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ABSTRACT
Group activity classification is the task to identify activities
with multiple person participation, which often involves in
the usage of the context information like person relation-
ships and person interactions. In this paper, we propose a
novel approach to jointly model three co-existing cues in-
cluding the activity duration time, individual action feature
and the context information shared between person interac-
tions. Our approach infers group activity labels of all the
persons together with their activity durations, especially for
the situation with multiple group activities co-existing. Ex-
perimental results show that our approach outperform state-
of-the-art by 10%.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing - video analysis

Keywords
group activity, context information

1. INTRODUCTION
Recognizing human activities from videos has been a chal-

lenging task in the past few years. Most of traditional
vision-based activity recognition works have been focused
on single-person activities. However, realistic scenes of hu-
man activity often involve multiple, inter-related actions at
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Figure 1: An illustration of concurrent group activ-
ities. (a)person interactions with each other; (b)the
focal person’s activity is influenced by the region
context; (c)interactions between trajectories serve
as context information.

the same time, analysis of a single individual cannot yield
reliable results. Take for example those persons in Fig.1(a),
we may easily know that the woman is standing and the man
is walking by analyzing their low level visual features. But
once take in account the context and interaction information
among them, it is clear that the woman is “waiting” while
the man is “crossing” the street. Therefore, context mod-
eling is necessary for recognizing these kinds of activities.

To this end, many researchers turn to exploring the con-
text information for analyzing a group of persons’ behaviors
with interactions among each other , referred as “group ac-
tivity”or “collective activity” recognition [4, 3, 2, 9, 11]. Lan



et al. used a high level latent discriminative model[7, 9, 8]
to explore the group-person interaction and person-person
interaction context. Choi et al. modeled the crowd context
[3] to establish the activities performed by individuals with-
in a crowd. Based on our observation, the existence of the
group activity involves the individual action, the context in-
formation shared between persons, and the concurrence of
the activity duration as well. However, few of former works
make use of these kinds of information.

Additionally, persons with different group activity labels
may also have influence on each other. The man “crossing”
the street within a red bounding box in Fig.1(a) is support-
ed both by the fact that persons nearby are all “walking”
towards the same direction and the others far away from
him are “waiting” towards another direction.

In this paper, we propose a concurrent group activity clas-
sification approach in which the activity duration time, the
individual action feature and the context information be-
tween persons are modeled jointly. We also consider the in-
teractions between persons belonging to different group ac-
tivities. By introducing carefully designed context descrip-
tors, our approach provides strong cues for context informa-
tion like trajectory interactions and person relationships.

2. CONCURRENT GROUP ACTIVITY REP-
RESENTATION

Our approach enables analyzing human group activities
by looking at context information extracted from the all the
persons and their relationships in a video sequence. Given a
video sequence, we assume it has been preprocessed so that
persons’ bounding boxes and their local trajectories can be
used directly.

Assuming there are M classes of collective activities in the
scene, and the label y ∈ {1, 2, ...,M} denotes the activity
class of a person. Let Y = {yi : i = 1, 2, ..., N} be the
activity label set for all N persons in an video sequence
and T = {ti : i = 1, 2, ..., N} stand for the auxiliary time
duration set, where ti is the group activity duration for the
ith person. The task is to find the optimal hypothesis label
set (Y, T ) for all the persons in the scene. Based on this,
we now encode the activity context information and develop
four potentials to represent the group activity distributions.

Activity-duration potential wTt Ψt(yi, ti). To measure
the compatibility between the group activity label yi and its
duration ti for the ith person, the activity-duration potential
is parameterized as

wTt Ψt(yi, di) = tiw
T
t I(ti) (1)

where the indicator I(ti) is a tmax × 1 vector with (ti)
th

element marked as one and zeros for others and tmax is the
maximum duration of activity yi.

