16,18–21] or recurrent
NNLMs (RNNLMs) [17,28,30,31]. Nevertheless, to the best of our
knowledge, except for our previous work on FNNLMs [21], there is no
systematic evaluation of NNLMs for over-segmentation based text
recognition systems.

Apart from the language model, character classifier [32], over-
segmentation [33,21,34] and geometric context models [35] (called
shape models generally in this paper) are also important to the text
recognition performance. CNN based classifiers for Chinese characters
have reported superior performance in ICDAR 2013 competition [36],
where CNNs reported much higher accuracies than traditional classi-
fiers. Using CNNs, the handwriting recognition community has re-
ported many useful and important achievements [37–39] to improve
the recognition accuracy. Recently, by integrating the traditional
normalization-cooperated direction-decomposed feature map
(directMap) with the deep CNN, Zhang et al. [40] obtained new highest
accuracies for both online and offline sessions on the ICDAR-2013
competition database. For over-segmentation, there have been many
algorithms to deal with touching characters, but most of them are
based on heuristic rules [33,34,41,42], which make it very difficult to
generalize from one application to another. A few learning based
techniques have been explored [10,43,44], however, only the method
in [44] was successfully applied in HCTR, and is only suitable for the
single-touching situation. As for the geometric context models,
although many researchers proved it can improve the recognition
accuracy [3,9,35,45,46], there has been no work using deep learning
based geometric models.

In this paper, we evaluate the effects of two types of character-level
NNLMs, namely, FNNLMs and RNNLMs, with the aim of improving
Chinese handwriting recognition. Both FNNLMs and RNNLMs are also
combined with BLMs to construct hybrid LMs. For fair comparison
with BLMs and a state-of-the-art system, we evaluate in a system with
the same character over-segmentation and classification techniques as
before, and compare various LMs using a small text corpus that were
used by a previous system. In experiments on the Chinese handwriting
database CASIA-HWDB, the comparison of a number of variations of
LMs shows that the NNLMs improve the recognition performance, and
hybrid RNNLMs outperform the other LMs. To provide a new bench-
mark, we then evaluate selected LMs on a large corpus. Also, we replace
all the baseline character classifier, over-segmentation algorithm, and
geometric context models with CNN-based models in the system for
further improving the accuracy of HCTR. By doing these, the perfor-
mance on both the CASIA-HWDB and the ICDAR-2013 competition
dataset are improved significantly. Specifically, on the CASIA-HWDB
dataset, the character-level accurate rate (AR) and correct rate (CR)
achieve 95.88% and 95.95%, respectively, compared to the previous
results of 90.75% AR and 91.39% CR (with candidate
character augmentation) [3], 91.73% AR and 92.37% CR (with
language model adaptation) [12], 95.21% AR and 96.28% CR (with
CNN character classifier) [32].

The major contributions of this work are in three respects. First, we
perform a comprehensive evaluation of NNLMs in handwritten
Chinese text recognition and propose hybrid NNLMs to improve the
performance. Second, we apply CNNs to over-segmentation and
geometric context modeling in addition to character recognition.
Third, by training NNLMs on large corpus and integrating CNN shape
models, we achieve new state-of-the-art performance on standard
datasets. In addition, we analyze the upper bound of performance of
the text recognition system by calculating the lattice error rate, which

shows the potential of improvement in the future.
The rest of this paper is organized as follows: Section 2 reviews

some related works; Section 3 gives an overview of the handwritten
Chinese text recognition system; Section 4 describes the FNNLMs and
RNNLMs, as well as techniques for accelerating them; Section 5
presents the CNN based models, including character classifier, over-
segmentation algorithm, and geometric context models; Section 6
presents experimental results, and Section 7 offers concluding remarks.

2. Related works

The neural network architecture has a strong impact on the
performance of NNLMs, and comparative studies have been conducted
by some researchers [28,47–51]. Mikolov et al. [28] gave an empirical
comparison between RNNLMs and FNNLMs on two corpora, and
found that simple RNNLMs outperformed the standard FNNLMs in
terms of perplexity (PPL) on both the Penn Tree Bank and the
Switchboard corpus. Mikolov et al. [47] presented PPL results obtained
with several advanced language modeling techniques, including some
types of NNLMs, and the results demonstrated the superiority of
RNNLMs. However, neither of them made comparisons in practical
speech or text recognition systems, where the inputs are often
contaminated by noises. Sundermeyer et al. [48] compared recurrent
long short-term memory (LSTM) NNLMs, which can be considered as a
variant of RNNLMs, with FNNLMs on a well-tuned French speech
recognition task. Their results showed that LSTM-NNLMs achieved
lower PPL than FNNLMs, and also reduced the word error rate (WER).
This work was extended in [49], to compare BLMs with FNNLMs,
RNNLMs, and LSTM-NNLMs on two large-vocabulary speech recogni-
tion tasks. The results showed that both LSTM-NNLMs and RNNLMs
outperformed FNNLMs in terms of PPL and WER. Arisoy et al. [50]
even compared deep FNNLMs with RNNLMs, and there seemed to be
no evident improvements in PPL or WER for deep models. Almost all
the previous works validate the superiority of RNNLMs to FNNLMs,
except for [51], where RNNLMs was outperformed by a 10-gram
FNNLM in PPL. However, the final result of BLEU on a large scale
English to French translation task was identical for both network
structures.

In the field of handwritten text recognition, only a few people have
investigated the potential of NNLMs [20,21,52]. Zamora-Martínez
et al. [20] integrated FNNLMs in the decoding process of three state-
of-the-art systems for English handwriting recognition. Experimental
results demonstrated that consistent WER reductions can be achieved
by FNNLMs when compared with BLMs on the three tested systems. Li
et al. [53] applied RNNLMs to the n-best rescoring stage of the state-
of-the-art BBN Byblos OCR (optical character recognition) system for
handwriting recognition and achieved significant improvement. Our
work [21] was the first to investigate the effects of NNLMs in
handwritten Chinese text recognition. The recognition results on the
CASIA-HWDB database [54] showed that simplified NNLMs and BLMs
of the same order performed comparably, and hybrid models
constructed by interpolating NNLMs and BLMs improved the recogni-
tion performance significantly. However, to our knowledge, in either
English or Chinese handwritten text recognition, NNLMs have not
been evaluated systematically.

On the other hand, many works concerning character shape model
and geometric context have been proposed for handwritten text
recognition. For character classification, traditional methods usually
involve character normalization, feature extraction, and classifier
design, which have been reviewed in [55,56]. Nowadays, the solution
of handwritten Chinese character recognition (HCCR) has been
changed from traditional methods to CNNs because of their superior
performances. The first reported successful use of CNN for HCCR is the
multi-column deep neural network [37]. Alternately trained relaxation
convolutional neural network was proposed by [38] for offline HCCR.
The methods of [39,40], by combining traditional feature extraction

Y.-C. Wu et al. Pattern Recognition 65 (2017) 251–264

252

methods such as Gabor and gradient feature maps with deep CNN, also
obtained very high recognition accuracies. Learning based over-seg-
mentation has been explored for decades, and has achieved great
success in separating characters with high recall rate [10,43,44]. The
method referred to as GraySeg [10] combines the output of a sliding
window classifier and boundaries of connected components (CCs) for
over-segmentation, and has led to superior text recognition perfor-
mance on public benchmark datasets. Xu et al. [44] proposed an
effective over-segmentation method with learning-based filtering using
geometric features for single-touching Chinese handwriting. The geo-
metric context also plays an important role in character string
recognition [3,9,35,45,46]. Zhou et al. [9,35] elaborated the geometric
context models into unary and binary, character class dependent and
class-independent models in online handwriting recognition. Wu et al.
[46] demonstrated that geometric context is beneficial to handwritten
numeral string recognition, and they also proposed an improved binary
geometric model to further improve the system performance. Yin et al.
[57] elaborated the geometric context models for offline handwriting
and applied to transcript mapping of handwritten Chinese documents.

3. System overview

Our system is based on the integrated segmentation-and-recogni-
tion framework, which typically consists the steps of over-segmentation
of a text line image, construction of the segmentation–recognition
candidate lattice, and path search in the lattice with context fusion. The
diagram of our system is shown in Fig. 1, and the tasks of document
image pre-processing and text line segmentation are assumed to have
been accomplished externally.

First, the input text line image is over-segmented into a sequence of
primitive image segments by connected component analysis and
touching pattern splitting1 [3,33] (Fig. 2(a)), so that each segment is
a character or a part of a character. Then, one or more consecutive
segments are combined to generate candidate character patterns,
forming a segmentation candidate lattice as shown in Fig. 2(b), and
each path in this lattice is called a candidate segmentation path. Each
candidate pattern is classified to assign a number of candidate
character classes using a character classifier, and all the candidate
patterns in a candidate segmentation path form a character candidate
lattice, which is shown in Fig. 2(c). All of these character candidate
lattices are merged to construct the segmentation–recognition lattice of
the input text line, and each path in this lattice is constructed by a
character sequence paired with a candidate pattern sequence, which is
called a candidate segmentation–recognition path. The rest of the task
is to evaluate each path by fusing multiple contexts and to search the
optimal path with minimum cost or maximum score to obtain the

segmentation and recognition result.
We denote a sequence of candidate character patterns as

X x x= … m1 . Each candidate character is assigned candidate class
(denoted as ci) by a character classifier, and then the result of text
line recognition is a character string C c c= … m1 . In this work, we
formulate the task of string recognition from Bayesian decision view,
and adopt the path evaluation criterion presented in [3] which
integrates the character classification score, geometric context [57]
and linguistic context. For saving space, we give the criterion directly
below, and more details can be found in [3].

Denote the character classifier output of candidate class ci for the
ith character pattern xi as P c x(|)i i . The linguistic context is denoted as
P c h(|)i i , where hi denotes the history of ci (see Section 4).
The geometric context models give the unary class-dependent geo-
metric (ucg) score, unary class-independent geometric (uig) score,
binary class-dependent geometric (bcg) score and binary class-inde-
pendent geometric (big) score, denoted as P c g(|)i i

ucg , P z g(= 1|)i
p

i
uig ,

P c c g(, |)i i i
bcg

−1 , and P z g(= 1|)i
g

i
big , respectively, where gi denotes corre-

sponding geometric features, and the output scores are given by
geometric models classifying on features extracted. We obtain a log-
likelihood function f X C(,) for the segmentation–recognition path:

∑f X C w P c x λ P c g λ P z g

λ P c c g λ P z g λ P c h

(,) = (log (|) + log (|) + log (= 1|)

+ log (, |) + log (= 1|) + log (|)),
i

m

i i i i i
ucg

i
p

i
uig

i i i
bcg

i
g

i
big

i i

=1
1 2

3 −1 4 5

(1)

where wi is the word insertion penalty used to overcome the bias to
short strings, for which we utilize the term of weighting with character
pattern width (WCW) [3], λ1–λ5 are the weights to balance the effects
of different models and are optimized with maximum character
accuracy (MCA) criterion [3]. Via confidence transformation (trans-
forming classifier output scores to probabilities), the six models,
namely, one character classifier, four geometric models and one
character linguistic model, are combined to evaluate the segmentation
paths. As for path search, a refined frame-synchronous beam search

Fig. 1. System diagram of handwritten Chinese text line recognition.

Fig. 2. (a) Over-segmentation of a text line; (b) segmentation candidate of (a); and (c)
character candidate lattice of the thick path in (b).

