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How to build a suitable image representation remains a critical problem in computer vision. Traditional
Bag-of-Feature (BoF) based models build image representation by the pipeline of local feature extraction,
feature coding and spatial pooling. However, three major shortcomings hinder the performance, i.e., the
limitation of hand-designed features, the discrimination loss in local appearance coding and the lack of
spatial information. To overcome the above limitations, in this paper, we propose a generalized
BoF-based framework, which is hierarchically learned by exploring recently developed deep learning
methods. First, with raw images as input, we densely extract local patches and learn local features by
stacked Independent Subspace Analysis network. The learned features are then transformed to appear-
ance codes by sparse Restricted Boltzmann Machines. Second, we perform spatial max-pooling on a
set of over-complete spatial regions, which is generated by covering various spatial distributions, to
incorporate more flexible spatial information. Third, a structured sparse Auto-encoder is proposed to
explore the region representations into the image-level signature. To learn the proposed hierarchy, we
layerwise pre-train the network in unsupervised manner, followed by supervised fine-tuning with image
labels. Extensive experiments on different benchmarks, i.e., UIUC-Sports, Caltech-101, Caltech-256,
Scene-15 and MIT Indoor-67, demonstrate the effectiveness of our proposed model.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

The task of recognizing semantic category of an image remains
one of the most challenging problems in computer vision. How to
build suitable image representations is the most critical. In pre-
vious decades, Bag-of-Feature (BoF) [8] based models have
achieved impressive success for image representations. Usually,
the models employ carefully hand-designed features, e.g. SIFT
[38], HOG [9] and LBP [1], along with visual dictionary learning
for local feature coding, and then obtain the image-level signatures
by spatial concatenation of the local codes, and the powerful SVM
are utilized to perform the classification task at last. However,
three major problems hinder the performance of such a pipeline,
i.e., the limitation of hand-designed descriptors, the information
loss brought by feature coding and the lack of spatial information.
How to alleviate the above problems in the BoF-based framework
to enhance the representative and discriminative abilities of image
features is a challenging but vital task, and also becomes our focus
in this paper.
There are several improvements proposed to address the above
problems. Yang et al. [53] and Wang et al. [51] reduce the informa-
tion loss by minimizing the reconstruction error along with effec-
tive priors such as sparse regularizer or locally-constrained
linearity constraints. However, these methods are performed in a
purely unsupervised way without any high-level guidance.
Another inherent drawback is the lack of spatial information as
the BoF-based representation describes an image as an orderless
collection of local features. To incorporate the spatial information,
one popular extension, i.e. Spatial Pyramid Matching (SPM) [29], is
effective. It requires to partition each image into a fixed sequence
of increasingly finer uniform grids (1� 1;2� 2;4� 4) and then
concatenates the BoF features in each grids forming an image
representation. Obviously, this simple partition and concatenation
scheme can not reflect various spatial distributions in different
categories of images. It is demonstrated recently that deep feature
learning models, inspired by the hierarchical nature of human
vision cortex, are effective to learn high-level image features
[20]. The deep architectures are also effective to reduce the infor-
mation loss by integrating unsupervised pre-training and super-
vised fine-tuning [17], and may generalize to different situations.

Motivated by the traditional image prior knowledge and
recently developed deep feature learning, this paper proposes a
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novel deep appearance and spatial coding architecture. The whole
network is built based on Restricted Boltzmann Machines (RBM)
and Auto-encoder (AE), which take advantage of unsupervised
learning and supervised learning to explore the latent generative
and discriminative properties. As shown in Fig. 1, it is a hierarchical
architecture consisting of three modules: appearance coding, over-
complete spatial max-pooling and spatial coding. With an image as
input, our model first extracts dense local patches to learn local
features by the stacked Independent Subspace Analysis (SISA) net-
work, which is demonstrated effective to learn robust features
[30]. Then the learned features are encoded into high-dimensional
appearance codes by a sparse RBM (SRBM) layer. To incorporate
more flexible spatial layout information, we adopt the ideas of
over-completeness and structured sparsity. A over-complete spa-
tial partition set including various spatial distributions is created
in a flexible scheme and then max-pooling is carried out within
each region. The resulting region features are concatenated as
input to the next spatial coding module. In the spatial coding, we
hypothesize that only a few dimensions of the mid-level region
representations are effective. That is, partial spatial partitions are
suitable to describe images. A structured sparse Auto-encoder
(SSAE) approach is adopted to sparsely select the useful dimen-
sions of the concatenated features as the image-level signature.
An additional AE layer is further added to improve the perfor-
mance. To learn the proposed deep model, we apply layer-by-layer
unsupervised training and then fine-tune the parameters with
image labels to enhance the discrimination. Finally, the output
image representations are employed to train a one-versus-others
SVM classifier to perform classification. We evaluate our model
on widely used image benchmarks (i.e. UIUC-sports, Caltech-101,
Caltech-256, Scene-15 and MIT Indoor-67). The extensive experi-
ments demonstrate the effectiveness of our method in comparison
with baselines and related work.

