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A B S T R A C T

Semantic video segmentation is a challenging task of fine-grained semantic understanding of video data. In this
paper, we present a jointly trained deep learning framework to make the best use of spatial and temporal
information for semantic video segmentation. Along the spatial dimension, a hierarchically supervised
deconvolutional neural network (HDCNN) is proposed to conduct pixel-wise semantic interpretation for single
video frames. HDCNN is constructed with convolutional layers in VGG-net and their mirrored deconvolutional
structure, where all fully connected layers are removed. And hierarchical classification layers are added to multi-
scale deconvolutional features to introduce more contextual information for pixel-wise semantic interpretation.
Besides, a coarse-to-fine training strategy is adopted to enhance the performance of foreground object
segmentation in videos. Along the temporal dimension, we introduce Transition Layers upon the structure of
HDCNN to make the pixel-wise label prediction consist with adjacent pixels across space and time domains. The
learning process of the Transition Layers can be implemented as a set of extra convolutional calculations
connected with HDCNN. These two parts are jointly trained as a unified deep network in our approach.
Thorough evaluations are performed on two challenging video datasets, i.e., CamVid and GATECH. Our
approach achieves state-of-the-art performance on both of the two datasets.

1. Introduction

Semantic video segmentation is a fundamental problem in video
interpretation which assigns label to each pixel in video sequences. It
attracts much attention for the wide applications such as automatic
drive, scene understanding and robotics. Compared with general video
segmentation tasks that just parse video frames into spatio-temporal
volumes, semantic video segmentation demands higher on under-
standing the content of frames and makes more abundant category
judgment.

Much of previous work on semantic video segmentation is based on
graphical models, which links adjacent patches in space and time
domains. And the label of each supervoxel is assigned by energy
minimization and label propagation [1–5]. These methods take the
spatial and temporal consistency between video frames into account.
But the tremendous computation cost and limited discrimination
ability of graph-based algorithms make them hard to be applied to
large-scale video data. Some recent work turn to deep learning as a new
solution to this problem considering its excellent learning capacity
[6,7]. Zhang et al. [6] improve the graph-based method with deep

features and Tran et al. [7] empoly a 3D convolutional neural network
(3D CNN) [8] to implement pixel-wise labeling in video tasks. Both of
these work improve traditional methods with 3D CNN, but as the
amount of annotated video data available for model training is small,
the performance of these methods is also limited.

As a relevant visual task, semantic image segmentation obtains
great progress because of the introduction of deep learning methods
and large amount of available training data. The most representative
work is FCN [9] which provides an end-to-end network enabling pixel-
wise category prediction with a whole image as input. However, the
pixel-wise supervision in FCN is attached to the feature maps
upsampled via large-span bilinear interpolation, which results in
over-smoothed object boundaries in the results of segmentation.
Besides, the foreground objects, especially the tiny objects, are possible
to be overwhelmed by the large areas of background.

To overcome the problems existing in previous work, we propose a
unified framework to effectively use the spatial and temporal informa-
tion for semantic video segmentation. For a video sequence, each frame
is fed into a deep network along with its adjacent frames, and they are
conducted in parallel. And then the responses of the frames are
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combined across space and time domains with a set of learned state
transition matrices between semantic concepts. The entire process can
be integrated into a unified deep network and trained jointly.

In our approach, the video frames are firstly processed as separated
images. In this way, it becomes possible for us to utilize models
pretrained with large-scale image data like ImageNet [10] and effec-
tively transfer them to video analysis. To solve the limitations of FCN
[9], we design a hierarchically supervised deconvolutional neural
network (HDCNN) to reconstruct the low resolution features to input
resolution through a more refined method and maintain the boundary
information as much as possible. HDCNN is constructed on the top of
convolutional layers in VGG-net with a mirrored deconvolutional and
unpooling architecture, while the fully connected layers are removed.
Pooling indices in the convolutional part are employed during unpool-
ing to ensure location consistency, which conducts a more refined
upsampling operation than bilinear interpolation. Besides, hierarchical
classification layers are presented by mapping multi-scale intermediate
deconvolutional features to pixel-wise labeling maps, where unpooling
and bilinear interpolation are used cooperatively. As the foreground
objects in video frames are always our focus during video interpreta-
tion, to prevent them from being overwhelmed by the backgrounds and
produce more refined boundaries, a coarse-to-fine training strategy is
designed. A primary HDCNN is firstly trained on the entire frames
which produces coarse segmentation results. And secondly, object
proposals are generated to further refine the model with more object
details. In this way, we bring in scale invariance as the large and tiny
objects are rescaled to similar resolution with the background scenes,
which improves the discrimination ability of HDCNN.