1 We first use existing over-segmentation technique in evaluating NNLMs, and later
apply CNN to over-segmentation for higher recognition performance.

Y.-C. Wu et al. Pattern Recognition 65 (2017) 251–264

253

algorithm [3] is employed to find the optimal paths in two steps: first
retain a limited number of partial paths with maximum scores at each
frame, and then find the globally optimal path in the second step.

4. Neural network language models

To overcome the data sparseness problem of traditional BLMs, we
introduce two types of NNLMs including FNNLMs and RNNLMs in
this section.

If the sequence C contains m characters, P(C) can be decomposed
as:

∏p C p c c() = (|),
i

m

i
i

=1
1

−1

(2)

where c c c= 〈 ,…, 〉i
i1

−1
1 −1 denotes the history of character ci. For an N-

gram model, it only considers the N − 1 history characters in (2):

∏ ∏p C p c c p c h() = (|) = (|),
i

m

i i N
i

i

m

i i
=1

− +1
−1

=1 (3)

where h c c c= = 〈 ,…, 〉i i N
i

i N i− +1
−1

− +1 −1 (h1 is null). Although FNNLMs can
be trained with larger context sizes than BLMs, it is intrinsically an N-
gram LMs as well. However, RNNLMs can get rid of limited context
size and capture unbounded context patterns in theory. Therefore, we
have h c=i

i
1

−1 in this case.

4.1. Feedforward neural network language models

In FNNLMs, history characters (or words for English texts)2 are
projected into a continuous space to perform an implicit smoothing
and estimate the probability of a sequence. Both the projection and
estimation can be jointly performed by a multi-layer neural network.
The original FNNLM model was proposed by Bengio et al. [15] to
attack the curse of dimensionality, and the basic architecture with one
hidden layer is depicted in Fig. 3.

The input of the N-gram FNNLM is formed by concatenating the
information of N − 1 history characters hi, while the outputs are the
posterior probabilities of all the characters in the vocabulary:

p c ω h j V(= |), = 1,…, ,i j i (4)

where V is the size of the vocabulary and ωj denotes a character class in
the vocabulary. The network functions as follows:

(1) Each of the previous N − 1 input characters is initially encoded as a
vector with length V using the 1-of-V scheme.

(2) Then, each 1-of-V representation of character is projected to a
lower dimensional vector denoted as r in a continuous space. In
fact, each column of the P V× dimensional projection matrix
corresponds to a distributed representation, and all the weights of
the projection layer are shared.

(3) After step 2, if we denote the weights between the projection layer
and the hidden layer as WP H, whose dimension should be
H N P× ((− 1) ×) using the column-major form, the N − 1 history
characters' distributed representations as R r r= [,…,]i N

T
i
T T

− +1 −1 ,
then the hidden layer outputs S can be computed as:

S W R= tanh(*),P H, (5)

where tanh(·) is the hyperbolic tangent activation function performed
element wise. If there are multiple hidden layers, the same processing
of Eq. (5) applies to the succeeding hidden layer with the former
hidden layer outputs as inputs.
(4) Finally, the prediction of all the characters in the vocabulary can be

calculated by

M W S= * ,H O, (6)

∑O M m= exp() exp(),
i

V

i
=1 (7)

where WH O, is the V H× dimensional weight matrix of the output layer,
M is the vector of the activation values calculated before softmax
normalization, and mi is the ith element of M . The exp(·) function as
well as the division function are performed element wise.

The above formulas have absorbed the bias items into the weight
parameters for the sake of illustration simplicity [58]. After all the
above operations, the jth component of O, denoted as oj, corresponds
to the probability p c ω h(= |)i j i . The standard back-propagation algo-
rithm is used in training to minimize the regularized cross-entropy
criterion:

∑ W WE t o β= − log + (| | + | |),
j

V

j j P H H O
=1

, 2
2

, 2
2

(8)

where tj is the desired output, which is 1 for the next character in the
training sentence, and 0 for the others.

4.2. Recurrent neural network language models

RNNLMs were firstly proposed in [17]. Its architecture (Fig. 4) is
similar to that of FNNLMs, except that the hidden layer involves
recurrent connections. The RNNLM embeds word/character represen-
tation projection as well, and there are mainly three stages for
estimation:

(1) The input R t() of the time step t is firstly formed by concatenating
two parts: vector x t(− 1) representing the previous word ci−1 by 1-
of-V coding, and the previous hidden layer output S t(− 1),
expressed as:

R x St t t() = [(− 1) (− 1)] .T T T (9)

(2) The input R t() is then separately projected to a continuous vector
S t(), which is also the hidden layer for the next time step:

S W x W St t t() = sigm(* (− 1) + * (− 1)),I H H H, , (10)

where sigm(·) is the sigmoid activation function performed element
wise, WI H, and WH H, are H V× projection and H H× recurrent weight
matrices, respectively.
(3) The probabilities of all the words in the vocabulary are estimated

Fig. 3. Architecture of FNNLM with one hidden layer. P is the size of one projection, and
H V, are the sizes of the hidden and output layer, respectively.

2 We take characters instead of words as the elements (grams) in Chinese vocabulary,
but may term characters and words interchangeably when referring to previous works.

Y.-C. Wu et al. Pattern Recognition 65 (2017) 251–264

254

in the same way as the 4th step of FNNLMs in Section 4.1.

The RNNLM is trained by minimizing a regularized cross-entropy
criterion similar to that in Eq. (8). However, the recurrent weights are
optimized using the back-propagation through time (BPTT) algorithm
[28], and the truncated BPTT is used to prevent the gradient vanishing
or explosion problems.

The main difference between FNNLMs and RNNLMs lies in the
representation of the history. For FNNLMs, the history is restricted to
limited previous characters; while for RNNLMs, because of the
recurrent connection, the hidden layer represents the whole history
of text theoretically. In this way, RNNLMs can efficiently explore the
context of longer sequence than FNNLMs.

4.2.1. RNN maximum entropy (RNNME) models
It was observed that for use with larger corpus, the architecture of

RNNLMs should have more hidden units [30], otherwise, the perfor-
mance can be even inferior to that of BLMs. However, the increase of
hidden layer size also increases the computational complexity. To
overcome this problem, Mikolov et al. combined RNNLMs with
maximum entropy models [30]. The resulting model, called RNNME,
can be trained jointly with BPTT. The RNNME model yielded
promising performance with relatively small hidden layer sizes.

The maximum entropy model can be seen as a weight matrix that
directly connects the input layer and the output layer in neural
networks. When using N-gram features [59], the direct connection
part can offer complementarity to RNNLMs, so that RNNME can
achieve superior performance with relatively simple structures.
Furthermore, it is natural to improve the efficiency of RNNME using
hashing, and the RNNME can be viewed as a pruned model with a
small hash array.

4.3. Hybrid language models

For use with large vocabulary tasks, it is a common practice to
linearly interpolate an NNLM with a standard BLM for further
improvement [19]. In such hybrid language models (HLMs), the
interpolation weights are usually estimated by minimizing the perplex-
ity (PPL) on a development dataset.

To overcome the high computational complexity, NNLMs are
usually simplified with simple structures or approximation techniques.
The simplified models are then combined with BLMs to give hybrid
models. Due to the great complementarity of NNLMs to BLMs
[15,16,47,60], it was observed that even NNLMs with moderate
performance can considerably improve the performance of HLMs

[21]. This can be attributed to the fact that NNLMs and BLMs learn
very different distributions [29]. We will show experimental results to
validate this kind of complementarity in Section 6.

4.4. Acceleration

NNLMs suffer from high computational complexity in both training
and testing, due to the layer-by-layer matrix computation, unlike BLMs
that calculate and retrieve probabilities directly. Considering that the
complexity of NNLMs is basically proportional to O V(| |) [15], i.e., the
softmax operation of output layer dominates the processing time, there
have been two mainstream techniques for acceleration: short-list and
output factorization, which are outlined as follows.

4.4.1. Short-list
Inspired from the work of Bengio et al. [15], Schwenk et al.

proposed the short-list method [19] and successfully applied it to
lattice rescoring of speech recognition systems. This method chooses
the s (s V≪) most frequent words, called as a short-list, to reduce the
output units of the neural network. The output probabilities are then
calculated as:

⎪

⎪⎧⎨
⎩P c h P c h L P h L c

P c h
(|) = (| ,)· (|), if ∈ short−list

(|), otherwise
i i

N i i B i i

B i i (11)

where PN denotes the probability of words in the short-list calculated by
NNLMs, PB is the probability given by standard BLMs, the random
variable L defines the event that the word to be predicted is in the
short-list, and P h L(|)B i is given by:

∑P h L P c h(|) = (|).B i
c

B i i
∈short−listi (12)

For further simplification of the short-list method [19], an extra
output unit is added for all the words that are not in the short-list, and
its probability is learned by the neural network. We simply assume that
this probability is sufficiently close to the probability mass reserved by
the BLM. Thus, (11) can be modified as:

⎪

⎪⎧⎨
⎩P c h P c h c

P c h
(|) = (|), if ∈ short−list

(|), otherwise
i i

N i i i

B i i (13)

It has been observed that there is no significant difference between the
methods with and without renormalization [19]. Therefore, we can
easily see that the time complexity is approximately reduced toO s(| |) by
the short-list method.

4.4.2. Output factorization
The idea of output factorization was originated from [26] (based on

[61] in the context of maximum entropy models), where a binary
hierarchical clustering constrained by the prior knowledge is used to
decompose the output layer hierarchically, so that the complexity is
reduced to Vlog | |2 . Since the construction of the hierarchical structure is
not trivial, class-based models are usually adopted in practice. In this
model, all the words are categorized into a smaller number of classes,
and the word probability at the output layer can be factorized as

p c h p c h p c c h(|) = (class()|)* (|class(),).i i i i i i i (14)

This shows that we can normalize the class distribution and the class-
specific word distribution separately. The class-based output factoriza-
tion has been observed to bring about 15 times speedup against models
which uses full vocabulary of size 10K, and was said to be a more
promising approach than the short-list method [28].

The methods for constructing word classes have been investigated
in [62]. Although frequency-based categorization does not achieve
better performance compared with likelihood-based categorization
[63,64] in terms of PPL, it has great advantage in speed. Therefore,
we use frequency-based categorization for a better tradeoff between

Fig. 4. Architecture of RNNLM. H, V are the sizes of the hidden layer and the output
layer, respectively.

Y.-C. Wu et al. Pattern Recognition 65 (2017) 251–264

255

performance and speed. Specifically, we employ a modified algorithm
which groups words based on square-root of the frequency instead of
the frequency itself [65].

5. Convolutional neural network shape models

With the impact of the success of deep learning [66,67] in different
domains, we consider altering the modules of HCTR framework,
namely, character classifier, over segmentation, and geometric context
models from traditional methods to convolutional neural network
(CNN) [68] based models. These models take character or text images
as input, and so, are called shape models in general.

