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ABSTRACT
Recent advances in semantic segmentation are driven by the
success of fully convolutional neural network (FCN). How-
ever, the coarse label map from the network and the object
discrimination ability for semantic segmentation weaken the
performance of those FCN-based models. To address these
issues, we propose an objectness-aware semantic segmenta-
tion framework (OA-Seg) by jointly learning an object pro-
posal network (OPN) and a lightweight deconvolutional neu-
ral network (Light-DCNN). First, OPN is learned based on
a fully convolutional architecture to simultaneously predict
object bounding boxes and their objectness scores. Second,
we design a Light-DCNN to provide a finer upsampling way
than FCN. The Light-DCNN is constructed with convolu-
tional layers in VGG-net and their mirrored deconvolutional
structure, where all fully-connected layers are removed. And
hierarchical classification layers are added to multi-scale de-
convolutional features to introduce more contextual infor-
mation for pixel-wise label prediction. Compared with pre-
vious works, our approach performs an obvious decrease on
model size and convergence time. Thorough evaluations are
performed on the PASCAL VOC 2012 benchmark, and our
model yields impressive results on its validation data (70.3%
mean IoU) and test data (74.1% mean IoU).
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1. INTRODUCTION
Semantic image segmentation is a core problem in com-

puter vision, aiming at parsing images into several semantic
regions and assigning them with correct semantic labels. In
the past months, tremendous progresses in semantic seg-
mentation have been made based on the framework of fully
convolutional neural networks (FCN) [9]. The main advan-
tage of FCN is that the network is an end-to-end network
to solve semantic segmentation as a structured pixel-wise la-
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Figure 1: Overall architecture of OA-Seg frame-
work.

beling problem, i.e., enabling pixel-wise category predictions
from a whole image as input.

However, the pixel-wise supervision in FCN is attached to
the upsampled feature maps via large-span bilinear interpo-
lation, thus the object boundaries are over smoothed in the
results of segmentation. Besides, given a whole image as in-
put, the fixed-size receptive fields possibly make foreground
objects overwhelmed by a large area of diverse background
parts. How to overcome the above limitations of FCN is the
main motivation of our work. Simply, we aim to find a way
to automatically discover region proposals with high object-
ness scores and segment them by mapping low resolution
features to input resolution through a more refined method,
where the boundary information is maintained as much as
possible.

In view of such a motivation, we design an objectness-
aware semantic segmentation framework (OA-Seg), which
consists of two CNN-based networks. The first one is an
object proposal network (OPN), which is a kind of fully
convolutional network and trained end-to-end to generate
candidate object regions. OPN takes an image as input
and outputs a set of rectangular object proposals associated
with their corresponding objectness scores. The second net-
work is a lightweight deconvolutional neural network (Light-
DCNN) which decodes convolutional feature maps into the
same size of input image, to guarantee finer pixel-wise pre-
dictions. Light-DCNN is constructed on the top of convo-
lutional layers in VGG-net with a mirrored deconvolutional
and unpooling architecture, while the fully-connected lay-
ers are removed. Pooling indices in the convolutional part
are employed during unpooling to ensure location consis-
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Figure 2: Network structure of Light-DCNN.

tency, which conducts a more refined unsampling operation
than bilinear interpolation. Besides, hierarchical classifica-
tion layers are presented by mapping multi-scale interme-
diate deconvolutional features to pixel-wise labeling maps,
where unpooling and bilinear interpolation are cooperatively
used. For the above two networks, we currently train them
with object proposals as their connection, however alterna-
tive training schemes can also be further adopted to produce
a unified network with sharable convolutional layers.