The rest of this paper is organized as follows. Section 2 reviews
the related work of traditional image representation models and
feature learning In Section 3, we elaborate our proposed model
by introducing the three modules in details. The experimental
evaluations and conclusions are given in Section 4 and Section 5
respectively.

2. Related work

Over the past few years, many researches have been conducted
based on the BoF-based framework to address the existing
problems and improve the performance.

To overcome the information loss in feature coding phase, some
tried to learn discriminative visual codebooks [42,27].
Fig. 1. Architecture of th
Co-occurrence information of visual words was also considered
in a generative framework [3]. In [16], the idea of visual word
ambiguity was proposed to soft assign each local descriptor to
multiple visual words in the learned codebook. As sparse coding
was proven effective in feature representation, Yang et al. [53]
utilized it to encode the local features into high-dimensional
sparse codes. This method unitedly learned the codebook and
searched the sparse weights for each local feature. Inspired by this,
Wang et al. [51] further proposed to use locality constraint to guide
the sparse coding learning process, and obtained better perfor-
mance with less computation cost. Some other work [54]17 also
tried to jointly learn the codebooks and appearance codes. Zhou
et al. [61] learned a global Gaussian Mixture Model to randomly
distribute each feature into one Gaussian component and then
formed a supervector by the normalized means of the feature dis-
tribution. However, most methods were performed in a purely
unsupervised way without any high-level guidance and indepen-
dent of the local features extraction.

Many subsequent researches have been done to incorporate spa-
tial information, as the traditional histogram-like representation
discard the spatial relationship. One direction is to incorporate
the local spatial layout in image, i.e. the relative or pairwise
positions of local features. Savarese et al. [46] explored the
combination of correlograms and visual words to represent spa-
tially neighboring image regions. Liu et al. [36] proposed an
efficient feature selection method based on boosting to mine
high-order spatial features, while [40] proposed to jointly cluster
feature space to build a compact local pairwise codebook and
capture correlation between local descriptors. The spatial orders
of local features were further considered in [41]. Since images often
have spatial preferences, another direction is to incorporate global
spatial layout property, i.e., the absolute positions in image.
Lazebnik et al. [29] pioneered this direction and proposed the
SPM model. In SPM, the image was divided into uniform grids at
different scales (e.g. 1� 1;2� 2;4� 4), and the features are
concatenated over all cells. It was also demonstrated that the com-
binations of SPM with sparse coding [53], locality-constrained
coding [51], super vector [60] and fisher vector [43] models are very
effective. However, the simple spatial partitions chosen in the ad-
hoc manner without any optimization are too simple for complex
nature situations. To solve this problem, Harada et al. [19] proposed
to form the image feature as a weighted sum of semi-local features
over all pyramid levels and the weights were automatically selected
to maximize a discriminative power. To design better spatial parti-
tion, Sharma et al. [48] defined a space of grids, where each grid is
obtained by a series of recursive axis aligned splits of cells and
learned via a maximum margin formulation. Jia et al. [25]
e proposed model.
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formulated the problem in a multi-class fashion with structured
sparse regularizer for feature selection.

It is recently considered that the performances of traditional
methods are fundamentally limited by the hand-crafted local
descriptors (e.g. SIFT, HOG and LBP), because these features are
task-dependent and difficult to detect more complex structures
beyond edges. A growing amount of researches have focused on
automatically feature learning [28,31]. The models are usually
built in a hierarchical framework by stacking shallow generative
models with greedy layerwise scheme. One class of feature learn-
ing algorithms is based on the encoder-decoder architecture (e.g.
Auto-encoder) [22]. The input is fed to the encoder which produces
a feature vector and the decoder module then reconstructs the
input from the feature vector with the reconstruction error mea-
sured. Deep Belief Networks (DBN) [21] built multiple layers of
directed sigmoid belief nets with the top layer as a Restricted
Boltzmann Machines. Lee et al. [31] extended DBN with convolu-
tion operation for the purpose of extracting latent features from
raw image pixels. Yu et al. [55] proposed a hierarchical sparse cod-
ing model to learn image representations from local patches.
Different from these models, we apply a stacked Independent
Subspace Analysis [30] to learn features from raw image pixels,
which is able to learn robust local features and performs well when
combined with other feature learning modules. Benefit from the
deep architecture, our deep appearance and spatial coding network
further solves the information loss problem.