5.1. Character classifier

In this work, we build a 15-layer CNN as the character classifier as
shown in Table 1, which is similar to the one proposed in [40]. Similar
to the domain-specific knowledge incorporated in CNN [69], we extract
eight 32×32 directMaps using line density projection interpolation
normalization [70], as used in [40] as well. Besides the directMaps, we
resize the original character image to 32×32 while keeping the aspect
ratio as an extra input feature map, which was found to improve the
network convergence. The filters of convolutional layers are with a
small receptive field 3×3, and all the convolution stride is fixed to one.
The number of feature maps is increased from 50 (layer-1) to 400
(layer-12) gradually. To further increase the depth of the network so as
to improve the classification capability, the spatial pooling is imple-
mented after every three convolutional layers instead of two in [40],
which is carried out by max-pooling (over a 2×2 window with stride 2)
to halve the size of feature map. After the stack of 12 convolutional
layers and 4 max-pool layers, the feature maps are flattened and
concatenated into a vector with dimensionality 1600. Two fully-
connected layers (with 900 and 200 hidden units, respectively) then
follows. At last, the softmax layer is used to perform the 7357-way
classification, including 7356 character classes and 1 non-character
class. The extra non-character class unit is to explicitly reject non-
characters, which are generated frequently in text line recognition [71].
Wang et al. [32] have found that it is better to directly add an extra
negative class other than using the cascading CNN.

5.2. Over-segmentation

Over-segmentation is to separate a text line image into primitive
segments, each being a character or a part of a character, such that
characters can be formed by concatenating consecutive primitive
segments. Connected component (CC) analysis has been commonly
used for over-segmentation in Chinese text recognition, but the
splitting of touched Chinese character is still critical to the performance
of text recognition. The conventional splitting method based on profile
shape analysis [33] has been applied successfully in many works
[3,12,21], but it fails in dealing with complex touching situations, as
is shown in Fig. 6(a).

For improving the character separation rate, we adopt a two-stage
CNN based over-segmentation method in this work:

(1) The text line image is initially over-segmented into primitive
segments using the visibility-based foreground analysis method
proposed in [42]. The position between two adjacent primitive
segments is a candidate segmentation point.

(2) A binary output CNN is used to classify sliding windows on CCs
generated in step 1 for detecting more candidate segmentation
points. Detected segmentation points close to each other are
suppressed heuristically.

Our previous work on neural network based over-segmentation has
demonstrated effective in scene text recognition [72]. In this work, we
improve the algorithm in two aspects. Firstly, the visibility-based
foreground analysis for over-segmentation [42] before sliding window
detection is complementary to the sliding window method, and can
speed up the subsequent operation. Secondly, we use CNN as the
classifier rather than a traditional neural network, for higher detection
rate of segmentation points. The step 2 is elaborated in the following.

On the image of a CC, a fixed-width window slides from left to right
with a stride of 0.1 times the CC height, as depicted in Fig. 5.
The window image is classified by a CNN to judge whether the center
column is a segmentation point or not. The window has the same
height as the CC, and the width of 0.8 times the CC height. We observed
experimentally that the segmentation and recognition performance is
insensitive to the stride coefficient ranged from 0.04 to 0.1 and the
window width ranged from 0.6 to 1 times the CC height.

When training a CNN for segment point classification, a complex
structure, such as the one in [40], is prone to overfitting. Hence, we
built a simple 4-layer network for binary classification, as shown in
Table 2. This network also uses extended directMaps mentioned above
as input. The CNN is trained using window image samples with the
center positions labeled as segmentation point (positive) or not
(negative). On a CC image, after segmentation point detection by
sliding window classification, we merge adjacent candidate segmenta-
tion points which are close to each other, i.e., horizontal distance less
than a threshold, and retain the one with the smallest vertical
projection. The threshold is empirically set as the stroke width, which
is estimated from the contour length and foreground pixel number in
the text line image. Fig. 6 shows some examples of over-segmentation,
where we can see that the method of [42] is slightly better at recall rate
than that of [33], and our proposed method can separate touching
characters better than both the methods of [33,42].

Table 1
CNN character classifier configuration. The first row is the bottom layer. k, s and p stand
for kernel size, stride and padding size, respectively.

Type Configurations

Input 9×32×32 extended directMaps
Convolution #maps: 50, k: 3×3, s:1, p:1, dropout: 0.0
Convolution #maps: 100, k: 3×3, s:1, p:1, dropout: 0.1
Convolution #maps: 100, k: 3×3, s:1, p:1, dropout: 0.1
MaxPooling Window: 2×2, s: 2
Convolution #maps: 150, k: 3×3, s:1, p:1, dropout: 0.2
Convolution #maps: 200, k: 3×3, s:1, p:1, dropout: 0.2
Convolution #maps: 200, k: 3×3, s:1, p:1, dropout: 0.2
MaxPooling Window: 2×2, s: 2
Convolution #maps: 250, k: 3×3, s:1, p:1, dropout: 0.3
Convolution #maps: 300, k: 3×3, s:1, p:1, dropout: 0.3
Convolution #maps: 300, k: 3×3, s:1, p:1, dropout: 0.3
MaxPooling Window: 2×2, s: 2
Convolution #maps: 350, k: 3×3, s:1, p:1, dropout: 0.4
Convolution #maps: 400, k: 3×3, s:1, p:1, dropout: 0.4
Convolution #maps: 400, k: 3×3, s:1, p:1, dropout: 0.4
MaxPooling Window: 2×2, s: 2
Full connection #hidden units: 1600, dropout: 0.5
Full connection #hidden units: 200, dropout: 0.0
Softmax #units: 7357

Fig. 5. Sliding window based over-segmentation.

Y.-C. Wu et al. Pattern Recognition 65 (2017) 251–264

256

5.3. Geometric context models

Geometric context models have been successfully used in character
string recognition [3,35], and transcript mapping [57], where they play
an important role to exclude non-characters and further improve the
system performance. In this study, we adopt the framework of
geometric context model presented in [57], where geometric context
is divided into four statistical models (unary and binary class-depen-
dent, unary and binary class-independent), abbreviated as ucg, bcg,
uig, big, respectively.

The class-dependent geometric model can be seen as a complement
to the character classifier since the candidate patterns retain their
original outlines without normalization designed for character classi-
fication, which may exclude some useful context information related to
writing styles. Following [57], we reduce the number of character
geometry classes to six super-classes. The uigmodel is used to measure
whether a candidate pattern is a valid character or not, while the big
model is used to measure whether an over-segmentation gap is a valid
between-character gap or not. They are both two-class (binary classi-
fication) models.

For modeling the four geometric models, we used to extract
geometric features firstly, and then use quadratic discriminant function
(ucg and bcg) or support vector machine (uig and big) for classifica-
tion, and finally transform the output scores to probabilities by
confidence transformation. In this work, we utilize CNN to perform
feature extraction and classification in a unified framework, then
directly use the output of a specific unit as the final score. Instead of
simply resizing the character patterns as the input, we acquire the
center curve of the text line by polynomial fitting which is shown in
Fig. 7, as it is necessary to keep the writing styles of text lines for
geometric context models. The degree of polynomial is set to be 0.075
times the connected component number. After that, the top and bottom
boundaries of each CC are adjusted according to the center curve and
the character height. In this case, we use the same CNN architecture as
the one in [40] except for different units for output layers. In order to
maintain the writing styles, we only use the original CC image as input
without directMaps.

6. Experimental results

We evaluated the performance of our handwritten Chinese text
recognition system on two databases: a large database of offline
Chinese handwriting called CASIA-HWDB [54] and a small dataset
from the ICDAR 2013 Chinese Handwriting Recognition Competition
[36], abbreviated as ICDAR-2013. The system was implemented on a
desktop computer of Intel Core i7-4790 3.60 GHz CPU, programming
with C++ in Microsoft Visual Studio 2008. While for training NNLMs
and CNN shape models, we also used NVIDIA Titan X GPUs for
acceleration.

6.1. Database and baseline experimental setup

The CASIA-HWDB database contains both isolated characters and
unconstrained handwritten texts, which is divided into a training set of
816 writers data and a test set of 204 writers data. The training set
contains 3,118,447 isolated character samples of 7356 classes and
4076 pages of handwritten pages (including 1,080,017 character
samples). We tested our system on the test set containing 1015 pages.
The ICDAR-2013 dataset was used as the test set at the ICDAR 2013
competition. It contains 300 test pages, which were written by 60
writers who did not contribute to the released CASIA-HWDB database.

In the first round of experiments, to compare our results with the
best ones with similar setup reported in [3,12] fairly, we used the same
character classifier and geometric context models trained on the
CASIA-HWDB training set, the same over-segmentation technique
and the same text corpus for training LMs, as detailed in [3].
While in the second round of experiments, we replace the traditional
character classifier, over-segmentation and geometric context models
with CNN based models. In the third round, we further switch to a
large text corpus for training LMs.

The character classifier was trained on 4,198,494 isolated character
images of 7356 classes from both isolated characters and
unconstrained texts. From a character image, 512-dimensional gradi-
ent direction features are extracted from gray-scale image using the
method of normalization cooperated gradient feature (NCGF) [73]. The
512D feature vector is reduced to 160D by Fisher linear discriminant
analysis (FLDA), and then input into the Modified Quadratic
Discriminant Function (MQDF) [74] classifier for assigning candidate

Table 2
CNN configuration for over-segmentation.

Type Configurations

Input 9×32×32 extended directMaps
Convolution #maps: 50, k: 3×3, s:1, p:1, dropout: 0.0
MaxPooling Window: 2×2, s: 2
Convolution #maps: 100, k: 3×3, s:1, p:1, dropout: 0.1
MaxPooling Window: 2×2, s: 2
Full connection #units: 200
Softmax #units: 2

Fig. 6. Examples of over-segmentation. (a) Traditional method [33]. (b) Xu et al. [42]. (c) Our method.

Fig. 7. The process of polynomial curve fitting.

Y.-C. Wu et al. Pattern Recognition 65 (2017) 251–264

257

classes and confidence scores. We used 4/5 samples of the training set
for training the classifiers, and the remaining 1/5 samples for
estimating the confidence parameter (for transforming classifier output
scores to posterior probabilities, details can be found in [3]).

To build the geometric context models [57], we extracted geometric
features from 41,781 text lines of training text pages for estimating the
parameters of the corresponding four models (classifiers on geometric
features) (ucg, uig, bcg, and big).

The generic language models were trained on a text corpus contain-
ing about 50 million characters, which is the same as that in [3]. For
comparison with the results in [12], we also trained language models
on the same large corpus, which contains the above general corpus and
the corpus from Sogou Labs, containing approximately 1.6 billion
characters. In addition, we collected a development set containing 3.8
million characters from the People's Daily corpus [75] and ToRCH2009
corpus [76], for validating the trained language models. In the baseline
setup, the maximum number of concatenated segments, candidate
number of character classification and beam width in the refined beam
search algorithm are set as 4, 20 and 10, respectively.

We report recognition performance in terms of two character-level
metrics following [77]: Correct Rate (CR) and Accurate Rate (AR):

CR N D S N AR N D S I N= (− −)/ , = (− − −)/ ,t e s t t e s e t (15)

where Nt is the total number of characters in the transcript of test
documents. The numbers of substitution errors (Se), deletion errors
(De) and insertion errors (Ie) are calculated by aligning the recognition
result string with the transcript by dynamic programming. In addition
to the AR and CR, we also measured the PPL of language models on the
development set.

Since our experiments involve many context models, we give a list
of the models in Table 3.

6.2. Comparison of language models

The first round of experiments is to compare the recognition
performance using language models trained on the general corpus
and traditional over-segmentation in the system. For comparison, we
first give the baseline results of our system using BLMs of different
orders on the CASIA-HWDB test set. Then, we evaluate and compare
the performance of FNNLMs and RNNLMs of various structures. Last,
we report the recognition performance on the ICDAR-2013 competi-
tion set with NNLMs.