The network we propose above is a basic network for
semantic segmentation, like FCN [9] and DeconvNet [11].
While compared with them, our model is much more lightweight
with the model size decreased by 3 to 9 times and converges
much faster, yet achieves better performance. Other im-
provements like CRF or MRF, which are always jointly used
with FCN in state-of-the-art methods[1, 7, 19, 8], are actual-
ly orthogonal to our method. And they can also be combined
with our method to further improve the performance. We
simply use CRF as post-processing in this paper and evalu-
ate our method on the PASCAL VOC 2012 benchmark [2],
where our proposed OA-Seg produces impressive results on
its validation data (70.3% mean IoU) and test data (74.1%
mean IoU).

2. OUR APPROACH
Our model consists of two jointly learned neural networks

as shown in Figure 1. One is an object proposal network
(OPN) used to preliminarily locate objects in the image.
And the other one is a lightweight deconvolutional neural
network (Light-DCNN) for further semantic segmentation.
With this framework, we enhance the performance of se-
mantic segmentation with detection techniques, as massive
background noises are eliminated during both training and
testing.

2.1 Object Proposal Network
OPN is used here to help separating objects from over-

lapping ones and complex backgrounds, which makes the
model more focused on single objects during training and
testing. So we use “objectness” as our measurable indicator
and make a rough judgment of whether the image region
contains an object or not. The network is built on VGG
16-layer net [16] with a fully convolutional structure. All
fully connected layers are removed, and the local features of
the last convolutional layer are mapped to dense feature vec-

tors through an extra convolutional layer. Thus each feature
vector corresponds to a receptive field in the input image.
We reuse it to represent multiscale image regions centering
around the corresponding receptive field referring to [12],
and simultaneously perform classification and bounding box
regression to estimate objectness scores and region locations.
The groundtruth used here are the circumscribed rectangles
of segmentation groundtruth, and thus no extra information
is used.

2.2 Light-DCNN
Unlike FCN [9] which obtains pixel-wise prediction through

large-span bilinear interpolation, Light-DCNN provides a
more refined reconstruction via progressively upsampling
the feature maps to larger resolution. Illustration of our
network structure is shown in Figure 2.

Light-DCNN is composed of two parts. The first part is
a convolutional network that takes an image as input and
encodes it into feature maps. And the second part is a de-
convolutional network that takes the feature maps as input
and propagates the responses back to each pixel. The two
networks are spliced and optimized together. For the convo-
lutional network, we directly inherit the network structure
and parameters from VGG 16-layer net [16]. The deconvo-
lutional network is built and the parameters are assigned
following Zeiler et al. [17], which is a reverse process of
the convolutional network with symmetrical structure. The
main components of the deconvolutional network are decon-
volutional and unpooling layers. Unlike convolutional layer
that aggregates feature vectors in a local region into a single
response, the deconvolutional layer attempts to disassemble
the response back to each individual position. The unpool-
ing layer carries out the inverse process of the pooling lay-
er. As we use max pooling in the convolutional network,
through the unpooling layer, we upsample the feature map-
s following max pooling indices and supplement 0 for the
abandoned positions to ensure position correspondence.

Besides, our network is designed with several unusual fea-
tures, which make it small-sized and easy to converge.

Parameter Inheritance: We use the parameters of the
learned convolutional layers to initialize the deconvolutional
layers in our network, rather than Gaussian random num-
bers. It supplies our network with applicable initial values
during deconvolutional computation. And this treatment
makes our network extremely easy to converge.

Discarding Fully Connected Layers: We discard the
fully connected layers and reverse the net from the last
convolutional layer, because the convolutional layers always
show a much better ability for reserving spatial information
compared with fully connected layer. And with this design,
we decrease the model size by nearly 10 times, which makes
our network more lightweight and easier to train because of
the fewer parameters.

Asymmetrical Batch Normalization: We employ batch
normalization [5] in our network to reduce the internal-covariate-
shift during training, but we only add it in the deconvolu-
tional part of Light-DCNN. In our framework, the convolu-
tional network works as a feature extractor which encodes
semantic information, and we don’t want to break the cor-
relations between the well-learned net layers. While the de-
convolutional network is trained as a decoder, so we add a
batch normalization layer after each deconvolutional layer
for better optimization.
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Table 1: Results of hierarchical predictions of Light-
DCNN on PASCAL VOC 2012 val set.