Then we fuse the interframe information for video segmentation. A
pixel in a video sequence is always related to its spatially and
temporally adjacent pixels. For example, a pixel is more likely to be
labeled as “pedestrian” than “car” if its adjacent pixel is labeled as “side
walk”. Therefore, the semantic correlationship can be mined within
local spatio-temporal volumes to further improve pixel-wise prediction.
Aimed at this, we learn a set of state transition matrices on semantic
concepts to combine the network responses of pixels in a spatio-
temporal volume. The combination process can be implemented as
convolutional operations with a set of extra layers. We call them
“Transition Layers” and integrate them into a unified network with
HDCNN, which makes a jointly optimized system.

In this paper, we evaluate our approach mainly on street scenes,
and two challenging video datasets CamVid [11] and GATECH [12] are
employed. State-of-the-art results are achieved on both of them, which
verify the effectiveness of our approach.

The remainder of this paper is organized as follows: In Section 2, we
overview some related work. Section 3 elaborates the proposed models
of HDCNN and Transition Layers. The experimental evaluations and
discussions are presented in Section 4. And we conclude this paper in
Section 5.

2. Related work

2.1. Semantic video segmentation

Previous methods for semantic video segmentation are usually
graph-based [1–5]. Badrinarayanan et al. [1,2] solve the problem with
semi-supervised methods assuming that only a few key frames are
labeled and propagating the labels to other frames with motion flows.
Liu et al. [3] jointly model supervoxel labeling with object instances
and their geometric relations. Floros et al. [4] bring in 3D scene
geometry to improve segmentation quality. While Jain et al. [5]
proposed a multi-grained graph learning strategy for semantic video
segmentation. In these work, motion or tracking information is also
used to help guarantee the spatial and temporal consistency in a long-
range video sequence. Tighe et al. [13] extend their image parsing
approach to video sequences. However, the performance of these

methods are always limited by the computation cost and discrimination
ability of their models.

As deep learning brings huge progress in visual tasks, some
researchers attempt to solve the problem with deep models [6,7].
Zhang et al. [6] improve their performance by learning discriminative
hierarchical features with a 3D CNN. Tran et al. [7] also employ a 3D
CNN to encode video sequences and make dense predictions for them
in a similar framework with FCN [9]. The 3D CNN [8] processes video
data with an extra temporal channel in its convolution kernels and
combine the information in different frames by convolving pixels at
corresponding positions together. However, as the available video data
for 3D CNN training is relatively limited and lack of diversity, the pre-
trained 3D CNN models are always disadvantaged in discrimination
and generalization performance compared with those 2D CNN models
trained with large-scale image datasets. This is also the reason why we
choose to process video frames as single images in the first part of our
framework.

2.2. Semantic image segmentation

The introduction of deep learning contributes to the recent break-
through in semantic image segmentation, represented by FCN [9]. FCN
extends a convnet to adapt arbitrary-sized inputs with fully convolu-
tional structure, and realises pixel-wise prediction by upsampling the
output feature maps to the input resolution with bilinear interpolation,
which results in rough edges and object vanishing. Much following
work tries to alleviate these problems, and the most representative
practice is combining FCN with conditional random field (CRF) or
markov random field (MRF) [14–17]. Moreover, deconvolutional
neural network inspires us with a finer method for upsampling than
direct bilinear interpolation. It is firstly proposed by Zeiler et al. [18]
and later used for visualization [19]. It reverses the process of
convolutional neural network and maps the feature activities back to
each pixel. This method is firstly applied in object localization and
segmentation by Simonyan et al. [20] with a non-learning based
framework. Noh et al. [21] further proposed Deconvnet for semantic
image segmentation and extend their method to semi-supervised
scenarios [22]. Badrinarayanan et al. [23] also proposed SegNet with
the similar structure. However, the existing methods with deconvolu-
tional neural network always suffer from burdensome model size or
training effort. And we bring in different features with them in our
detailed network structure.