6.2.1. Baseline performance
The baseline recognition performance is obtained using BLMs

trained on the general corpus. To be consistent to the previous works
[3,12], we set the maximum number of concatenated primitive
segments as 4, the number of top candidate classes in classification
as 20, and the beam width in the refined beam search algorithm as 10.
The bigram, trigram, 4-gram, and 5-gram BLMs were trained with the
SRI Language Model (SRILM) toolkit (1.7.1) [78] with the default
smoothing technique (Katz smoothing) and entropy-based pruning.
The thresholds for pruning the character bigram, trigram, 4-gram and

5-gram are set empirically as 5 × 10−8, 10−7, 10−7 and 10−7, respectively.
The parameters for the bigram and trigram are the same as those in [3].

The recognition results using different combinations of context
models on the CASIA-HWDB test set are shown in Table 4. Naturally,
our results using language models cbi and cti are almost identical to
those reported in [3] based on same settings of parameters. We
achieved faster recognition than [3] due to the difference of computer
hardware and some details of implementation. The results of BLMs of
different orders show that while the improvement from cbi to cti is
remarkable, the improvement from cti to higher order LMs cfour and
cfive is only marginal. This can be attributed to the data sparseness
problem, which affects higher order LMs more evidently and cancels off
the benefit of higher order LMs.

6.2.2. Effects of FNNLMs
We trained the FNNLMs of various structures with the CSLM

toolkit (v3) [79], which provides full support for short-list and GPU
implementation. We also used Intel Math Kernel Library (MKL) to
speed up the matrix operations of neural network in testing. Each
structure was trained multiple times with different initializations, and
the model with the lowest PPL on the development set was chosen as
the final one.

We evaluated three structures of FNNLMs with projection size of
320, as shown in Table 5. The networks were all trained with batch size
of 128 examples, weight decay coefficient 10−7, and 20 iterations. The
structures FNNLM-1 and FNNLM-2 have two hidden layers, while
FNNLM-3 has only one hidden layer. The short-list of FNNLM-1
covers all the characters in the training corpus, while FNNLM-2 and
FNNLM-3 use a smaller short-list. The learning rate lrate was
empirically set initial values as in Table 5, and decreased gradually
during training by the following equation:

lrate lrate λn= /(1 +)0 (16)

where lrate0 is the initial learning rate, n denotes the number of totally
seen samples, λ stands for the decay parameter and is 5 × 10−8 in this
paper. As discussed in Section 4.3, we also constructed HLMs by
linearly interpolating FNNLMs with standard BLMs. The weights of
interpolation were computed by the compute-best-mix-tool from the
SRILM toolkit, minimizing the perplexity on the development set.
Corresponding to the three structures of FNNLMs, we have three
HLMs denoted as HFLM-1, HFLM-2, and HFLM-3, respectively.

The recognition results using different combinations of context
models are shown in Table 6. Since it is quite time-consuming to test
NNLM-1 and NNLM-2 of various orders, we only evaluated these two
structures with 5-gram, which usually outperforms 4-gram and
3-gram. Comparing the results of FNNLMs with those of BLMs in

Table 3
List of context models used in handwritten Chinese text recognition.

Abbreviation Referred model

cls Character classifier (MQDF)
g Union of all geometric models
cbi Character bigram language model
cti Character trigram language model
cfour Character 4-gram language model
cfive Character 5-gram language model
rnn Character recurrent neural network language model
iwc Interpolating word and class bigram

Table 4
Recognition results using BLMs. “Time” denotes the recognition time on all the test
pages.

Combination AR (%) CR (%) Time (h) PPL

cls+cbi+g [3] 89.56 90.27 11.33 –

cls+cti+g [3] 90.20 90.80 11.54 –

cls+cbi+g 89.57 90.28 6.60 144.81
cls+cti+g 90.21 90.81 6.68 82.97
cls+cfour+g 90.23 90.82 6.72 73.72
cls+cfive+g 90.23 90.82 6.84 73.09

Table 5
Three structures of FNNLMs.

Structure Hidden layer size Short-list length Initial learning rate

FNNLM-1 1024×512 8330 0.06
FNNLM-2 1024×512 1023 0.06
FNNLM-3 512 1023 0.10

Y.-C. Wu et al. Pattern Recognition 65 (2017) 251–264

258

Table 4, we can see that though FNNLMs yield lower PPL than the
BLMs of same order, their benefit on the recognition performance is
not evident. The hybrid model, i.e., interpolation of FNNLM and BLM,
can further reduce the PPL and evidently improve the text recognition
accuracies. Specifically, the 5-gram HFLM-1 improves the AR and CR
to 90.69% and 91.24%, respectively, compared to 90.23% AR and
90.82% CR of the 5-gram BLM. The FNNLM-2, with a short-list of size
1023, has much lower complexity than the FNNLM-1, and yields
slightly lower recognition performance, which is comparable to that of
5-gram BLM. The corresponding hybrid model, 5-gram HFLM-2,
yields lower performance than the 5-gram HFLM-1, but its time is
greatly reduced by 87.09% compared to HFLM-1, and the performance
is superior to that of BLM and FNNLM-2.

The FNNLM-3, with only one hidden layer and also short-list, has
much lower complexity than the FNNLM-1 and FNNLM-2.
Consequently, its performance also degenerates in terms of both PPL
and recognition accuracy. The AR and CR of FNNLM-3 are even lower
than those of the BLM of same order. However, when combining with
BLMs, the resulting hybrid model HFLM-3 performs much better than
the FNNLM-3. The recognition performance of 5-gram HFLM-3 is
even comparable to that of the HFLM-2 of same order, which has two
hidden layers and consumes much longer time than the HFLM-3.
These results confirm that a hybrid LM by combining a simple-
structure FNNLM with a BLM is a good choice to balance the
computational complexity and the recognition performance.

6.2.3. Effects of RNNLMs
We trained the RNNLMs with the RNNLM Toolkit (0.4b) [65],

which provides support for output factorization, RNNME training and
efficient computation, although without parallel computation. In order
to make fair comparison with FNNLMs, we also modified the toolkit to
allow RNNLMs training with short-list. Since the RNNLM Toolkit does
not support parallel computation, we only trained the RNNLMs with
short-list or output factorization, while the training of RNNLMs
without reduction is intractable for large vocabulary.

To investigate the effect of hidden layer number on RNNLMs, we
trained two structures of RNNLMs with short-list size 1023, SRNNLM-
1 and SRNNLM-2, which have hidden layer size of 300 and 600,
respectively. The other parameters are listed in Table 7. The learning
rate is constantly halved once the log-likelihood improvement rate on
the development set is lower than the minimum improvement ratio.

We compare the performance of RNNLMs and FNNLMs both with
short-list, and also evaluate the hybrid models by combining RNNLM
with BLM. Since RNNLMs are no longer limited to N-gram models, it is
not worthy to interpolate with BLMs of low order. Hence, we only
combined RNNLMs with 5-gram BLMs. The two hybrid models
corresponding to SRNNLM-1 and SRNNLM-2 are referred to as
HSRLM-1 and HSRLM-2, respectively. The recognition results are
shown in Table 8.

We mainly compare SRNNLM-1 and SRNNLM-2 with 5-gram
FNNLM-2 and FNNLM-3, which do not differ largely in complexity.
From the characteristics of the networks, we know that the order of
parameter size of the four different models is
SRNNLM−2(6M) > FNNLM−2(5M) > FNNLM−3(4M) > SRNNLM−1

(3M)

.

Compare the results of SRNNLMs in Table 8 and FNNLMs in Table 6,
we can see that the SRNNLM-1 yields the lowest performance among
these four models. However, once interpolated with the 5-gram BLM,
the HSRLM-1 has lower PPL than the 5-gram HFLM-2 and HFLM-3,
and perform comparably with them in recognition. This indicates that
SRNNLMs provide better complementarity to BLMs than FNNLMs,
such that simple-structure SRNNLMs generates competitive HLMs.
Although the SRNNLM-2 is slightly more complex than the FNNLM-2,
it performs evidently better than the 5-gram FNNLM-2. When inter-
polating with BLMs, the corresponding HSRLM-2 also outperforms the
HFLM-2 in both PPL and recognition accuracies. In fact, the HSRLM-2
even performs comparably with the HFLM-1 in Table 6, where the
5-gram FNNLM-1 has roughly 9M parameters and is much more time
consuming than the HSRLM-2. Overall, these results demonstrate the
superior performance of RNNLMs over FNNLMs of similar parameter
complexity. As for the time complexity, the RNNLM is a little slower in
our recognition system because of the frequent exchange of memory for
hidden layers.

We also compared the performance of short-list RNNLM with
output factorized RNNLM (FRNNLM) and RNNME. As the vocabulary
size V from the general corpus is 8330, we set the word class number as
100, which is close to the suggested number V| | in [65], and. The
RNNME model in our experiments has hidden layer size of 300 and
uses 4-gram features3 with hash array size of 100M. The recognition
results of factorized RNNLMs and RNNME models as well as their
hybrid models are shown in Table 9, where FRNNLM-1 and
FRNNLM-2 denote the factorized RNNLMs with hidden layer size of
300 and 600, respectively, HFRLM-1 and HFRLM-2 are the corre-
sponding HLMs linearly interpolated with 5-gram BLMs, HRMELM
denotes the RNNME based HLM interpolated with a 5-gram BLM.

First, compared to the results of short-list RNNLMs in Table 8, we
can see that the FRNNLM-1 performs even worse than the SRNNLM-1
with the same hidden layer size of 300, since the network size is too
small to capture the context for full vocabulary. However, the hybrid
model HFRLM-1 outperforms the HSRLM-1, as the full vocabulary
(though factorized) output layer can offer lager potential for correct
recognition. When increasing the hidden layer size to 600, the
FRNNLM-2 again performs worse than the SRNNLM-2, while the
hybrid models HFRLM-2 and HSRLM-2 perform comparably. In terms

Table 6
Recognition results using FNNLMs and HLMs.

Language model Combination AR (%) CR (%) Time (h) PPL

FNNLM-1 cls+cfive+g 90.29 90.88 129.30 68.60
HFLM-1 cls+cfive+g 90.69 91.24 140.32 59.44
FNNLM-2 cls+cfive+g 90.21 90.82 17.78 71.64
HFLM-2 cls+cfive+g 90.51 91.09 18.11 63.03

FNNLM-3 cls+cbi+g 89.59 90.30 9.06 141.39
cls+cti+g 90.00 90.64 9.45 87.18
cls+cfour+g 90.04 90.66 10.04 79.63
cls+cfive+g 90.12 90.75 10.52 76.75

HFLM-3 cls+cbi+g 89.62 90.32 8.92 140.38
cls+cti+g 90.33 90.92 9.73 66.83
cls+cfour+g 90.39 90.97 10.21 66.83
cls+cfive+g 90.49 91.07 10.81 64.66

Table 7
Training parameters of RNNLMs.

BPTT step BPTT
block

Initial learning
rate

Weight
decay

Minimum improvement
ratio

6 10 0.1 10−7 1.003

Table 8
Effects of short-list RNNLMs and HLMs.