3. The proposed model

The proposed model for image representation is a hierarchical
architecture, including three modules: appearance coding, over-
complete spatial max-pooling and spatial coding. We will present
the three modules as follows.

3.1. Appearance coding

Given an image, we densely extract local patches and learn local
features via stacked convolutional ISA network and then encode
them into high-dimensional vectors by a SRBM layer. In this sub-
section, we revisit the ISA and SRBM models respectively, and
present how to utilize them to perform appearance coding.

3.1.1. Independent Subspace Analysis
Independent Subspace Analysis (ISA) [23] is an unsupervised

learning algorithm for feature representation. In this paper, we
explore it to learn features from image patches as an alternative
to hand-designed descriptors. An ISA network is a two-layer struc-
ture with square and square-root nonlinear operations. The
parameters of the network are the weights F and V in the two lay-
ers respectively. In particular, F is learned to represent the sub-
space structure of the units in the first layer, while V is fixed to
pool over a small neighborhood of adjacent first layer units. With
xt as input, the output of each unit in the second layer is defined as:

piðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
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Here, F 2 Rm�n represents the weights between the input vector to

the first layer, and V 2 Rm�k is the weights of the pooling units in
the second layer. Then the learning objective is defined as:

min
F

XN

t¼1
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piðxtÞ þ lkFFT xt � xtk2
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ð2Þ

where N denotes the number of training instances. The first term in
the objective encourages the sparsity of the learned features, while
the second term ensures the important information is preserved.
Besides sparsity, the learned features of ISA also have the property
of invariance because of the pooling operation.

With raw image patches as input, we build a stacked ISA (SISA)
to learn local patch features as shown in Fig. 2. We first train an ISA
layer on small input patches and then let the learned network
convolve with a larger image patch. The concatenated responses
of the convolution are taken as input to learn the second ISA layer.
PCA is employed as a prepossessing step to whiten the data and
reduce the dimensions between the two stages.

3.1.2. Sparse Restricted Boltzmann Machine
The sparse Restricted Boltzmann Machine (SRBM) model is

employed to obtain robust high-dimensional codes with the visible
nodes corresponding to the dimensions of the learned local feature.
It is a particular type of bi-partite undirected graphical with a two-
layer structure, defining a joint probability distribution over a hid-
den layer h 2 f0;1gNh and a visible layer p 2 f0;1gNp :

Pðp;hÞ ¼ 1
Z

expðpT Uhþ pT bp þ hT bhÞ ð3Þ

where Z is the partition function, U 2 RNp�Nh represents the undi-
rected weights and bp 2 RNp ; bh 2 RNh are the bias terms. With an
additional sparsity penalty incorporated, the overall cost function
is:

Eðp;hÞ ¼ �logPðp;hÞ þ k
XNh

j¼1

q log
q
q̂j
þ ð1� qÞ log

1� q
1� q̂j

� �
ð4Þ

where q is a constant sparsity parameter, typically a small value
close to zero and q̂j is the average activation of hidden unit

j : q̂j ¼ 1
N

PN
i¼1hjðptÞ. The second term in Eq. (4) is actually the

Kullback–Leibler divergence between a Bernoulli random variable
with mean q and a Bernoulli random variable with mean q̂,
encouraging the hidden units’ activations to be sparse.

3.1.3. Appearance coding model learning
To learn the appearance coding model, we employ the greedily

layerwise scheme. At first, we learn the SISA by optimizing Eq. (1)
for each layer. As the gradient of this objective function is track-
able, we apply the batch projected gradient descent algorithm
while ensuring the orthogonal constraint by projection with sym-
metric pronominalization [23]. In particular, it is required to

project F to the constraint set by computing ðFFTÞ�
1
2F in the

projected gradient descent. It is noted that the inverse square root
of the matrix usually needs solving an eigenvector problem, which
requires cubic time. The convolution and stacking ideas address
this problem by slowly expanding the receptive fields via convolu-
tion. We also resort to PCA for whitening and reducing dimension
to make the learning step much less expensive.