3. Our approach

3.1. Overview

The overall framework of our approach is illustrated in Fig. 1. It is
implemented as a unified deep network, which can be further divided
into two components. The first one is HDCNN which is a deconvolu-
tional neural network consisting of convolutional and deconvolutional
parts. It encodes the input frame with convolutional layers to extract
the semantic information, and then decodes the feature maps to the
input resolution with deconvolutional layers to reconstruct detailed
boundaries. Hierarchical supervision is also used to assist training. The
second component is Transition Layers which are implemented as a set
of extra convolutional layers, it combines the responses of a video
frame with those of its adjacent frames by considering the semantic
correlation of spatially and temporally neighbouring pixels. With this
network structure, each video frame is fed into the network along with
its previous and latter frames, the frames are conducted in parallel in
HDCNN. Their corresponding output feature maps are fed into
Transition Layers and combined via the state transition matrices to
make pixel-wise prediction for the current frame..
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3.2. HDCNN

Unlike FCN [9] which obtains pixel-wise prediction through large-
span bilinear interpolation, HDCNN provides a more refined recon-
struction via progressively upsampling the feature maps to larger
resolution. Illustration of our network structure is shown in Fig. 2..

3.2.1. Architecture
HDCNN is composed of two parts. The first part is a convolutional

network that takes a 2D image as input and encodes it into feature
maps. And the second part is a deconvolutional network that takes the
feature maps as input and propagates the responses back to each pixel.
The two networks are spliced and optimized together. For the
convolutional network, we directly inherit the network structure and
parameters from VGG 16-layer net [24]. The deconvolutional network
is built following [19], which is a reverse process of the convolutional
network. The main components of the deconvolutional network are
deconvolutional layers and unpooling layers.

Deconvolutional Layer: The deconvolutional layer takes the
opposite position to the convolutional layer. The convolutional layer
aggregates feature vectors in a local region and map them into a single
response, while the deconvolutional layer attempts to disassemble the

response back to each individual position. We use the learned
convolutional filters to initialize their corresponding deconvolutional
layers in our work, but flip each filter vertically and horizontally, as
Zeiler et al. did in [19].

Unpooling Layer: The unpooling layer carries out the inverse
process of the pooling layer. In our work, we use max pooling in the
convolutional network, which means that only the max value in a
feature map region is reserved. Through the unpooling layer, we send
the response value back to its original position and supplement 0 for
the abandoned positions.

All the convolutional and deconvolutional layers are placed sym-
metrically, and the same applied to the pooling and unpooling layers.
Through out the deconvolutional part of the network, the resolution of
convolutional feature maps are restored hierarchically, with precise
position correspondence.

3.2.2. Network details
Besides, our network is designed with several unusual features,

which make it small-sized and easy to converge.
Parameter Inheritance: We use the parameters of the learned

convolutional layers to initialize the deconvolutional layers in our
network, rather than Gaussian random numbers. It supplies our

Fig. 1. Overall framework of our approach. The input video sequences are firstly fed into HDCNN in parallel. And then the output feature maps are combined across space and time
domains to make dense prediction for the current frame with a set of transition matrices, which are implemented as Transition Layers. The two parts are linked together and jointly
trained as a unified deep network.

Fig. 2. Network structure of the proposed HDCNN, which is composed of convolutional and deconvolutional parts. Blocks with different colors indicate different kinds of layers. The
parameters in the deconvolutional layers are inherited from the learned convolutional layers as initialization. Furthermore, we remove the fully connected layers and add batch
normalization layers only after the deconvolutional layers. Moreover, each deconvolutional layer ahead of unpooling layer is connected with a classification layer and then upsampled to
the input resolution of the network, which makes hierarchical prediction and supervision by cooperatively using unpooling and bilinear interpolation (n stands for the number of
categories). A coarse-to-fine training strategy is applied with entire images and object proposals to train the network respectively.
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network with applicable initial values during deconvolutional compu-
tation. And this treatment makes our network easy to converge.