Language type Combination AR (%) CR (%) Time (h) PPL

SRNNLM-1 cls+rnn+g 89.88 90.57 14.30 81.49
HSRLM-1 cls+rnn+g 90.43 91.02 14.42 61.44
SRNNLM-2 cls+rnn+g 90.30 90.94 28.74 65.19
HSRLM-2 cls+rnn+g 90.61 91.20 28.99 55.86

3 According to [65], maximum entropy models with up to 4-gram features perform
sufficiently.

Y.-C. Wu et al. Pattern Recognition 65 (2017) 251–264

259

of computation efficiency, the short-list method turns out to be more
efficient than output factorization.

Next, we compare the performance of factorized RNNLMs and
RNNME in Table 9. Since the factorized RNNLM with hidden layer size
of 600 is still not sufficient for full vocabulary on the general corpus, we
introduced the RNNME into our system. It can be seen that the
RNNME alone can greatly improve the recognition performance, even
outperform the hybrid model HFRLM-2, although its PPL is slightly
higher than that of the HFLM-2.

In fact, the RNNME alone has yielded performance (in terms of AR)
superior to the state-of-the-art result reported in [3], which was
obtained using a candidate character augmentation (CCA) technique
to promote the probability of including the correct class of candidate
character patterns on the segmentation–recognition lattice, while we
did not use CCA in this work. By interpolating 5-gram BLM, the hybrid
model HRMELM yields the best results of 91.04% AR and 91.52% CR.

6.2.4. Performance on ICDAR-2013 dataset
Since the test set of ICDAR 2013 Chinese handwriting recognition

competition is now widely taken for benchmarking, we also report
results on this dataset. We present recognition results with three types
of language models: 5-gram BLM, RNNME, and HRMELM. The
language models and the text recognition settings are all the same as
those for recognition on the CASIA-HWDB test set. The recognition
results are shown in Table 10.

Table 10 also gives the results of interpolated word class (iwc)
bigram with CCA. Due to the effect of CCA, the iwc bigram even
outperforms the character-based 5-gram BLM. The comparison of 5-
gram BLM, RNNME and HRMELM shows similar tendency as in
Table 9: the RNNME outperforms the 5-gram BLM, and the HRMELM
yields the best performance. Compared to the state-of-the-art result of
the method in [3], the error rate is reduced by 5.41% relative with only
the help of character level language models.

6.3. Effects of CNN shape models

In the second round of experiments, we replace the traditional
character classifier, over-segmentation, and geometric context models
with CNN shape models, which are all trained with Caffe [80]. We first
introduce the training details of the three models. Then we evaluate the
performance of these models and compare with traditional ones. For
both the character classifier and geometric models, we directly use the
softmax output as the corresponding score without confidence trans-

formation.

6.3.1. CNN character classifier
The CNN character classifier was initialized using Xavier initializa-

tion [81]. The training is carried out by minimizing the multi-class
negative log-likelihood loss using mini-batch gradient descent with
momentum. The batch size is set to be 1024, while the momentum is
0.9. The learning rate is initially set to 0.01, and then decreased by ×0.5
when the cost or accuracy on the training data stops improving. The
training can be finished after about 90 epochs.

Our experiments showed that although training data augmentation
does not improve the character recognition accuracy, it can improve
the string recognition performance. We adopted the augmentation
techniques introduced in [82], where geometric transform, local
resizing and elastic distortion are used. We expanded the training set
by two times of the original samples, i.e., we totally had 12,595,460
character samples. On the other hand, we also generated 5,160,425
non-character samples from the training text line samples. Although
there exist a severe class imbalance problem, we found no obvious
performance deterioration in the system performance. Hence, we did
not utilize any technique to deal with this problem. The CNN character
classifier achieved 92.17% accuracy on the character samples segmen-
ted from the test text set of CASIA-HWDB. Compared with the
accuracy 83.78% in [3], the CNN classifier is obviously much stronger
than MQDF.

6.3.2. CNN based over-segmentation
For over-segmentation, we trained the sliding window classifier

(CNN) with the training data of CASIA-HWDB database. Since all the
text lines in the database have been segmented and annotated at
character level, it is convenient to get the ground-truths of segmenta-
tion points. For generating training samples, we first slide the window
on CCs in the text lines. When the distance between the center position
of the window and the boundary of a character is smaller than 0.1 times
the CC height or larger than 0.12 times the CC height, the window is
regarded as a positive or negative sample, respectively. Otherwise, the
window is regarded ambiguous and not used for training.

The initialization and training procedure are similar to those of the
CNN character classifier. There are usually much more negative
samples (1,870,534) than positive samples (123,862). To overcome
the problem of sample class imbalance and improve the recall as much
as possible, we decreased the negative sample loss by ×0.005. The
training can be finished after about 100 epochs.

For evaluating over-segmentation on text lines, we measured the
precision and recall rate of segmentation point detection. When the
window classifier outputs positive label, if the horizontal distance
between the window center and a character boundary is less than 2
times the stroke width of the text line, the window center is regarded as
a true positive of segmentation point, otherwise is a false positive. The
segmentation precision and recall rates on the CASIA-HWDB test set
are shown in Table 11. We can see that the method of [42] can achieve
higher recall than that of [33] at a little loss of precision. When using
sliding window classification, the recall rate is further improved
compared to both the methods of [33,42]. Our CNN based method,
by combining the method in [42] with siding window classification, can
achieve the highest recall rate, which offers higher potential of correct

Table 9
Recognition results of factorized RNNLMs and RNNME models. Best rates are indicated
in bold face.

Language type Combination AR (%) CR (%) Time (h) PPL

FRNNLM-1 cls+rnn+g 89.57 90.26 15.95 87.67
HFRLM-1 cls+rnn+g 90.47 91.02 15.99 60.22
FRNNLM-2 cls+rnn+g 90.03 90.70 31.36 70.95
HFRLM-2 cls+rnn+g 90.61 91.16 31.61 55.30
RNNME cls+rnn+g 90.89 91.38 16.44 56.50
HRMELM cls+rnn+g 91.04 91.52 16.48 52.92
BLM cls+iwc+g+cca* [3] 90.75 91.39 18.78 –

cca, candidate character augmentation.

Table 10
Recognition results on ICDAR-2013 dataset. Best rates are indicated in bold face.

Language model type Combination AR (%) CR (%) Time (h) PPL

BLM cls+iwc+g+cca [3] 89.28 90.22 – –

BLM cls+cfive+g 89.03 89.91 2.44 73.09
RNNME cls+rnn+g 89.69 90.41 5.86 56.50
HRMELM cls+rnn+g 89.86 90.58 5.84 52.92

Table 11
Over-segmentation results on CASIA-HWDB test set.

Model type Precision (%) Recall (%)

[33] 74.32 98.23
[42] 68.07 99.22
Only sliding window 63.75 99.39
Our method 64.23 99.58

Y.-C. Wu et al. Pattern Recognition 65 (2017) 251–264

260

character segmentation and recognition. In the recognition system, as
the CNN based over-segmentation algorithm generates more CCs, the
maximum number of concatenated segments is set to be 7 instead of 4.

6.3.3. CNN based geometric context models
Since the text lines in the database HWDB2.0-2.2 were annotated at

character level, it is convenient to get the ground-truths for the four
types of geometry samples (ucg, uig, bcg, and big). We have got
1,081,153 (ucg), 7,498,977 (uig), 1,221,326 (bcg) and 1,331,428
(big) samples, respectively. The initialization and training procedure
are similar to the CNN character classifier as well.

6.3.4. Evaluation of CNN shape models
We integrated the three CNN-based models above into the recogni-

tion system to validate the improvement of performance. Based on the
former comparison of different LMs, we only used one best NNLM, the
HRMELM. The recognition results on the CASIA-HWDB database and
the ICDAR-2013 dataset are listed in Table 12.

From Table 12, the comparison between the traditional models and
CNN based models in this work shows the superiority of the CNN. The
character error rate (CER), which equals AR1 − , is reduced by almost
50% compared to the traditional models on both two datasets.
Furthermore, text recognition based on CNN models consumes only
a little more computation time than the traditional ones, because of the
highly efficient implementation of our algorithm on GPU. The compar-
ison between different LMs again validates the superiority of the
HRMELM. Combined with CNN shape models, the HRMELM yields
the best performance on both two datasets, i.e., 95.55% AR and 95.63%
CR on the CASIA-HWDB test set, 95.04% AR and 95.15% CR on the
ICDAR-2013 dataset. These were resulted without using CCA (candi-
date character augmentation) or LMA (language model adaptation,
based on a large corpus classified into different domains).

For references, the ICDAR-2013 competition paper [36] reported
best results of 89.28% AR and 90.22% CR using the method of [3]. The
work [13] implemented the LSTM-RNN framework (initially intro-
duced in [83]) for Chinese handwritten text recognition and reported
promising recognition performance on the ICDAR-2013 dataset:
89.40% AR. This is inferior to the performance of the proposed method

using HRMELM with either traditional models or CNN shape models.
A recent work [32], which adopts a similar framework to ours, achieves
95.21% AR and 96.28% CR on the CASIA-HWDB test set, 94.02% AR
and 95.53% CR on the ICDAR-2013 dataset. Our method has much
lower CER, which is supposed to be a more accurate metric, although it
is a little worse than [32] in CR. Moreover, it should be mentioned that
both [13,32] removed some special tokens when tested on the ICDAR-
2013 dataset.

6.4. Results with LMs on large corpus

To better model linguistic contexts, we extended our experiments
using a large corpus containing 1.6 billion characters, which was used
in a previous work of language model adaptation [33]. On the large
corpus, we trained a 5-gram BLM with the same Katz smoothing, and
also set the threshold of pruning as 10−7. Since it is too time consuming
to train NNLMs on the large corpus, we simply used the NNLMs
trained on the general corpus containing 50 millions of characters, and
combined them with BLMs trained on the large corpus. Particularly, we
used the RNNME model trained on the general corpus and combined it
with the 5-gram BLM trained on the large corpus to give a hybrid
model HRMELM. The recognition results on two datasets are shown in
Table 13.

From Table 13, we have three observations on the results on
CASIA-HWDB. First, unlike the performance of higher order LMs
trained on the smaller general corpus, the 5-gram BLM obviously
outperforms the 3-gram cti when trained on large corpus, since the
large corpus alleviates the data sparseness problem. Second, although
the performance of the 5-gram BLM is improved by the large corpus,
the RNNME still benefits the performance significantly in the
HRMELM: it brings 9.23% error rate reduction compared to the 5-
gram BLM.

Third, CNN shape models again improve the system performance in
the context of large corpus, because they not only provide larger
potential of containing correct candidate character patterns, but also
offer stronger classification capabilities. Compared to the previous
state-of-the-art baseline [12] using lma on large corpus, our method
using HRMELM and CNN shape models improves the AR by 4.15%

Table 12
Recognition results using different types of models on two datasets. Best rates are indicated in bold face.

Shape model LM Combination CASIA-HWDB ICDAR-2013

AR (%) CR (%) Time (h) AR (%) CR (%) Time (h)

Traditional BLM cls+iwc+g+cca [3] 90.75 91.39 18.78 89.28 90.22 –

BLM cls+cti+g+lma* [12] 91.73 92.37 10.17 – – –

BLM cls+cfive+g 90.23 90.82 6.84 89.03 89.91 2.44
HRMELM cls+rnn+g 91.04 91.52 16.48 89.86 90.58 5.84

CNN BLM cls+cfive+g 95.05 95.15 8.67 94.51 94.64 2.96
HRMELM cls+rnn+g 95.55 95.63 16.83 95.04 95.15 6.68

lma, language model adaptation.