Unary action-activity potential wTuΨu(xi, yi, ti). This
potential function models the compatibility between the ith
person’s action and its activity label. Features that encode
the action information are represented by the individual’s
pose and average velocity. For each activity label, based on
the average HOG [5] feature, we train a 8-class SVM classi-
fier which contains eight pose categories: right, front-right,
front, front-left, left, back-left, back and back-right. Then
the unary action feature is obtained as

xi = (smax,i, posi, vi) (2)

where K = 8 is the number of pose categories within a
activity, smax is the maximum pose classification score, v is
the average velocity of the person. posi is the pose indicator
for the ith person in the subregion, which generate a 8 × 1
vector with one for the (posi)

th element and zeros otherwise.
Then the action-activity potential is parameterized as:

wTuΨu(xi, yi, ti) = tiw
T
u · xi (3)

Region context potential wTc Ψc(yi, ti). This poten-
tial measures the compatibility between the group activity
label of the ith person and its relationships with the sur-
rounding persons within the context regions. The context
information that capture relationships of the persons with-
in a region is defined as region context feature. Given the
ith person as the focal person, the defined context regions
shows in Fig.1(b), the feature is computed from the person-
s inside the context region belonging to the same activity
group. As illustrated in Fig.1(c), for a video sequence, the
context region is extended in time, the activity of the focal
person (the red trajectory) is influenced by the persons near-
by (the blue and green trajectories). Here we only consider
the influences caused by the the persons inside the context
region with the same activity label with the focal person.
For a person j inside the context region of the focal person,
we have the pose and velocity scores (s1j , ..., sKj , vj). Sup-
posing that the context region contains M sub-regions, the
region context feature is represented as a 2 × (2K + 1) di-
mensional vector with persons’ pose scores, pose histogram
and velocity score:

fci =( max
j∈N1(i)

skj , ...,
∑

j∈N1(i)

posj , max
j∈N1(i)

vj ,

max
j∈N2(i)

skj , ...,
∑

j∈N2(i)

posj , max
j∈N2(i)

vj)
(4)

where the sub-context region N1(i) and N2(i) are circles of
0.5h and 2h (h is the average height of the focal person i)
respectively. Then the potential is parameterized as:

wTc Ψc(yi, ti) = tiw
T
c · fci (5)

Trajectory context potential wTs Ψs(xi, xj , yi, yj , ti, tj).
This potential models compatibility between the group ac-
tivity labels of ith and jth person and their spatial and
temporal interactions, which can also model the interactions
between persons with different group activity labels. These
interactions are presented by pairwise interaction features
extracted from related trajectories. For two persons i and
j (the red and the pink trajectories as shown in Fig.1(c)),
we use dynamic time warping (DTW [1]) to measure the
distance between two trajectories due to their different start
points or time durations. Together with the pose informa-
tion, the pairwise interaction feature is defined as:

fii,j = [bin(distij), pose(i, j))] (6)

where distij is the DTW distance between two trajectories
and is further divided into 3 bins defined as connected, near
and far. And pose(i, j) is defined as max(Ψu(xi),Ψu(xj)).
Here allow that the interaction features can be extracted
from persons with different group activity labels (yi 6= yj).
Then the trajectory context potential is parameterized as:

wTs Ψs(xi, xj , yi, yj , ti, tj) = (ti ∩ tj)wTs · fii,j (7)

where (ti ∩ tj) stands for the overlapped time duration.



3. STRUCTURAL MODEL LEARNING
By combining the four potentials with a structural frame-

work, we can measure the compatibility between the label
set (Y,T) and all the N persons in a video sequence as:

S(X,Y, T ) = ωTΨ(X,Y, T ) =∑
i

wTt Ψt(·) +
∑
i

wTuΨu(·) +
∑
i

wTc Ψc(·) +
∑
i,j

wTs Ψs(·) (8)

Parameters Learning: Given the activity sequences and
their structural labels, our goal is to learn the parameter ω
in Equ.8, for which we have

w =
[
wTt , w

T
u , w

T
c , w

T
s

]T
Ψ(X,Y, T ) =

∑
i

Ψt(·),
∑
i

Ψu(·),
∑
i

Ψc(·),
∑
i,j

Ψs(·)

T (9)

With the training video sequence Xi, and the correspond-
ing label set Yi and Ti, learning ω can be converted to a
regularized learning problem as follows:

arg min
w,ξi≥0

wTw + C
∑
i

ξi

s.t.∀i wT∆Ψ(Xi, Yi, Hi, Ti, HTi)