With the parameters of SISA layers obtained, we train the SRBM
layer by minimizing Eq. (4). Since it is expensive to compute the
gradient of the log-likelihood term, we adopt the contrastive diver-
gence learning algorithm which gives an efficient approximation to
the gradient of the log-likelihood [21]. Based on this algorithm, in
each iteration we apply one step of contrastive divergence update
rule, followed by another gradient descent step by the gradient of
the regularization term. In our implementation the features of the
two ISA stages are combined as input to the SRBM layer, which
shows better performance.

3.2. Over-complete spatial max-pooling

For aggregating the local appearance features to image-level
representation, the pooling operation is usually needed. We



Fig. 2. Architecture of stacked convolutional ISA network for learning local features.
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propose to build a set of randomly generated spatial regions to per-
form the pooling operation, for the purpose of incorporating more
general and adaptive spatial information. As described in Fig. 3, we
first apply uniform horizontal and vertical grids to divide the image
into rectangular grids (the dotted grids). These grids are considered
as candidate grids to generate a certain kind of spatial partition.
Then a type of spatial partition is created by randomly choosing
a subset of the candidate grids. By covering all the possible com-
binations of the grids, the spatial partition is able to present vari-
ous spatial layout information. In addition, we generate some
randomly sampled grids to provide more flexible spatial informa-
tion. All the partitioned regions are collected as the over-complete
spatial region set. Max-pooling operation is then performed on the
local appearance codes within each partitioned region. We use ri to
denote the representation of the i-th region and G to denote the
number of the regions. All the region vectors are concatenated as
input to the next spatial coding layers. As the appearance codes
and spatial regions are highly over-complete, we apply PCA on
each region vector to reduce the dimension.

3.3. Spatial coding

With the region vectors r ¼ ½r1r2 . . . rG� as input, spatial coding is
performed to fuse them into global image representations. As this
feature is very high-dimensional and redundant, we propose a
structure sparse Auto-encoder (SSAE) to explore the semantically
meaningful dimensions. Given r as input, our model transforms it
into latent vector z via the encoder, which is defined as
z ¼ f ðWr þ bÞ (f is the sigmoid function). On the contrary, the deco-
der maps the latent representation back into the input space, pro-
ducing a reconstruction ~r ¼ f ðW 0zþ b0Þ.

It is noted that only a few dimensions among the region feature
are effective, indicating structured semantic prior to compress the
feature. Recent analysis and application of the mixed norm regu-
larization [2,7,47] show that under certain conditions the coeffi-
cient vector W enjoys the structured sparse property,
encouraging content-based structured feature selection in high-
Fig. 3. The generation of over-c
dimensional feature space. Therefore, we adopt the idea of struc-
tured sparsity and introduce the objective for the SSAE:

min
W;b;W 0 ;b0

XN

t¼1

krt � ~rtk2 þ k1kWk2;1 þ k2kW 0k2 ð5Þ

Here N denotes the number of training instances. This objective is to
minimize the square reconstruction loss with two regularizers. As
the decoder weights W 0 may not need any structural properties,
we employ l2 norm on it to prevent over-fitting. The regularizer
on W is the l2;1 norm:

kWk2;1 ¼
X

i

kW :;ik2 ð6Þ

where W :;i denotes the i-th column of W. This regularizer introduces
structured sparsity by encouraging the encoder matrix W to be col-
umn-wise sparse, and lets the encoder select the effective dimen-
sions and discard the redundant information. To optimize Eq. (5),
we adopt the efficient algorithm proposed in [24,39] to solve the
non-smooth penalty function. The dual of the proximal problem
associated with the norm can be reformulated as a quadratic min-
cost flow problem, which is able to be efficiently computed in poly-
nomial time. In our model we further train a AE layer after the SSAE
layer to enhance the performance.

3.4. Supervised fine-tuning of the network

After bottom-up layer-by-layer unsupervised learning, we fine-
tune the network parameters of the appearance and spatial coding
respectively through supervised learning.

To fine-tune the appearance coding, we associate each obtained
appearance code to the image label and improve the
discrimination of the latent feature with respect to the association.
The appearance coding is essentially a three-layer neural network,
where the set of learned parameters ðF;V ;U; bp; bhÞ map the input
to the latent feature h. For the image dataset with L categories,
we add an auxiliary classifier layer with the parameters of weights
omplete spatial region set.