Discarding Fully Connected Layers: We discard the fully
connected layers and reverse the net from the last convolutional layer,
as the convolutional layer always shows much better ability for
reserving spatial information compared with fully connected layer.
And with this design, we decrease the model size by nearly 10 times,
which makes our network more lightweight and easier to train because
of the fewer parameters.

Asymmetrical Batch Normalization: We employ batch nor-
malization [25] in our network to reduce the internal-covariate-shift
during training, but we only add it in the deconvolutional part of
HDCNN. In our framework, the convolutional network works as a
feature extractor which encodes semantic information, and we don't
want to break the correlations between the well-learned net layers.
While the deconvolutional network is trained as a decoder, so we add a
batch normalization layer after each deconvolutional layer for better
optimization.

Hierarchical Predictions: Although with strict positional corre-
spondence, the unpooling layers tend to break some correlations within
image regions for the reason of zero supplementary. To alleviate this,
we connect a classification layer to each deconvolutional layer that is
ahead of unpooling layer, and supervise it with pixel-wise groundtruth.
In this way, we attempt to guarantee the discrimination and region
correlations of our model before every unpooling. And the pixel-wise
prediction is realized by feeding the deconvolutional feature maps into
a fully convolutional classification layer and upsampling them with
bilinear interpolation. Meanwhile, it can be found that, with the
hierarchical predictions, we are actually cooperatively using unpooling
and bilinear interpolation for resolution recovery. That is, the lower
layer is attached greater scale change with bilinear interpolation, while
the higher layer considers less scale change but more unpooling
operations, and there exists a balance for these two kinds of upsam-
pling methods.

3.2.3. Coarse-to-fine training
During the encoding and decoding process of neural networks, the

foreground objects are easy to be confused with each other, and the tiny
objects are easy to be overwhelmed by the backgrounds because of the
relatively low resolution. However, the objects are usually what we
concern with in video interpretation. To make the model more focused
on the objects, we train HDCNN with a two-stage strategy to imple-
ment a coarse-to-fine learning process.

In the first stage, we train HDCNN with the entire frames and their
corresponding groundtruth as input and supervision. A primary model
is obtained in this stage which makes coarse segmentations.

In the second stage, we sample object proposals to refine the
primary model obtained. To better understand the content of video
frames, the proposal sampling is mainly conducted on classes such as
“car”, “pedestrian/human”, etc, which are considered as “foreground
objects”. Edge-box [26] is used to generate candidate bounding boxes
for each video frame. And then the object proposals are selected from
the candidates according to their IoU (intersection-over-union) scores
with the groundtruth of the foreground objects. Some objects with
relatively poor segmentation results in the first stage are given more
emphasis during selection. Afterwards, the selected object proposals
are rescaled and used to refine the primary HDCNN with more object
details. Through this processing, we also bring in scale invariance for
objects and scenes during rescaling which improves the discrimination
ability of our model.

3.3. Transition layers

3.3.1. Transition learning
As the category judgement of a pixel can be influenced by its

spatially and temporally adjacent pixels, we learn a set of state

transition matrices to describe the semantic correlations between
different concepts across space and time domains. Given a pixel
P x y t( , , ), where x, y and t indicate its spatial and temporal coordinates
respectively. Its adjacent pixels can be represented as P x y t( , , )∼∼ ∼∼

, where
x x m x m∈ [ − , + ]∼ , y y n y n∈ [ − , + ]∼ , t t l t l∈ [ − , + ]∼ . For the given
pixel, its state can be represented as SP, which is a C dimensional
vector with each element Sj

P of it indicates the response on the jth
semantic category. Assumpting the influence factor of Si

P∼ to Sj
P is wij

P∼,

then we can get the total influence from SP∼ to Sj
P as:
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Taking all the adjacent pixels of P into consideration, as well as
itself, we can get the final state of P as:
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In this way, we achieve the response of P on each semantic category
considering the transition relation of all its spatially and temporally
adjacent pixels, and then we use S P

to predict the label of P via
softmax.