Prediction 224×224 112×112 56×56 28×28 14×14

Mean IoU 60.0 62.3 62.8 62.2 60.0

Table 2: Results of OA-Seg with different object
proposal settings on PASCAL VOC 2012 val set.

Object Proposal Addition None Train Train&Inference

Mean IoU 63.1 66.7 69.6

Hierarchical Predictions: Although with strict posi-
tional correspondence, the unpooling layers tend to break
some correlations within image regions for the reason of ze-
ro supplementary. To alleviate this, we connect a pixel-wise
classification layer to each deconvolutional layer ahead of un-
pooling layers, and supervise it with pixel-wise groundtruth.
In this way, we attempt to guarantee the discrimination
and region correlations of our model before every unpool-
ing. And the pixel-wise prediction is realized by feeding
the deconvolutional feature maps into a fully convolutional
classification layer and upsampling them with bilinear inter-
polation. It can be found that, with the hierarchical pre-
dictions, we are actually cooperatively using unpooling and
bilinear interpolation to upsample feature maps to the res-
olution of input image. That is, the lower layer is attached
greater scale change with bilinear interpolation, while the
higher layer considers less scale change but more unpooling
operations. It also inspires us with that, it is no need to
reconstruct the deconvolutional feature maps to exact the
same resolution with the input image, which is further dis-
cussed in section 3.1.

2.3 Implementation Details
For our current practice, the two networks of OPN and

Light-DCNN are trained successively with the object pro-
posals as connection. In our framework, the two networks
can also be trained alternatively to share the convolutional
layers and integrated into a unified model, as the training
scheme of Faster R-CNN [12]. But in this paper, we make
the two networks work in a sequential way, i.e., feed the ob-
ject proposals generated from OPN into Light-DCNN. With
this structure, we utilize more multiscale information and
more notice is paid on tiny objects, which benefit the per-
formance of our method.

In the training stage, the object proposals are selected
to train Light-DCNN and those with little overlapping with
groundtruth or oversized aspect ratios are discarded. While
during testing, only the top n proposals with the highest
objectness scores are input into Light-DCNN, as well as the
entire image. Then we average the corresponding prediction-
s for each pixel and achieve the final segmentation result. In
this paper, we set n to 20.

Both of our two networks are implemented with Caffe [6].
For the training of OPN, the input image is rescaled to 600
pixels on its shorter side, in order to maintain the saliency
of tiny objects. And nonmaximum suppression (NMS) is
employed during inference to reduce highly overlapped pro-
posals. While for Light-DCNN, we set a small batchsize of
1 in our experiment and average the gradients over all the
pixels in a training batch for back propagation. The initial

learning rate, momentum and weight decay used for stan-
dard stochastic gradient descent (SGD) are set to 2.5e-5,
0.99 and 0.0005 respectively.

3. EXPERIMENTS
Our experiments are conducted on the PASCAL VOC

2012 dataset [2] with extended annotations from [3], which
contains 20 object categories and one background catego-
ry. The extended dataset contains 10582 training images,
1449 validation images and 1456 testing images. We verify
our approach on both the validation and test set with mean
intersection-over-union (mean IoU) as our metrics.

3.1 Evaluation of Light-DCNN
We firstly evaluate the performance of Light-DCNN indi-

vidually in this section. The network is trained and tested
directly on entire images with no object proposals used.