Fig. 4. Performance changes with different k (left), k1 (middle) and k2 (right).

Table 1
Performance (%) comparison of different feature coding methods on three datasets.

Algorithms UIUC-Sports Scene-15 Caltech-101

SIFT+Hard [29] 80:9� 0:8 81:1� 0:3 64:6� 0:8
SIFT+SC [53] 82:7� 1:5 80:3� 0:9 73:2� 0:5
SIFT+LLC [51] 82:1� 0:60 80:9� 0:5 73.4
HOG+SC 80:5� 0:5 77:9� 0:4 71:5� 0:5

SIFT+SRBM 83:1� 0:3 82:1� 0:2 73:1� 0:3
SISA+Hard 82:8� 0:1 81:7� 0:4 68:2� 0:2
SISA+SC 84:2� 0:3 83:7� 0:4 72:2� 0:2
SISA+SAE 83:9� 0:3 84:1� 0:2 72:9� 0:5
SISA+SRBM 84:5� 0:2 84:8� 0:1 74:3� 0:4

Supervised SISA+SRBM 85:8� 0:5 86:1� 0:5 76:2� 0:5
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M 2 RNh�NL and biases d 2 RNL , transforming h 2 RNh to the one-hot
coded class labels y 2 RNL via feed-forward soft-max activations:

ŷl ¼
e
PNh

i¼1
milhiþdlPNL

j¼1e
PNh

i¼1
mijhiþdj

ð7Þ

In the fine-tuning phase, we initialize the parameters of
appearance coding by values learned in the unsupervised phase
and introduce supervision with the error back propagation
algorithm. Soft-max loss is employed to measure the error E
between the hypothesized class ŷ and the ground truth y:

E ¼ �
XNL

l¼1

1fy ¼ ig log ŷl ð8Þ

Then the network is updated by the gradient descent with respect
to the parameters across the layers. After fine-tuning, the auxiliary
Fig. 5. Performance comparisons of different
classifier layer is discarded since they are no longer needed in the
test process.

After fine-tuning the appearance coding layers, we fine-tune the
spatial coding layers in the same scheme by associating the output
to the image label and learning an additional soft-max layer. The
parameters ðW; bÞ of the two spatial coding layers are also updated
by the back propagated gradient from the soft-max loss. with the
trained hierarchy, image representations are obtained by direct
feed-forward matrix operation. To carry out the recognition task,
we turn to train a one-versus-others SVM classifier for each class.
4. Experiments

In the experiments, we widely evaluate the proposed architec-
ture on five public image benchmarks: UIUC-Sports, Caltech-101,
Caltech-256, Scene-15 and MIT Indoor-67. Since the proposed
framework is complex and hybrid, we first evaluate the effect of
each part in the network with an in-depth analysis. Then we report
the classification performance on the five datasets compared with
the famous hand-designed features(i.e. SIFT [38] and HOG [9]),
some related feature coding methods (i.e. KSPM [29], ScSPM [53],
LLCSPM [51], SSRBM [17]), some work considering spatial informa-
tion [19,48,25] and other state-of-the-arts results.
4.1. Evaluations of each part in the model and the parameters

The proposed model includes three parts: appearance coding,
over-complete spatial max-pooling and spatial coding. For the
SISA in the appearance coding, the inputs to the two layers are of
size 16� 16 and 20� 20 respectively, where local patches are
densely sampled with spacing of 4 pixels. According to our
spatial coding method on UIUC-Sports.



Table 2
Classification rate (%) comparison on UIUC-Sports.

Algorithms Classification rate

Li et al. [34] 77.9
Dixit et al. [10] 84.4
Liu et al. [37] 84:6� 1:5
Gao et al. [15] (LScSPM) 85:7� 1:3
Perronnin et al. [43] (FV) 88:6� 1:2

Our (unsupervised) 88:7� 0:4
Our (supervised) 89:8� 0:2
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implementation, the number of output units is set to 120 in the
first layer and 200 in the second. The l in Eq. (2) is fixed to 10.
The dimensions of hidden units in the SRBM is set to 1024 as a fair
comparison [53] and the target sparsity is empirically set to 10%.
In the over-complete spatial max-pooling section, the over-com-
plete spatial region set contains 50 kinds of regions and the dimen-
sion of each region vector is reduced to 300 by PCA. To train the
final SVM classifiers, we employ the one-versus-others linear
SVM provided by LIBLINEAR toolbox [11] for its advantages in
speed and good performance. We report the results by repeating
the experimental process 5 times with different randomly selected
training and testing images.