3.3.2. Convolutional implementation
As for implementation, we accomplish this process through a set of

extra convolutional layers, which are jointly trained with HDCNN. As
mentioned in Section 3.2.2, we employ hierarchical classification layers
in HDCNN. While before the joint training with Transition Layers, a
layer selection is conducted on the validation set and network branches
above the best classification layer are discarded, which are the
redundant classification layers as well as their corresponding deconvo-
lutional layers.

With frames of time t t l t l∈ [ − , + ]∼ as input, a set of output feature
maps can be obtained, which are of the same resolution as input frames
with C channels. And we can get SP from the feature maps with
corresponding spatial and temporal location. The calculating process of

S W∑ ∑ ×y y n
y n

x x m
x m P P

= −
+

= −
+

∼∼
∼ ∼

with a fixed t∼ can be implemented in a

convolutional layer with the feature maps of frame t∼ as input. The
convolutional kernels of such a layer is of size m n C(2 + 1) × (2 + 1) ×
with kernel number equal to C. The output is a subcomponent of S P

, we

represent it as S P t,∼
. Thus the computation process can be represented

as:

S F K= *j
P t P t

j
t, ,

∼ ∼ ∼
(5)

where “*” represents the convolutional operation. FP t,∼
stands for the

spatial neighbourhood of P in the feature maps of frame t∼. It contains
all the SP∼ with P∼ ranging within x x m x m∈ [ − , + ]∼ , y y n y n∈ [ − , + ]∼

and a fixed t∼. Kj
t∼ stands for the jth convolutional kernel, and its

parameters at each spatial location are assigned with corresponding vj
P∼.

With the same operation applied to feature maps of frame
t t l t l∈ [ − , + ]∼ , l(2 + 1) extra convolutional layers are connected to
HDCNN, and we obtain the final state of pixel P by summing the output
of them all:

∑S F K= *j
P

t t l

t l
P t

j
t

= −

+
,

∼

∼ ∼

(6)

In this way, we implement the Transition Layers with a set of
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parallel convolutional layers and the output S P
is used for category

judgment. We initialize the parameters wij
P∼ with 1 where x x=∼ , y y=∼ ,

t t=∼ , i=j, while the other wij
P∼ are initialized with 0. With this setting, we

actually close up all the state transition at the beginning of training.
And then we jointly train the Transition Layers with HDCNN as a
unified deep network using standard stochastic gradient descent (SGD)
for optimation and pixel-wise softmax as loss function.

4. Experiment

Our experiments are mainly conducted on two public datasets,
CamVid [11] and GATECH [12]. Effectiveness of each part of our
framework is discussed in details. Performance of the overall frame-
work is compared with state-of-the-art methods and we win the best
results on both of the two datasets. We also conduct an extra
experiment on PASCAL VOC 2012 dataset [27] for semantic image
segmentation, to verify the performance of the proposed HDCNN.

CamVid: The CamVid [11] dataset consists of 5 video sequences
with street scenes. The videos are taken in daytime and at dusk with
resolution 960 × 720. Totally 701 densely labeled frames are provided
belonging to 11 semantic categories, i.e., sky, building, tree, side-walk,
car, column-pole, fence, pedestrian, bicylist and sign-symbol.
Following [23], we split the dataset into training, validation and test
sets, with “video/frame” number of each set being 3/367, 1/101 and 2/
233 respectively.

GATECH: The GATECH [12] dataset is a big video set of outdoor
scenes with frame resolution varying from 320 × 480 to 600 × 800. It
contains 101 labeled videos which are publicly partitioned into two
sets: 63 videos with 12241 frames for training and 38 videos with 7071
frames for testing. The dataset is labeled with 8 semantic categories
taking geometry into consideration, which are sky, ground, solid,
porous, cars, humans, vertical mix, and main mix.

PASCAL VOC 2012: We conduct our experiment on the PASCAL
VOC 2012 dataset [27] with extended annotations from [28], following
the same setting as [9,21,23]. The extended dataset is labeled with 20
object categories and one background category, containing 10582
training images, 1449 validation images and 1456 testing images.