• Performance of Hierarchical Predictions
Light-DCNN is connected to hierarchical classification lay-

ers by cooperatively using unpooling and bilinear interpo-
lation, as discussed in section 2.2. If we reconstruct the
network up to the resolution of input images, we will get
5 segmentation predictions from different deconvolutional
layers with ×16, ×8, ×4, ×2, ×1 bilinear interpolation re-
spectively, while the upsampling ratio through unpooling is
just inverse. Thus, given an image of size 224×224, we indi-
cate each of the 5 segmentation predictions with the sizes of
their corresponding deconvolutional feature maps, which are
14×14, 28×28, 56×56, 112×112, and 224×224. The perfor-
mance for each of them is listed in Table 1. It can be found
that, the best result appears in the 56 × 56 layer. While
the 224 × 224 layer, which is upsampled to the input image
resolution all by unpooling, achieves poorer performance.
So as to the 14 × 14 layer which is upsampled only with
bilinear interpolation. The results proves the effectiveness
of cooperatively using unpooling and bilinear interpolation.
As two different upsampling methods, bilinear interpolation
reserves local consistency but is easy to over smooth objec-
t edges, while unpooling restores more refined contexture
features but tends to break up the correlations within local
regions. The result of 56×56 layer benefits from appropriate
proportions for each of them, which is achieved through two
unpooling layers followed by ×4 bilinear interpolation.

Therefore, in the following experiments, we train our mod-
el with the deconvolutional network built only to the 56×56
layer and remove the upper larger-scale layers, yet the lower
hierarchical supervision is still reserved. And only the result
of the 56 × 56 layer is reported, which is the last output of
the network.

• Performance with Different Image Scales
Considering the influence of image scales on training and

inference, we reproduce our experiments with images rescaled
to 224 × 224 and 512 × 512 respectively, with the network
structure mentioned above. The results are shown in Table
5. The performance of our model is improved from 63.1% to
63.9% with larger images, yet with a cost of more training
time and computing resource. On consideration of this, the
following experiments are all conducted with the input scale
of Light-DCNN set to 224 × 224.

3.2 Evaluation of OA-Seg
In this section, we accomplish the entire process of the pro-

posed OA-Seg framework. During both training and infer-
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Table 3: Comparison with state-of-the-art methods on PASCAL VOC 2012 val set.
Method DeconvNet[11] Zoom-out[10] DeepLab[1] Piecewise[7] Deep-struct[13] DPN[8] OA-Seg OA-Seg+CRF

Mean IOU 67.1 69.9 67.6 70.3 64.1 67.8 69.6 70.3

Table 4: Comparison with state-of-the-art methods on PASCAL VOC 2012 test set.
Method areo bike bird boat bottlebus car cat chair cow tabledog horsembk personplantsheepsofa train tv mean

FCN-8s [9] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2
DeconvNet [11] 85.9 42.6 78.9 62.5 66.6 87.4 77.8 79.5 26.3 73.4 60.2 70.8 76.5 79.6 77.7 58.2 77.4 52.9 75.2 59.8 69.6
Zoom-out [10] 85.6 37.3 83.2 62.5 66.0 85.1 80.7 84.9 27.2 73.2 57.5 78.1 79.2 81.1 77.1 53.6 74.0 49.2 71.7 63.3 69.6
Piecewise [7] 87.5 37.7 75.8 57.4 72.3 88.4 82.6 80.0 33.4 71.5 55.0 79.3 78.4 81.3 82.7 56.1 79.8 48.6 77.1 66.3 70.7
DeepLab [1] 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6
RNN [19] 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 72.0
DPN [8] 87.7 59.4 78.4 64.9 70.3 89.3 83.5 86.1 31.7 79.9 62.6 81.9 80.0 83.5 82.3 60.5 83.2 53.4 77.9 65.0 74.1

OA-Seg 83.3 44.3 85.3 58.6 73.4 91.1 83.6 85.4 31.6 78.5 61.0 78.4 80.9 84.3 80.4 61.8 85.3 52.8 82.3 66.7 73.5
OA-Seg+CRF 83.9 45.4 86.9 59.0 73.1 91.6 83.8 86.5 31.7 79.5 61.0 79.2 81.4 85.3 81.7 63.3 86.3 53.4 82.8 66.7 74.1

Table 5: Analysis on Model Size and Convergence
on PASCAL VOC 2012 val set.