In our method, the most important parameters are k in Eq. (4)
and k1; k2 in Eq. (5). Fig. 4 shows the performance changes with
varied k; k1 and k2 on the three datasets. It is shown that the perfor-
mances are not sensitive to the value of k2 and we may fix it to 0.5
on all the conditions. In the experiments, we find that the perfor-
mances are good when small kð0:4Þ and k1ð0:2Þ are used for
UIUC-Sports, Scene-15, Caltech-101 datasets, and relatively large
kð0:5Þ and k1ð0:4Þ are used for Caltech-256 and MIT Indoor-67.

We evaluate the effect of our appearance coding by analyzing
the relative contributions of the ISA and SRBM, as displayed in
Table 1. We compare our method to some related work with only
difference in the local feature extraction and coding scheme. The
final image representations are all complied by SPM [29].
‘SISA+SRBM’ denotes our appearance model, and the best perfor-
mance is achieved by ‘Supervised SISA+SRBM’, which is the result
after supervised fine-tuning. This indicates that the fine-tuning
process is effective improve the discrimination. It is shown that
our method outperforms the hand-designed features, as well as
traditional feature coding method, i.e., hard assignment (Hard)
[29], sparse coding (SC) [53] and locality-constrained linear coding
(LLC) [51]. Note that ‘SISA+SC’ represents the method of applying
sparse coding on the SISA features and the performance is similar
to our model. We also compare with the method sparse Auto-
encoder (SAE), and the performances of SAE and SRBM are similar
as they basically do similar feature transformation. The
Table 3
Classification rate (%) comparison on Caltech-101.

Algorithms 15 training 30 training

KSPM [29] 56.40 64:6� 0:8
Macrofeatures [4] – 75:7� 1:1
ScSPM [53] 67:0� 0:45 73:2� 0:5
HSC [55] – 74.0
DN [57] – 71:1� 1:0
Jia et al. [25] – 75:3� 0:70
Boureau et al. [5] – 77:1� 0:70
Chatfield et al. [6] (IFV) – 77:8� 0:6

Our (unsupervised) 67:9� 0:30 76:9� 0:4
Our (supervised) 70:4� 0:2 78:6� 0:2

Todorovic et al. [50] 73.0 83.0
CNN-SVM [56] (no extra data) 22:8� 1:5 46:5� 1:7
CNN-SVM [56] (with extra ImageNet) 83:8� 0:5 86:5� 0:5
‘SISA+SRBM’ consistently outperforms ‘SISA+SAE’ by about 1 per-
centage in the three datasets.

Fig. 5 experimentally demonstrates the effect of the spatial cod-
ing model. In this figure, the local feature extraction method is
fixed as ’supervised SISA+SRBM’, and we compare the proposed
SSAE with AE, SRBM, PCA, SPM and the method of directly concate-
nating all the region vectors (CAT). The performance of ‘CAT’ is
weak because of the high redundancy. By applying the dimension
reduction techniques, the classification rate is obviously improved
as some redundant information is discarded. SSAE beats all the
others as the incorporated structured sparse prior may be more
semantically reasonable. It is also shown that the performances
changes by varying the number of latent units. The best results
are achieved with the number of hidden units set to about
10,000, which is more compact than SPM.

Compared to traditional framework like [53,51], the proposed
model needs more time to train because of the high dimension.
However, the test process is much more efficient as only forward
matrix multiplication operation is needed. On the desktop with a
8-core 3.40 GHz CPU, it quires about 8 h to train the entire model.
In the test process, only 0.9 s per image is required to obtain the
final representation, while the time in ScSPM is about 4 s.

4.2. Results on UIUC-Sports

The UIUC-Sports dataset is collected by Li and Li [33], contain-
ing 1792 images of eight sport categories. The number of images
in each class ranges from 137 to 250. Following the standard setup
[53], we randomly select 70 from each class for training and test on
the rest. Table 2 gives our results compared with related work on
this dataset. The best result is achieved by ‘Our(supervised)’, where
the contribution of supervised fine-tuning phase is about 1 per-
centage. Liu et al. [37] propose the soft assignment coding method
and Gao et al. [15] (LScSPM) use laplacian sparse coding to encode
the local features. Our model outperforms the two methods by 5.2
and 4.1 percentage respectively. Perronnin et al. [43] employs
fisher vectors to encode the local features. Compared with this
method, the accuracy is similar but our obtained representation
is much more compact, which speeds up the classification.