Evaluation Metrics: We take Class avg (Percentage of correctly
classified pixels in a class, and then averaged over all classes), Global
avg (Percentage of correctly classified pixels over the whole dataset)
and Mean IoU (Ratio of correctly classified pixels in a class over the
union set of pixels predicted to this class and groundtruth, and then
averaged over all classes) as our metrics to evaluate our models [29].

4.1. Implementation details

We implement our network with Caffe [30] on the pre-trained VGG
16-layer net [24]. For the training of HDCNN on CamVid and
GATECH, the initial learning rate, momentum and weight decay used
for standard stochastic gradient descent (SGD) are set to 1.25e-4, 0.99
and 0.0005 respectively. While for PASCAL VOC 2012, we use a
smaller initial learning rate as 2.5e-5. The networks are all trained with
batchsize set to 1, and the video frames as well as the object proposals
are all rescaled to 224 × 224 for input. For the joint training of
Transition Layers and HDCNN, we chose a small time span of 3
frames for both CamVid and GATECH, i.e., the pixel-wise prediction
for a video frame is made by combining the feature maps of its previous

and next frames. The three frames are input into HDCNN as a triplet
that share the network parameters, and the entire network is optimized
with the triplet batchsize equal to 1. CRF [14] is also employed as a
post-processing of our approach.

4.2. Classification layer selection

HDCNN is connected to hierarchical classification layers by co-
operatively using unpooling and bilinear interpolation, as discussed in
Section 3.2.2. When we reconstruct the network up to the input
resolution, we will get 5 segmentation predictions from different
deconvolutional layers with ×16, ×8, ×4, ×2, ×1 upsampling via bi-
linear interpolation respectively, while the upsampling ratio of unpool-
ing is just the inverse. Thus, given an image of size 224 × 224, we
indicate each of the 5 segmentation predictions with the sizes of their
corresponding feature maps, which are 14 × 14, 28 × 28, 56 × 56,
112 × 112, 224 × 224, respectively. We evaluate our HDCNN model
on the validation set of CamVid dataset and list the performance of
each prediction in Table 1.

It can be found that, for all the three metrics, the best results appear
in the112 × 112 layer. While the 224 × 224 layer, which is upsampled to
the input resolution all by unpooling, achieves poorer performance. So
as to the 14 × 14 layer which recovers resolution only with bilinear
interpolation. The results prove the effectiveness of cooperatively using
unpooling and bilinear interpolation. As two different upsampling
methods, bilinear interpolation reserves local consistency but is easy
to over smooth object edges, while unpooling restores more refined
contexture features but tends to break up the correlations within local
regions. However, the results of 112 × 112 layer benefit from an
appropriate proportion for each of them, which are achieved through
three unpooling layers followed by ×2 bilinear interpolation.

During the joint training stage, the output feature maps of the
112 × 112 classification layer are upsampled via bilinear interpolation
and connected to the Transition Layers, while the redundant layers are
all discarded. And in the following experiments, for HDCNN, we report
the results of 112 × 112 layer for comparison. As there is no validation
set in GATECH, we follow the same layer selection settings as in
CamVid.

4.3. Visualization of transition layers

To confirm the effect of Transition Layers, we visualize the learned
transition matrices in this section, which are trained on CamVid
dataset with 11 semantic concepts. For concise visualization, we just
show as examples the transition matrices from pixel P x y t( , , − 1)∼

and
P x y t( , , + 1)∼

to P x y t( , , ) as well as the transition matrix of P x y t( , , )
itself, which describe how a pixel is influenced by the pixels in its
previous and next frames with the same spatial location as well as itself.
As shown in Fig. 3, the transition matrices are visualized in grids with
the jth column represents the influence factors of P∼ to the jth category
of P. And the intensity of each block indicates the value of correspond-
ing influence factor, where the factor with the largest absolute value is
colored with black and the smallest one is colored with white. During
visualization, the positive and negative influence factors are shown
separately and the factors close to 0 are removed and replaced with
white blocks because of their slight influences..