Table 13
Recognition results on two datasets using LMs on large corpus. Best rates are indicated in bold face.

LM type Shape model Combination CASIA-HWDB ICDAR-2013

AR (%) CR (%) Time (h) PPL AR (%) CR (%) Time (h) PPL

BLM Traditional cls+cti+g+lma [12] 91.73 92.37 10.17 – – – – –

Traditional cls+cti+g [12] 90.66 91.28 9.83 – – – – –

Traditional cls+cfive+g 90.79 91.41 6.88 65.21 91.48 92.17 2.44 65.21
CNN cls+cfive+g 95.36 95.46 8.91 65.21 96.18 96.31 2.93 65.21

HRMELM Traditional cls+rnn+g 91.64 92.11 16.57 46.25 91.59 92.23 5.93 46.25
CNN cls+rnn+g 95.88 95.95 16.83 46.25 96.20 96.32 5.93 46.25

Y.-C. Wu et al. Pattern Recognition 65 (2017) 251–264

261

absolutely.
It is noteworthy in Table 13 that when using the large corpus for

training LMs, the HRMELM shows no obvious superiority to the BLM
on the ICDAR-2013 dataset. We found that the transcripts of the
ICDAR-2013 dataset are mostly included in the corpus from Sogou
Labs, thus, the BLM can fit the test data very well and yields high
recognition accuracies. To further investigate into this problem, we
deleted the sentences which appear in the ICDAR-2013 corpus from
the large corpus. However, as the topics of this corpus are very typical
and concentrated, on the ICDAR-2013 dataset, we can achieve 96.16%
AR and 96.29% CR with the 5-gram back-off LM trained on the
processed corpus as well. This alerts researchers to pay attention to the
overfitting of language model to the transcripts of test text images.
On the other hand, neural network LMs generalize well to unseen texts.

6.5. Performance analysis

The experimental results show that there is still a gap between the
accuracy and perfect recognition despite the improvements of NNLMs
and CNN based models. Thus, we analyze the upper bound of
performance of our recognition system in the following, and then show
some real examples of text line recognition.

6.5.1. Upper bound of performance
For a quantitative measure of upper bound of recognition perfor-

mance, we consider the lattice error rate (LER) to evaluate the quality
of the segmentation–recognition candidate lattice. The LER is a lower
bound of CER. It is defined as the total number of lattice errors divided
by the total number of characters in the transcript. The calculation of
LER is specified as follows.

For a text line (character string) S with transcript y yy = …N N1: 1 ,
we denote the lattice of S by G. The lattice errors are evaluated by the
distance between y N1: and G, which is defined as the minimum edit
distance between y N1: and any label sequence Y in G:

Dist Dist Yy y(, G) = min (,).N
Y

NG1: ∈ 1: (17)

Let y i1: , i N≤ , be a partial label sequence. Let j T∈ {0,…, } be the
candidate segmentation points of text line, where 0 is the start and T is
the end, and G j0: be the partial lattice between segmentation points 0
and j. Then the distance D i j(,) between y i1: and G j0: can be deduced
recursively by the following dynamic programming procedure:

(1) Initialization

D D i i i N D j D k

i T

(0, 0) = 0, (, 0) = , for 1 ≤ ≤ , (0,) = min (0,)

+ 1, for 1 ≤ ≤
k k j G:(,)∈

(18)

(2) Recursion. For i N j T1 ≤ ≤ , 1 ≤ ≤ ,

⎧
⎨
⎪⎪

⎩
⎪⎪

D i j

D i k δ y Y

D i j
D i k

(,) = min

min (− 1,) + 1 − (,),

(− 1,) + 1,
min (,) + 1,

k Y k j
i k j

k k j

G

G

, :(,)∈
(,)

:(,)∈

k j(,)

(19)

(3) Termination

Dist D N Ty(, G) = (,),N1: (20)

where (k,j) with k j< denotes a candidate character pattern between
candidate segmentation points k and j, and Y k j(,) denotes a candidate
class of (k,j).

We can see that the LER is affected by over-segmentation and
candidate character classification, which generates character segmen-
tation and assigns character classes. Combined with the traditional and
CNN shape models, respectively, we compare the LERs of these two
models. We show the lattice accuracy rate (LAR) as 1 − LER in

Table 14. It is shown that the CNN shape models, specifically the
character classifier and over-segmentation algorithm, significantly
improve the LAR (reduces the LER) on both two datasets. According
to [3], the baseline MQDF classifier gives top-20 cumulative accuracy
98.24% on the characters in the test text lines of CASIA-HWDB, while
our CNN classifier achieves 99.75% top-20 cumulative accuracy.
However, the gap between the actual AR (usually less than 96% in
our experiments) and the LAR implies that there is still room for
improvement in exploiting contexts on the segmentation–recognition
candidate lattice.

6.5.2. Recognition examples
We show some examples of text line recognition in Fig. 8, which

reveal several factors causing recognition errors. We consider two
typical settings: the 5-gram BLM combined with traditional models,
the best language model HRMELM combined with CNN shape models.
The four examples show the effects of both language models and
context evaluation models. The recognition error in Fig. 8(a) was also
shown in [12], and was not corrected by language model adaptation. It
is corrected by the HRMELM which captures long-span context. In (b)
the error is corrected by the CNN based character classifier and
geometric models for better modeling the contexts. In (c), the error
is corrected by CNN based over-segmentation, while the tradition
over-segmentation method could not separate the two touched char-
acters. In (d), the error is irreducible due to the inaccuracy of candidate
segmentation–recognition path evaluation.

7. Conclusion

In this paper, we evaluated the effects of two types of character-level
NNLMs, namely, FNNLMs and RNNLMs, with the aim of improving
Chinese handwritten text recognition. Both FNNLMs and RNNLMs are
also combined with BLMs to construct HLMs. We evaluated in a text
line recognition system with the same character over-segmentation and
classification techniques as in a state-of-the-art system, and compared
various LMs trained on a small text corpus as used before.
Experimental results on the Chinese handwriting database
CASIA-HWDB show that while pure NNLMs do not improve the
recognition performance substantially, the hybrid LMs by combining
NNLMs and BLMs lead to significant improvements. RNNLMs out-
perform FNNLMs because they can model long-distance contexts. The
hybrid model HRMELM (combining the RNNME and BLM) yields the
best performance. Replacing traditional character classifier,
over-segmentation and geometric context model with CNN based
models and training LMs with a large corpus, we achieved new
benchmarks on both the CASIA-HWDB database and the ICDAR-
2013 competition dataset.

The analysis of recognition performance upper bound (LAR) and
examples of recognition errors show that there is still large room for
improvements, mainly lying in candidate segmentation–recognition
path evaluation exploiting contexts. In our future work, we will
consider the more powerful LSTM-RNN language model, which is
even more computationally demanding than the RNNLMs. We will
also try word level LMs, as words are more semantically meaningful
than pure characters, though word level LMs are hard to manage in
Chinese documents.

Table 14
LARs on the two datasets.

Shape model CASIA-HWDB, LAR (%) ICDAR-2013, LAR (%)

Traditional 96.65 96.16
CNN 99.20 99.27

Y.-C. Wu et al. Pattern Recognition 65 (2017) 251–264

262

Acknowledgments

We would like to thank Zhuo Chen and Xin He for the help in
implementing CNN based over-segmentation, and Xiang-Dong Zhou
for sharing the idea of lattice error rate. This work has been supported
by the National Natural Science Foundation of China (NSFC) grants
61305005, 61273269, 61573355, and 61411136002.

References

[1] R.-W. Dai, C.-L. Liu, B.-H. Xiao, Chinese character recognition: history, status and
prospects, Front. Comput. Sci. China 1 (2) (2007) 126–136.

[2] H. Fujisawa, Forty years of research in character and document recognition—an
industrial perspective, Pattern Recognit. 41 (8) (2008) 2435–2446.

[3] Q.-F. Wang, F. Yin, C.-L. Liu, Handwritten Chinese text recognition by integrating
multiple contexts, IEEE Trans. Pattern Anal. Mach. Intell. 34 (8) (2012)
1469–1481.

[4] S. Katz, Estimation of probabilities from sparse data for the language model
component of a speech recognizer, IEEE Trans. Acoust. Speech Signal Process. 35
(3) (1987) 400–401.

[5] S.F. Chen, J. Goodman, An empirical study of smoothing techniques for language
modeling, in: Proceedings of the 34th Annual Meeting on Association for
Computational Linguistics, 1996, pp. 310–318.

[6] U.-V. Marti, H. Bunke, Using a statistical language model to improve the
performance of an HMM-based cursive handwriting recognition system, Int. J.
Pattern Recognit. Artif. Intell. 15 (1) (2001) 65–90.

[7] H. Bunke, S. Bengio, A. Vinciarelli, Offline recognition of unconstrained hand-
written texts using HMMs and statistical language models, IEEE Trans. Pattern
Anal. Mach. Intell. 26 (6) (2004) 709–720.

[8] S. Espana-Boquera, M.J. Castro-Bleda, J. Gorbe-Moya, F. Zamora-Martinez,
Improving offline handwritten text recognition with hybrid HMM/ANN models,
IEEE Trans. Pattern Anal. Mach. Intell. 33 (4) (2011) 767–779.

[9] X.-D. Zhou, D.-H. Wang, F. Tian, C.-L. Liu, M. Nakagawa, Handwritten Chinese/
Japanese text recognition using semi-Markov conditional random fields, IEEE
Trans. Pattern Anal. Mach. Intell. 35 (10) (2013) 2413–2426.

[10] A. Bissacco, M. Cummins, Y. Netzer, H. Neven, PhotoOCR: reading text in
uncontrolled conditions, in: Proceedings of the ICCV, 2013, pp. 785–792.

[11] D.-H. Wang, C.-L. Liu, X.-D. Zhou, An approach for real-time recognition of online
Chinese handwritten sentences, Pattern Recognit. 45 (10) (2012) 3661–3675.

[12] Q.-F. Wang, F. Yin, C.-L. Liu, Unsupervised language model adaptation for
handwritten Chinese text recognition, Pattern Recognit. 47 (3) (2014) 1202–1216.

[13] R. Messina, J. Louradour, Segmentation-free handwritten Chinese text recognition
with lstm-rnn, in: Proceedings of the 13th International Conference on Document
Analysis and Recognition, 2015, pp. 171–175.

[14] B. Carpenter, Scaling high-order character language models to gigabytes, in:
Proceedings of the Workshop on Software, 2005, pp. 86–99.

[15] Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A neural probabilistic language
model, J. Mach. Learn. Res. 3 (2) (2003) 1137–1155.

[16] H. Schwenk, Continuous space language models, Comput. Speech Lang. 21 (3)
(2007) 492–518.

[17] T. Mikolov, M. Karafiát, L. Burget, J. Cernocky`, S. Khudanpur, Recurrent neural

network based language model., in: Proceedings of the INTERSPEECH, 2010, pp.
1045–1048.

[18] H. Schwenk, Continuous space translation models for phrase-based statistical
machine translation, in: Proceedings of the COLING, 2012, pp. 1071–1080.

[19] H. Schwenk, A. Rousseau, M. Attik, Large, pruned or continuous space language
models on a gpu for statistical machine translation, in: Proceedings of the NAACL-
HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the
Future of Language Modeling for HLT, 2012, pp. 11–19.