Method
Input
Scale

Convergence
Time

Model
Size

Mean
IOU

FCN-8s [9] 500 120 hours 513M -
DeconvNet [11] 224 168 hours 961M 67.1

light-DCNN-224 224 11 hours 114M 63.1
light-DCNN-512 512 37 hours 114M 63.9

OA-Seg 224 77 hours 180M 69.6

ence, the performance of our model is improved with object
proposals added. And state-of-the-art results are achieved
on both the validation and test set.

• Performance with Different Object Proposal Set-
tings

We verify the effectiveness of our proposed OA-Seg frame-
work by progressively adding object proposals to training
and inference processes. The results are shown in Table 2.

Firstly, we add object proposals only for training and e-
valuate on entire images, the performance of our model im-
proves obviously by 3.6 percent. While with object proposals
added to the testing process as well, our result achieves a
further improvement by 2.9 percent, which verifies the effec-
tiveness of OA-Seg. With object proposals provided, more
focused samples are supplied during both training and in-
ference and too large or tiny objects are rescaled to suitable
sizes, which help improve the discrimination of our model.

• Comparison with State-of-the-art Methods
Performance of our proposed OA-Seg is compared with

some of the best methods on validation and test sets, as
shown in Table 3 and 4 1. We achieve state-of-the-art re-
sults with 70.3% mean IoU accuracy on validation set and
74.1% mean IoU accuracy on test set, with best results on
10 categories.

It should be noticed that, actually only FCN [9] and De-
convnet [11] can be directly compared with our model as
basic segmentation networks. And our model obviously out-
performs them by 11.3 percent and 3.9 percent respectively
on test set, without the post-processing of CRF.

When combined with CRF/MRF, the FCN-based meth-
ods show improvements with CRF used just as post-processing
[1]. And the results are further improved when jointly train-

1The anonymous results links:
http://host.robots.ox.ac.uk:8080/anonymous/LGAA2D.html
http://host.robots.ox.ac.uk:8080/anonymous/ARIGY7.html

ing CRF/MRF with FCN [7][19][8]. In this paper, we simply
use CRF as post-processing and achieve state-of-the-art re-
sults on both the validation and test sets.

3.3 Analysis on Model Size and Convergence
We provide more indexes of our model in this section

for comprehensive comparison with FCN [9] and DeconvNet
[11], as all these three models work as basic networks in se-
mantic segmentation. The detailed comparison is shown in
Table 5. For our approach, we report the performance of
Light-DCNN with image sizes of 224 and 512. Moreover,
the performance of complete OA-Seg is reported with the
input scale of Light-DCNN set to 224.

Under each of the settings, our approach always shows
much faster convergence rate. With Light-DCNN trained
with 224×224 images, we already achieve a result compara-
tive with or better than FCN, referring to its test set result
62.2% [9]. But the convergence time is reduced more than
10 times. If we employ a similar image scale with FCN,
our result further improves. When we accomplish the entire
framework of OA-seg, the time cost increases to 77 hours
which is still about half of the other two methods, yet the
mean IoU result of our model obviously exceeds theirs.

Moreover, we decrease the model size by about 3 to 9 times
compared with FCN and DeconvNet, which confirms that
our models is more lightweight, flexible-to-use and effective
in practice.

4. CONCLUSION
We propose an objectness-aware semantic segmentation

framework in this paper, which consists of OPN and Light-
DCNN. OPN is used to generate object proposals and make
our model more focused on objects. While Light-DCNN pro-
vides more refined reconstruction to pixel-wise predictions
and meanwhile lightens the network. The two networks are
learned jointly to enhance the performance of semantic seg-
mentation. We achieve impressive results on PASCAL VOC
2012 dataset with significant reduction on model size and
convergence time, which confirms our approach as an effec-
tive and efficient framework for semantic segmentation.
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