≥ l(Yi, Hi, Ti, HTi)− ξi

(10)

where ∆Ψ(·) = Ψ(Xi, Yi, Ti)−Ψ(Xi, Hi, HTi), l(·) is the loss
function to measure the difference between ground truth and
the hypothetical activity label Hi and duration HTi, and
C and ξi are the penalty factor and the slack variable re-
spectively. We use the cutting plane optimization algorithm
proposed in [6] to solve this problem.
Inference: The inference procedure is to find the best la-
bel set Y ∗ together with time duration T ∗ for each labeled
activity with an input video X. The task is to solve the
following optimization problem:

(Y, T )∗ = arg max
Y,T

S(X,Y, T ) (11)

The optimum label vectors Y ∗ and T ∗ are obtained by a
greed search approach as [12]. Although this greedy search
algorithm cannot guarantee a globally optimum solution, in
practice it works well to find good solutions.

4. EXPERIMENT
Dataset and Settings: We carry out our experiments on

the challenging real world dataset [3]. The dataset contains
44 video sequences with all the persons in every 10th frame
of the videos are assigned one of the five collective activity
categories: crossing, waiting, queuing, walking. More than
1/5 of the videos contain two or more activities in the same
scene. We use the trajectory labels after our own corrections.

To compare our model with the state-of-the-art approach-
es, we count the activity labels assigned for each person in
every 10th frame and measure the performance by the classi-
fication accuracy. 33 video sequences are randomly selected
to train the model and the rest are used as the testing set.
We repeat the process 10 times and report the average re-
sults.

Evaluation of different feature fusion strategies.
We first evaluate the performance of several feature fusion
strategies. The confusion matrices of the group activity clas-
sification accuracy are shown in Fig.2. We can see that the

approach without context information yields the worst re-
sult as shown in Fig.2(a). By adding the “action context”[9],
the performance shown in (b) improves more than 30% on
average precision, which indicates the positive effect of the
context information. Fig.2 (c) presents the further improve-
ment with our region context. From Fig.2 (d) and (f), we
can see the importance of pose(i, j) in Equ.7. Our trajectory
context potential in (f) also outperforms the spatial context
[6] in Fig.2 (e). Compared with Fig.2 (g), the classification
accuracy in Fig.2 (h) benefits from modeling the inter-group
interactions especially when multiple activities co-exist in a
scene. Our final model in Fig.2 (h) archives the best result
over all the approaches.

Approaches Average Accuracy (%)

ActionContext model [10] 68.2
RandomForest model [4] 70.9

Latent Model [9] 79.1
Our approach without multiple activities 82.6

Our approach 89.9

Table 1: Comparison results with state-of-the-arts.
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Figure 3: Illustration of group activity recognition
results.

Comparison with state-of-the-arts. The comparison
results with state-of-the-arts are presented in Tab.1. The
“ActionContext model” [10] used the action context feature.
The “RandomForest model” [4] used a random forest classi-
fier to model the spatial-temporal information. The “Laten-
t Model” [9] used a hierarchical latent model to formulate
the group activity. The “Our approach without multiple
activities” stands for the model described in Fig.2(g). Its re-
sult already outperforms the state-of-the-art, which suggests
the effectiveness of our designed concurrent context descrip-
tors. By considering the situation of multiple group activ-
ities co-existing, our approach outperforms state-of-the-art
approaches by 10%. Fig.3 illustrates some intuitional result-
s, in which persons are labeled by their group activities.

5. CONCLUSION
In this paper, we have presented a novel approach to rec-

ognize group activities. By formulating the activity time
durations, the individual action features and the trajectory
interactions jointly, our concurrent activity model exploits
the effective context information, especially for the situa-
tions of multiple activities co-existing scenes. Experimental
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Figure 2: Confusion matrices for activity classification accuracy with different feature fusion strategies: (a)
duration and unary feature; (b) duration, unary feature and action context in [10]; (c) duration, unary
feature and region context; (d) duration, unary feature and trajectory context with pose(i, j) in Equ.7; (e)
duration, unary feature and spatial context in [6]; (f) duration, unary feature and trajectory context; (g)
duration, unary feature, region and trajectory context without multiple activities co-existing; (h) duration,
unary feature, region and trajectory context with multiple activities co-existing.

results demonstrate that our proposed model improves the
performance significantly.
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