It can be noticed in Fig. 3 that the transition matrices are sparse
and show obvious correlations between different semantic concepts.
The correlations are data-driven and affected by the spatial relation-
ships and visual similarities of objects. For detailed analysis, the
positive transition matrix of current frame shows obvious diagonal
features and possesses the highest factors, which proves that the final
state of a pixel is mainly influenced by the responses of itself, while the
adjacent pixels work as assistance. And it is interesting that in this
matrix the influence factor of “pedestrian” to “bicyclist” and that of

Table 1
Results of hierarchical predictions on CamVid val set.

Predictions 224 × 224 112 × 112 56 × 56 28 × 28 14 × 14

Class avg 86.4 86.5 85.8 83.5 81.6
Global avg 91.1 91.6 91.4 90.1 88.1
Mean IoU 66.4 67.5 66.9 63.7 60.4
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“bicyclist” to “pedestrian” are relatively high, which indicates the easy
confusion of these two concepts in current frame because of the similar
semantic meanings and visual features. While correspondingly, the
transition matrices of previous and next frames all show high responses
on the column of “bicyclist”, no matter the positive or the negative
ones, which helps to distinguish these two concepts. And there are also
some other features in the matrices that show the spatial or cooccur-
rence relations between different concepts. For example, in the positive
transition matrices of both previous and next frames, the influence
factors of “car” and “bicyclist” to “road” are high, which indicates that,
with the corresponding pixels in the previous or next frames predicted
to be “car” or “bicyclist”, the pixel in current frame will possess a higher
possibility to be predicted as “road”.

4.4. Performance on CamVid

Performance of our approach is compared with some of the state-

of-the-art methods on the test set of CamVid [11], as shown in Table 2.
Prediction accuracy of each class is reported as well as the Class avg,
Global avg, and Mean IoU results. Our methods win the best results on
all the three metrics.

Among the compared methods, Superparsing [13] and Liu et al.
[31] are both graph-based methods which take the sequential relation-
ship of video frames into consideration. While SegNet [23] and
Bayesian SegNet [32] are recently proposed methods solving the
problem with deep networks. But both SegNet and Bayesian SegNet
treat the video frames as independent images with no temporal
information used. For our approach, detailed comparison with differ-
ent settings are provided. Firstly, we provide the performance of the
coarsely trained HDCNN where no object proposal is used for training.
And then, we add object proposals to accomplish the coarse-to-fine
training process of HDCNN. Finally, we provide the results of our
entire framework with three adjacent frames combined for the predic-
tion of current frame. Furthermore, we also evaluate the results with

Fig. 3. Visualization of transition matrices learned on CamVid dataset. Only the transition matrices between a pixel in current frame and the corresponding pixels in its previous and
next frames with the same spatial location are visualized, as well as the transition matrix of itself.

Table 2
Comparison with state-of-the-art methods on CamVid test set.

Methods Superparsing[13] Liu et al.
[31]

SegNet[23] Bayesian
SegNet[32]

HDCNN-224 (no proposal
used)

HDCNN-224 HDCNN-224
+TL

HDCNN-448 HDCNN-448
+TL

Building 87.0 75.4 88.8 80.4 83.9 82.4 85.6 85.4 89.7
Tree 67.1 81.3 87.3 85.5 82.0 86.1 83.5 87.4 86.9
Sky 96.9 95.7 92.4 90.1 95.0 94.9 96.3 96.7 95.0
Car 62.7 70.0 82.1 86.4 84.1 89.5 87.0 88.7 87.9
Sign-symbol 30.1 52.1 20.5 67.9 50.5 56.0 57.6 68.4 62.0
Road 95.9 95.1 97.2 93.8 95.6 94.5 95.3 95.9 95.8
Pedestrian 14.7 61.6 57.1 73.8 77.0 82.6 82.2 85.7 84.7
Fence 17.9 34.6 49.3 64.5 44.1 47.5 48.5 48.4 48.8
Column-pole 1.7 17.9 27.5 50.8 37.1 44.9 40.7 48.7 52.6
Side-walk 70.0 62.0 84.4 91.7 89.6 92.3 93.1 91.3 92.8
Bicyclist 19.4 46.0 30.7 54.6 71.6 71.8 77.0 69.5 71.0

Class avg 51.2 62.8 65.2 76.3 73.7 76.6 77.0 78.7 78.8
Global avg 83.3 81.8 88.5 86.9 87.9 88.4 89.3 90.0 90.9
Mean IoU – – 55.6 63.1 58.5 59.7 60.7 64.4 65.6
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larger testing image scale. We rescale the testing images to 448 × 448
and provide the results with single HDCNN and our entire framework.
Some of our segmentation results with the entire framework and
448 × 448 input scale are shown in Fig. 4..