4.3. Results on Caltech-101 and Caltech-256

The Caltech-101[12] dataset contains 9144 images totally from
102 different categories, including 101 object categories and 1
additional background category, with high shape variability. As
an extension, the Caltech-256 [18] dataset totally holds 29,780
images in 256 object categories and is much more challenging as
it possesses much higher intra-class variability and object location
variability. In the both datasets, the number of images in each class
varies from 31 to 800. In the experiments, we follow the common
setup on the two dataets. For Caltech-101, we train on 15 and 30
images per category and testing on the rest, while for Caltech-
256 we evaluate our model on 15, 30, 45 and 60 training images
per class respectively.

Table 3 gives the detailed performance comparisons on the
Caltech-101 dataset. Macrofeatures [4] is a type of mid-level repre-
sentation based on SIFT. HSC [55] and DN [57] are two models
employing deep architecture to learn image features. Our model
outperforms these methods because of the incorporated various
spatial information. Boureau et al. [5] improves SPM by restricting
pooling to codes that are nearby in descriptor space. Our model
behaves slightly better than it, even a denser local feature sampling
scheme is adopted in [5]. It is noted that our best result also out-
performs Jia et al. [25], which also utilizes the idea of over-com-
plete spatial partition but they perform feature selection in a
multi-class discriminative learning fashion. To the best of our



Fig. 6. Examples images from classes with highest and lowest classification accuracy from the Calteche-101 dataset.

Table 4
Classification rate (%) comparison on Caltech-256.

Algorithms 15 train 30 train 45 train 60 train

KSPM [29] 28.3 34.1 – –
ScSPM [53] 27:7� 0:5 34:0� 0:4 37:5� 0:6 40:1� 0:9
LLCSPM [51] 34.4 41.2 45.3 47.7
GLP [14] 35.8 43.2 47.3 –

Our (Unsupervised) 36:6� 0:5 46:9� 0:3 47:9� 0:1 50:8� 0:4
Our (Supervised) 37:4� 0:6 48:1� 0:2 49:2� 0:2 52:0� 0:4

CNN [56](no extra data) 9:0� 1:4 22:5� 0:7 31:2� 0:5 38:8� 1:4
CNN [56](with ImageNet) 65:7� 0:2 70:6� 0:2 72:7� 0:4 74:2� 0:3
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knowledge, the performance of the proposed model outperforms
all published results for a single descriptor type and fair experi-
mental setups, although some better results have been reported.
Todorovic et al. employ the segmentation tree for subcategory
learning, while CNN-SVM et al. [56] train a large Convolutional
Neural Network (CNN) using a large scaled auxiliary ImageNet
dataset. In Fig. 6, we show some example classes with the highest
and lowest classification accuracy from the Caltech-101 dataset
with 30 training images per class. Our model performs well on
categories with little clutter (e.g. laptop and faces) or strong spatial
layout priors (e.g. dragon fly and car side), but less successful on
classes with large intra-class variation and highly diversity (e.g.
beaver and lotus).

The performance comparison results on the Caltech-256 dataset
are shown in Table 4. On the much more challenging dataset, our
model also consistently leads the performance on all the condi-
tions and outperforms the baseline ScSPM by more than 10%.
GLP [14] is a method of using discriminatively learned pooling
operation to aggregate local features and our model also behaves
better than it as we explore more kinds of spatial distributions
and integrate the regions beyond the simple concatenation
Table 5
Classification rate (%) comparison on Scene-15.