[20] F. Zamora-Martínez, V. Frinken, S. España-Boquera, M. Castro-Bleda, A. Fischer,
H. Bunke, Neural network language models for off-line handwriting recognition,
Pattern Recognit. 47 (4) (2014) 1642–1652.

[21] Y.-C. Wu, F. Yin, C.-L. Liu, Evaluation of neural network language models in
handwritten Chinese text recognition, in: Proceedings of the 13th International
Conference on Document Analysis and Recognition, 2015, pp. 166–170.

[22] A. Mnih, G. Hinton, Three new graphical models for statistical language modelling,
in: Proceedings of the 24th International Conference on Machine Learning, 2007,
pp. 641–648.

[23] T. Morioka, T. Iwata, T. Hori, T. Kobayashi, Multiscale recurrent neural network
based language model, in: Proceedings of the INTERSPEECH, 2015, pp. 2366–
2370.

[24] K. Irie, R. Schlüter, H. Ney, Bag-of-words input for long history representation in
neural network-based language models for speech recognition, in: Proceedings of
the INTERSPEECH, 2015, pp. 2371–2375.

[25] A. Mnih, G.E. Hinton, A scalable hierarchical distributed language model, in:
Proceedings of the Advances in Neural Information Processing Systems, 2009, pp.
1081–1088.

[26] F. Morin, Y. Bengio, Hierarchical probabilistic neural network language model, in:
Proceedings of the AISTATS, vol. 5, 2005, pp. 246–252.

[27] A. Mnih, Y.W. Teh, A fast and simple algorithm for training neural probabilistic
language models, in: Proceedings of the 29th International Conference on Machine
Learning, 2012, pp. 1751–1758.

[28] T. Mikolov, S. Kombrink, L. Burget, J.H. Černocky`, S. Khudanpur, Extensions of
recurrent neural network language model, in: Proceedings of the ICASSP, 2011, pp.
5528–5531.

[29] Y. Bengio, J.-S. Senecal, Adaptive importance sampling to accelerate training of a
neural probabilistic language model, IEEE Trans. Neural Netw. 19 (4) (2008)
713–722.

[30] T. Mikolov, A. Deoras, D. Povey, L. Burget, J. Černocky`, Strategies for training
large scale neural network language models, in: Proceedings of the ASRU, 2011, pp.
196–201.

[31] S. Kombrink, T. Mikolov, M. Karafiát, L. Burget, Recurrent neural network based
language modeling in meeting recognition, in: INTERSPEECH, 2011, pp. 2877–
2880.

[32] S. Wang, L. Chen, L. Xu, W. Fan, J. Sun, S. Naoi, Deep knowledge training and
heterogeneous CNN for handwritten Chinese text recognition, in: Proceedings of
the 15th ICFHR, 2016, pp. 84–89.

[33] C.-L. Liu, M. Koga, H. Fujisawa, Lexicon-driven segmentation and recognition of
handwritten character strings for Japanese address reading, IEEE Trans. Pattern
Anal. Mach. Intell. 24 (11) (2002) 1425–1437.

[34] H. Lee, B. Verma, Binary segmentation algorithm for English cursive handwriting
recognition, Pattern Recognit. 45 (4) (2012) 1306–1317.

[35] X.-D. Zhou, J.-L. Yu, C.-L. Liu, T. Nagasaki, K. Marukawa, Online handwritten
Japanese character string recognition incorporating geometric context, in:
Proceedings of the 9th International Conference on Document Analysis and

Fig. 8. Recognition of four text lines. For each example, the first row is the text line image, second row is the result using 5-gram BLM and traditional models, third row is the result
using HRMELM and CNN shape models, fourth row is the transcript (ground-truth).

Y.-C. Wu et al. Pattern Recognition 65 (2017) 251–264

263

http://refhub.elsevier.com/S0031-16)30447-sbref1
http://refhub.elsevier.com/S0031-16)30447-sbref1
http://refhub.elsevier.com/S0031-16)30447-sbref2
http://refhub.elsevier.com/S0031-16)30447-sbref2
http://refhub.elsevier.com/S0031-16)30447-sbref3
http://refhub.elsevier.com/S0031-16)30447-sbref3
http://refhub.elsevier.com/S0031-16)30447-sbref3
http://refhub.elsevier.com/S0031-16)30447-sbref4
http://refhub.elsevier.com/S0031-16)30447-sbref4
http://refhub.elsevier.com/S0031-16)30447-sbref4
http://refhub.elsevier.com/S0031-16)30447-sbref5
http://refhub.elsevier.com/S0031-16)30447-sbref5
http://refhub.elsevier.com/S0031-16)30447-sbref5
http://refhub.elsevier.com/S0031-16)30447-sbref6
http://refhub.elsevier.com/S0031-16)30447-sbref6
http://refhub.elsevier.com/S0031-16)30447-sbref6
http://refhub.elsevier.com/S0031-16)30447-sbref7
http://refhub.elsevier.com/S0031-16)30447-sbref7
http://refhub.elsevier.com/S0031-16)30447-sbref7
http://refhub.elsevier.com/S0031-16)30447-sbref8
http://refhub.elsevier.com/S0031-16)30447-sbref8
http://refhub.elsevier.com/S0031-16)30447-sbref8
http://refhub.elsevier.com/S0031-16)30447-sbref9
http://refhub.elsevier.com/S0031-16)30447-sbref9
http://refhub.elsevier.com/S0031-16)30447-sbref10
http://refhub.elsevier.com/S0031-16)30447-sbref10
http://refhub.elsevier.com/S0031-16)30447-sbref11
http://refhub.elsevier.com/S0031-16)30447-sbref11
http://refhub.elsevier.com/S0031-16)30447-sbref12
http://refhub.elsevier.com/S0031-16)30447-sbref12
http://refhub.elsevier.com/S0031-16)30447-sbref13
http://refhub.elsevier.com/S0031-16)30447-sbref13
http://refhub.elsevier.com/S0031-16)30447-sbref13
http://refhub.elsevier.com/S0031-16)30447-sbref14
http://refhub.elsevier.com/S0031-16)30447-sbref14
http://refhub.elsevier.com/S0031-16)30447-sbref14
http://refhub.elsevier.com/S0031-16)30447-sbref15
http://refhub.elsevier.com/S0031-16)30447-sbref15
http://refhub.elsevier.com/S0031-16)30447-sbref15
http://refhub.elsevier.com/S0031-16)30447-sbref16
http://refhub.elsevier.com/S0031-16)30447-sbref16

Recognition, 2007, pp. 48–52.
[36] F. Yin, Q.-F. Wang, X.-Y. Zhang, C.-L. Liu, ICDAR 2013 Chinese handwriting

recognition competition, in: Proceedings of the 12th International Conference on
Document Analysis and Recognition, 2013, pp. 1464–1470.

[37] D. Cireşan, U. Meier, Multi-column deep neural networks for offline handwritten
Chinese character classification, in: Proceedings of the IJCNN, 2015, pp. 1–6.

[38] C. Wu, W. Fan, Y. He, J. Sun, S. Naoi, Handwritten character recognition by
alternately trained relaxation convolutional neural network, in: Proceedings of the
ICFHR, 2014, pp. 291–296.

[39] Z. Zhong, L. Jin, Z. Xie, High performance offline handwritten Chinese character
recognition using GoogLeNet and directional feature maps, in: Proceedings of the
13th International Conference on Document Analysis and Recognition, 2015, pp.
846–850.

[40] X.-Y. Zhang, Y. Bengio, C.-L. Liu, Online and offline handwritten Chinese character
recognition: a comprehensive study and new benchmark, Pattern Recognit. 61
(2017) 348–360.

[41] N. Li, X. Gao, L. Jin, Curved segmentation path generation for unconstrained
handwritten Chinese text lines, in: Proceedings of the APCCAS, 2008, pp. 501–505.

[42] L. Xu, F. Yin, Q.-F. Wang, C.-L. Liu, Touching character separation in Chinese
handwriting using visibility-based foreground analysis, in: Proceedings of the 11th
International Conference on Document Analysis and Recognition, 2011, pp. 859–
863.

[43] J.H. Bae, K.C. Jung, J.W. Kim, H.J. Kim, Segmentation of touching characters
using an MLP, Pattern Recognit. Lett. 19 (8) (1998) 701–709.

[44] L. Xu, F. Yin, Q.-F. Wang, C.-L. Liu, An over-segmentation method for single-
touching Chinese handwriting with learning-based filtering, Int. J. Doc. Anal.
Recognit. 17 (1) (2014) 91–104.

[45] M. Nakagawa, Z. Bilan, M. Onuma, A model of on-line handwritten Japanese text
recognition free from line direction and writing format constraints, IEICE Trans.
Inf. Syst. 88 (8) (2005) 1815–1822.

[46] Y.-C. Wu, F. Yin, C.-L. Liu, Evaluation of geometric context models for handwritten
numeral string recognition, in: Proceedings of the ICFHR, 2014, pp. 193–198.

[47] T. Mikolov, A. Deoras, S. Kombrink, L. Burget, J. Cernocky`, Empirical evaluation
and combination of advanced language modeling techniques., in: INTERSPEECH,
2011, pp. 605–608.

[48] M. Sundermeyer, I. Oparin, J.-L. Gauvain, B. Freiberg, R. Schluter, H. Ney,
Comparison of feedforward and recurrent neural network language models, in:
Proceedings of the ICASSP, 2013, pp. 8430–8434.

[49] M. Sundermeyer, H. Ney, R. Schluter, From feedforward to recurrent LSTM neural
networks for language modeling, IEEE/ACM Trans. Audio Speech Lang. Process.
23 (3) (2015) 517–529.

[50] E. Arisoy, T.N. Sainath, B. Kingsbury, B. Ramabhadran, Deep neural network
language models, in: Proceedings of the NAACL-HLT 2012 Workshop: Will We
Ever Really Replace the N-Gram Model? On the Future of Language Modeling for
HLT, Association for Computational Linguistics, Montreal, Canada, 2012, pp. 20–
28.

[51] L. Hai Son, A. Allauzen, F. Yvon, Measuring the influence of long range
dependencies with neural network language models, in: Proceedings of the NAACL-
HLT 2012 Workshop: Will We Ever Really Replace the N-Gram Model? On the
Future of Language Modeling for HLT, Association for Computational Linguistics,
Montreal, Canada, 2012, pp. 1–10.

[52] N. Li, J. Chen, H. Cao, B. Zhang, P. Natarajan, Applications of recurrent neural
network language model in offline handwriting recognition and word spotting, in:
Proceedings of the ICFHR, 2014, pp. 134–139.

[53] N. Li, J. Chen, H. Cao, B. Zhang, P. Natarajan, Applications of recurrent neural
network language model in offline handwriting recognition and word spotting, in:
Proceedings of the ICFHR, 2014, pp. 134–139.

[54] C.-L. Liu, F. Yin, D.-H. Wang, Q.-F. Wang, CASIA online and offline Chinese
handwriting Databases, in: Proceedings of the 11th International Conference on
Document Analysis and Recognition, 2011, pp. 37–41.

[55] C.-L. Liu, Handwritten Chinese character recognition: effects of shape normal-
ization and feature extraction, in: Arabic and Chinese Handwriting Recognition,
2008, pp. 104–128.