It can be found in Table 2 that, with object proposals added, the
performance of HDCNN increases by 2.9%, 0.5% and 1.2% on Class

avg, Global avg and Mean IoU respectively, for the reason that more
multi-scale and detailed information of objects is brought in. When the
Transition Layers are added, the results further improve with 0.4%,
0.9% and 1.0% respectively, which confirms the effectiveness of taking
the semantic correlations of spatially and temporally adjacent pixels

Fig. 4. Our segmentation results on CamVid dataset.

Fig. 5. Our segmentation results on GATECH dataset.

Table 3
Comparison with state-of-the-art methods on GATECH test set.

Methods Class avg Global avg Mean IoU

V2V-scratch[7] – 66.7 –

V2V-finetune[7] – 76.0 –

HDCNN 57.6 81.3 47.0
HDCNN+TL 58.0 82.1 48.2

Table 4
Comparison between HDCNN and other deep networks on PASCAL VOC 2012 test set.

Methods Convergence Time Model Size Mean IoU

FCN−8 s[9] 120 h 513 M 62.2
DeconvNet[21] 168 h 961 M 69.6
SegNet[23] – 115 M 59.1
Bayesian SegNet[32] – 115 M 60.0

HDCNN 89 h 115 M 73.1
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into consideration. And the results with this setting are already the
highest on Class avg and Global avg. With the test resolution increases
to 448, obvious improvements are achieved because of the introduction
of more object details. And we win the best results on all the three
metrics.

4.5. Performance on GATECH

As the video and frame numbers of CamVid [11] dataset are too
low, we evaluate our approach on GATECH dataset [12], which is much
larger than CamVid, to verify the generalization of our framework.
Inference is conducted with image size 224 here, and some of our
segmentation results are shown in Fig. 5. We compare our approach
mainly with the work of Tran et al. [7] on this dataset, shown in
Table 3. The biggest difference between their work and ours is that they
employ 3D CNN to solve the problem with a FCN framework, where the
video sequences are convolved across space and time domains simul-
taneously. While we process each video frame through a 2D CNN and
combine the temporal information afterward. Two highest results in
their work are cited for comparison, which are trained from scratch and
finetuned from a pretrained model respectively. Our results outperform
theirs obviously with more than 6% on Global avg, which confirms the
effectiveness of our approach..

4.6. HDCNN performance on PASCAL VOC 2012

We also conduct an experiment on PASCAL VOC 2012 dataset [27],
to verify the effectiveness of the proposed HDCNN on semantic image
segmentation. We compare our results with other deep networks used
for semantic segmentation, which are FCN [9], DeconvNet [21], SegNet
[23] and Bayesian SegNet [32]. Comparison on the test set is provided
in Table 4. Our approach achieves the best Mean IoU result among all
the compared methods and shows advantages in convergence time and
model size. SegNet and Bayesian SegNet also use compact models like
us, but our result obviously outperforms theirs. While compared with
FCN and DeconvNet, our approach provides a much smaller model size
and faster training speed, as well as better performance. All these
comparisons confirm the proposed HDCNN a lightweight and effective
model.

5. Conclusion

We propose a jointly trained framework for semantic video
segmentation, which consists of HDCNN and Transition Layers. The
HDCNN provides more refined resolution reconstruction for pixel-wise
semantic interpretation with a deconvolutional structure, where fully
connected layers are removed and hierarchical classification layers are
added by cooperatively using unpooling and bilinear interpolation.
Transition Layers learn the semantic correlations between categories
within a spatio-temporal volume, and make prediction for a pixel
considering all of its spatially and temporally adjacent pixels. These two
parts are connected and trained jointly as a unified deep network.
Extensive experiments are conducted on CamVid and GATECH
datasets, and we achieve state-of-the-art results on both of them,
which indicates the effectiveness of our approach.
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