Algorithms Classification rate

Lazebnik et al. [29] (SPM) 81:1� 0:3
Zhou et al. [61] 84:1� 0:5
Boureau et al. [4] 85:6� 0:3
Zhou et al. [59] 85:2
Goh et al. [17] (ssRBM) 86:0� 0:5
Feng et al. [14] (GLP) 83:2
Sharma et al. [48] (DS) 80:10� 0:6
Sharma et al. [49] (DSS) 84:6� 0:7

Our (Unsupervised) 88:5� 0:3
Our (Supervised) 89:7� 0:2
scheme. Zeiler and Fergus [56] achieves the accuracy of 74:2% with
60 training images per class, as they pre-train a very large scaled
CNN with extra ImageNet dataset.
4.4. Results on Scene-15

We further evaluate the effect of our model on a standard scene
classification benchmark, i.e. Scene-15 dataset. This dataset is com-
piled by several researchers [13,29], including 15 different classes
of scene categories (e.g. kitchen, coast, highway) with each class
containing 200 to 400 images. Following the common setup, 100
images per class are randomly selected for training with the rest
for testing. Table 5 gives the detailed comparison results. Our
model also achieves better than related work on this scene bench-
mark, demonstrating the generalization to handle various kinds of
images. Zhou et al. [61] and Goh et al. [17] (ssRBM) are two
methods for improving the feature coding. In [61] a Gaussian
Mixture Model is trained to form a supervector by the normalized
means of the feature distribution, while [17] uses a sparse and
selective regularized RBM. The advantage of our model is that we
employ high-level information to guide the feature coding.
Sharma et al. [48] (DS) and [49] (DSS) are two recent methods con-
sidering better spatial information coding. The reason that our
model behaves better may be the employment of deep architecture
to select the most effective dimensions from the over-complete
spatial regions through unsupervised and supervised learning.

Fig. 7 gives the confusion table between the 15 scene categories.
It is seen that our method performs well in most categories.
Confusions mainly occur between the outdoor building classes
(e.g. industrial and tallbuilding), some natural scenes (e.g. open-
country and coast) and also some indoor classes (e.g. living room
and bedroom), as these categories are too similar to distinguish.
4.5. Results on MIT Indoor-67

The MIT Indoor-67 dataset [44] is the currently largest indoor
scene recognition dataset, consisting of 15,620 images in 67 cate-
gories. The similarity of the objects present in different indoor
scenes makes the dataset especially difficult. Following the
protocol of [44], we use the same training and test split where each
category has about 80 training images and 20 test images.

Table 6 gives the detailed performance comparisons. Our
method consistently outperforms related methods like SPM [51],
and achieves the best performance with single representation on
the difficult dataset. This again proves the effectiveness of the pro-
posed method. Xie et al. [52] (OPM) is an improvement of SPM,
which uses the 3D orientations to form the pyramid and produce
the pooling regions. Lin et al. [35] (ISPR) is another work



Fig. 7. Confusion table for the Scene-15 dataset. Average classification rates for individual classes are listed along the diagonal. The entry in the i-th row and j-th column is the
percentage of images from class i that are misidentified as class j.

Table 6
Classification rate (%) comparison on MIT Indoor-67.

Algorithms Accuracy

Quattoni et al. [44] 26
li et al. [32] 37.6
Juneja et al. [26] (BoP) 46.1
Wang et al. [51] (SPM) 54.62
Xie et al. [52] (OPM) 51.45
Lin et al. [35] (ISPR) 50.1
IFV+SPM [52] 61.2

Our (Unsupervised) 60.3
Our (Supervised) 62.9

Hybrid-Parts+GIST-color+SPM [58] 47.2
ISPR+IFV+SPM [35] 68.5
CNNaug-SVM [45] 69.0
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considering more spatial information by jointly learning the
appearance and important spatial pooling regions. It is noted that
our performance beats the two methods by more than 10 percent-
age. On this dataset, more state-of-the-art results are obtained by
combining multiple image representations and part detector
model, like ‘ISPR+IFV+SPM’ [35]. In ‘CNNaug-SVM’ [45], they use
extra large scaled ImageNet dataset to train a large CNN network.
5. Conclusion

In this paper, we introduce a novel image representation, which
is a hierarchical architecture including appearance coding, over-
complete spatial max-pooling and spatial coding. Specifically, we
apply stacked Independently Subspace Analysis combined with
sparse Restricted Boltzmann Machines to learn local appearance
codes from raw pixels. To incorporate more flexible spatial layout
information, we create an over-complete spatial partition set and
perform max-pooling within each region. Then we proposed a
structured sparse Auto-encoder to encode the mid-level region
representations into the global image signature. The training of
the hierarchy consists of unsupervised layer-by-layer pre-training
and parameters fine-tuning with image labels. The experimental
results on several public databases outperform baselines and other
related work, demonstrating the effectiveness of the proposed
method. In the future work, we will further extend the network
to deal with more large-scaled dataset, i.e. ImageNet.
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