[56] C. Liu, H. Fujisawa, Classification and learning in character recognition: advances
and remaining problems, in: S. Marinai, H. Fujisawa (Eds.), Machine Learning in
Document Analysis and Recognition, pp. 139–161.

[57] F. Yin, Q.-F. Wang, C.-L. Liu, Transcript mapping for handwritten Chinese
documents by integrating character recognition model and geometric context,
Pattern Recognit. 46 (10) (2013) 2807–2818.

[58] C.M. Bishop, Pattern Recognition and Machine Learning, 2006, pp. 225–284.
[59] J. Fürnkranz, A study using N-gram features for text categorization, Austrian Res.

Inst. Artif. Intell. 3 (1998) 1–10.
[60] T. Joshua, J. Goodman, A bit of progress in language modeling extended version,

Mach. Learn. Appl. Stat. Group Microsoft Res. (2001) 1–72.
[61] J. Goodman, Classes for fast maximum entropy training, in: Proceedings of the

ICASSP, IEEE, Salt Lake City, Utah, 2001, pp. 561–564.
[62] G. Zweig, K. Makarychev, Speed regularization and optimality in word classing, in:

Proceedings of the ICASSP, 2013, pp. 8237–8241.
[63] P.F. Brown, P.V. Desouza, R.L. Mercer, V.J.D. Pietra, J.C. Lai, Class-based N-gram

models of natural language, Comput. Linguist. 18 (4) (1992) 467–479.
[64] R. Kneser, H. Ney, Improved clustering techniques for class-based statistical

language modelling, in: Proceedings of the Eurospeech, 1993, pp. 973–976.
[65] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, J. Cernocky, RNNLM-recurrent

neural network language modeling toolkit, in: Proceedings of the ASRU, 2011, pp.
196–201.

[66] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural
networks, Science 313 (5786) (2006) 504–507.

[67] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–444.
[68] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to

document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.
[69] Z. Zhong, L. Jin, Z. Xie, High performance offline handwritten Chinese character

recognition using googlenet and directional feature maps, in: Proceedings of the
13th International Conference on Document Analysis and Recognition, 2015, pp.
846–850.

[70] C.-L. Liu, K. Marukawa, Pseudo two-dimensional shape normalization methods for
handwritten Chinese character recognition, Pattern Recognit. 38 (12) (2005)
2242–2255.

[71] C.-L. Liu, H. Sako, H. Fujisawa, Effects of classifier structures and training regimes
on integrated segmentation and recognition of handwritten numeral strings, IEEE
Trans. Pattern Anal. Mach. Intell. 26 (11) (2004) 1395–1407.

[72] X. He, Y.-C. Wu, K. Chen, F. Yin, C.-L. Liu, Neural network based over-
segmentation for scene text recognition, in: Proceedings of the ACPR, 2015, pp.
715–719.

[73] C.-L. Liu, Normalization-cooperated gradient feature extraction for handwritten
character recognition, IEEE Trans. Pattern Anal. Mach. Intell. 29 (8) (2007)
1465–1469.

[74] F. Kimura, K. Takashina, S. Tsuruoka, Y. Miyake, Modified quadratic discriminant
functions and the application to Chinese character recognition, IEEE Trans. Pattern
Anal. Mach. Intell. 9 (1) (1987) 149–153.

[75] S. Yu, H. Duan, B. Swen, B.-B. Chang, Specification for corpus processing at Peking
University: word segmentation, pos tagging and phonetic notation, J. Chin. Lang.
Comput. 13 (2), 2003.

[76] 〈http://www.bfsu-corpus.org/channels/corpus〉.
[77] T.-H. Su, T.-W. Zhang, D.-J. Guan, H.-J. Huang, Off-line recognition of realistic

Chinese handwriting using segmentation-free strategy, Pattern Recognit. 42 (1)
(2009) 167–182.

[78] A. Stolcke, Srilm – an extensible language modeling toolkit, in: Proceedings of the
INTERSPEECH, 2002, pp. 901–904.

[79] H. Schwenk, CSLM – a modular open-source continuous space language modeling
toolkit, in: Proceedings of the INTERSPEECH, 2013, pp. 1198–1202.

[80] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
T. Darrell, Caffe: Convolutional Architecture for Fast Feature Embedding, arXiv
preprint arXiv:1408.5093.

[81] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, in: Proceedings of the Aistats, vol. 9, 2010, pp. 249–256.

[82] M.-K. Zhou, X.-Y. Zhang, F. Yin, C.-L. Liu, Discriminative quadratic feature
learning for handwritten Chinese character recognition, Pattern Recognit. 49
(2016) 7–18.

[83] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, J. Schmidhuber, A
novel connectionist system for unconstrained handwriting recognition, IEEE Trans.
Pattern Anal. Mach. Intell. 31 (5) (2009) 855–868.

Yi-Chao Wu received the B.S. degree in Automation from Xidian University, Xi'an,
China, in 2012. He is currently pursuing his Ph.D. degree in Pattern Recognition and
Intelligent Systems at the National Laboratory of Pattern Recognition (NLPR), Institute
of Automation, Chinese Academy of Sciences, Beijing, China. His research interests
include handwritten text recognition, language modeling, and sequence pattern recogni-
tion.

Fei Yin is an Associate Professor at the National Laboratory of Pattern Recognition
(NLPR), Institute of Automation, Chinese Academy of Sciences, Beijing, China. He
received the B.S. degree in Computer Science from Xidian University of Posts and
Telecommunications, Xi'an, China, the M.E. degree in Pattern Recognition and
Intelligent Systems from Huazhong University of Science and Technology, Wuhan,
China, the Ph.D. degree in Pattern Recognition and Intelligent Systems from the Institute
of Automation, Chinese Academy of Sciences, Beijing, China, in 1999, 2002 and 2010,
respectively. His research interests include document image analysis, handwritten
character recognition and image processing. He has published over 30 papers at
international journals and conferences.

Cheng-Lin Liu received the B.S. degree in Electronic Engineering from Wuhan
University, Wuhan, China, the M.E. degree in Electronic Engineering from Beijing
Polytechnic University (current Beijing University of Technology), Beijing, China, the
Ph.D. degree in Pattern Recognition and Intelligent Systems from the Institute of
Automation of Chinese Academy of Sciences, Beijing, China, in 1989, 1992 and 1995,
respectively. He was a Postdoctoral Fellow at Korea Advanced Institute of Science and
Technology (KAIST) and later at Tokyo University of Agriculture and Technology from
March 1996 to March 1999. From 1999 to 2004, he was a Research Staff Member and
later a Senior Researcher at the Central Research Laboratory, Hitachi, Ltd., Tokyo,
Japan. From 2005, he has been a Professor at the National Laboratory of Pattern
Recognition (NLPR), Institute of Automation of Chinese Academy of Sciences, Beijing,
China, and is now the Director of the laboratory. His research interests include pattern
recognition, image processing, neural networks, machine learning, and the applications
to character recognition and document analysis. He has published over 200 technical
papers at prestigious international journals and conferences. He won the IAPR/ICDAR
Young Investigator Award of 2005. He serves on the editorial board of Pattern
Recognition Journal, Image and Vision and Computing, International Journal on
Document Analysis and Recognition, and Cognitive Computation. He is a Fellow of the
IAPR and the IEEE.

Y.-C. Wu et al. Pattern Recognition 65 (2017) 251–264

264

http://refhub.elsevier.com/S0031-16)30447-sbref17
http://refhub.elsevier.com/S0031-16)30447-sbref17
http://refhub.elsevier.com/S0031-16)30447-sbref17
http://refhub.elsevier.com/S0031-16)30447-sbref18
http://refhub.elsevier.com/S0031-16)30447-sbref18
http://refhub.elsevier.com/S0031-16)30447-sbref19
http://refhub.elsevier.com/S0031-16)30447-sbref19
http://refhub.elsevier.com/S0031-16)30447-sbref19
http://refhub.elsevier.com/S0031-16)30447-sbref20
http://refhub.elsevier.com/S0031-16)30447-sbref20
http://refhub.elsevier.com/S0031-16)30447-sbref20
http://refhub.elsevier.com/S0031-16)30447-sbref21
http://refhub.elsevier.com/S0031-16)30447-sbref21
http://refhub.elsevier.com/S0031-16)30447-sbref21
http://refhub.elsevier.com/S0031-16)30447-sbref22
http://refhub.elsevier.com/S0031-16)30447-sbref22
http://refhub.elsevier.com/S0031-16)30447-sbref22
http://refhub.elsevier.com/S0031-16)30447-sbref23
http://refhub.elsevier.com/S0031-16)30447-sbref23
http://refhub.elsevier.com/S0031-16)30447-sbref24
http://refhub.elsevier.com/S0031-16)30447-sbref24
http://refhub.elsevier.com/S0031-16)30447-sbref25
http://refhub.elsevier.com/S0031-16)30447-sbref25
http://refhub.elsevier.com/S0031-16)30447-sbref26
http://refhub.elsevier.com/S0031-16)30447-sbref26
http://refhub.elsevier.com/S0031-16)30447-sbref27
http://refhub.elsevier.com/S0031-16)30447-sbref28
http://refhub.elsevier.com/S0031-16)30447-sbref28
http://refhub.elsevier.com/S0031-16)30447-sbref28
http://refhub.elsevier.com/S0031-16)30447-sbref29
http://refhub.elsevier.com/S0031-16)30447-sbref29
http://refhub.elsevier.com/S0031-16)30447-sbref29
http://refhub.elsevier.com/S0031-16)30447-sbref30
http://refhub.elsevier.com/S0031-16)30447-sbref30
http://refhub.elsevier.com/S0031-16)30447-sbref30
http://refhub.elsevier.com/S0031-16)30447-sbref31
http://refhub.elsevier.com/S0031-16)30447-sbref31
http://refhub.elsevier.com/S0031-16)30447-sbref31
http://www.bfsu-corpus.org/channels/corpus
http://refhub.elsevier.com/S0031-16)30447-sbref32
http://refhub.elsevier.com/S0031-16)30447-sbref32
http://refhub.elsevier.com/S0031-16)30447-sbref32
http://arXiv:1408.5093
http://refhub.elsevier.com/S0031-16)30447-sbref33
http://refhub.elsevier.com/S0031-16)30447-sbref33
http://refhub.elsevier.com/S0031-16)30447-sbref33
http://refhub.elsevier.com/S0031-16)30447-sbref34
http://refhub.elsevier.com/S0031-16)30447-sbref34
http://refhub.elsevier.com/S0031-16)30447-sbref34

	Improving handwritten Chinese text recognition using neural network language models and convolutional neural network shape models
	Introduction
	Related works
	System overview
	Neural network language models
	Feedforward neural network language models
	Recurrent neural network language models
	RNN maximum entropy (RNNME) models

	Hybrid language models
	Acceleration
	Short-list
	Output factorization

	Convolutional neural network shape models
	Character classifier
	Over-segmentation
	Geometric context models

	Experimental results
	Database and baseline experimental setup
	Comparison of language models
	Baseline performance
	Effects of FNNLMs
	Effects of RNNLMs
	Performance on ICDAR-2013 dataset

	Effects of CNN shape models
	CNN character classifier
	CNN based over-segmentation
	CNN based geometric context models
	Evaluation of CNN shape models

	Results with LMs on large corpus
	Performance analysis
	Upper bound of performance
	Recognition examples

	Conclusion
	Acknowledgments
	References

