
COLOR NAMES LEARNING USING CONVOLUTIONAL NEURAL NETWORKS

Yuhang Wang, Jing Liu, Jinqiao Wang, Yong Li and Hanqing Lu

The National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, China

{yuhang.wang, jliu, jqwang, yong.li, luhq}@nlpr.ia.ac.cn

ABSTRACT

In this paper, we propose a two-stage CNN-based framework
to learn color names from web images, aiming to predict col-
or names for tiny image patches. To deal with the noisy labels
widespread in web images, we propose a self-supervised C-
NN (SS-CNN) model in the first stage. The SS-CNN model
is trained on image patches with their own color histograms
as supervision information. Thus its outputs are able to re-
flect the color characteristics of images without the influence
of the noisy labels. In the second stage, we finetune the SS-
CNN model to learn the mapping from image patches to col-
or names, where the patch labels are inherited from its father
images. Besides, sample selection is imported iteratively in
turns with the finetuning process, which helps filtering out
some noisy samples and further improves the model accura-
cy. Our model shows high representation ability to colors and
achieves better performance of color naming compared with
the state-of-the-art methods.

Index Terms— Color naming, self-supervised CNN

1. INTRODUCTION

Color is one of the most important attributes used to describe
images in vision tasks like image retrieval. To make the col-
or description more consistent with human cognition, color
naming approaches to link color values with different lin-
guistic labels receive considerable attention by researchers.
As a pioneer work, Berlin et.al [1] defined 11 basic col-
or names with extensive universality, including black, blue,
brown, green, grey, orange, pink, purple, red, white, and yel-
low. Based on the definition, several studies on color naming
strive for color value mapping to the basic color names. This
is also our focus in this paper.

To model the associations between color values and col-
or names, some early work is built on color stimuli such as
[2], while recent work tends to employ web images which are
collected through search engines and thus cost-free. Most of
these methods are based on statistical models. [3] used multi-
nomial probability distributions to describe the likelihood of
a color value to be predicted to a color name, while [4] em-
ployed a mixture of Gaussian distributions. [5] and [6] are

the most representative work in recent years, which turned to
topic model and improved PLSA [7] to learn the pixel-wise
prediction. [8] introduced a randomized HSL transformation
to make artificial images approach natural color distributions,
and implemented a χ2 ranking to initialize their model and
help removing outliers from the training data.

We also construct our model on web images, but unlike
previous work, we intend to make a “block-wise” prediction
in this paper, meaning that we will predict the color names
for tiny image patches according to the dominant colors in
them. Compared with isolated pixels, image patches contain
more abundant semantic information and always show more
robustness to noises. Moreover, we employ a discriminative
model and treat the task of color naming as a classification
one to enhance the discriminability of different color names.
Convolutional Neural Network (CNN) [9][10] becomes our
first choice for classification, due to its amazing performance
achieved in vision tasks [10][11]. An intuitive idea for this
task is to train a CNN model directly on the image patches
labeled with color names. However, the intuitive way is im-
proper to our task, because the training images explored from
web are not labeled precisely, and furthermore the noisy la-
bels are assigned with images, not to particular image patch-
es. The contaminated training samples certainly will weaken
the learnability of CNN. Generally, a typical solution, which
has been adopted extensively and successfully by several re-
searchers [11][12], turns to a pre-trained CNN model on a
large-scale dataset, like ImageNet, and uses its outputs as an
representative feature description to enter the further learning
task. However, for the case of color naming, there is no such
dataset large enough for CNN to be well trained. And since
the supervision information of ImageNet is object category, it
is hard to be transfered to the color naming problem.

To address the problems above, in this paper, we propose
a two-stage CNN-based learning framework for the task of
color naming. In the first stage, we intend to pre-train a CNN
model with generalizable feature extraction layers, which can
preserve and concentrate the color characteristics of images
without the influence of the noisy labels. For this purpose, we
propose a self-supervised CNN (SS-CNN) model trained on
image patches randomly selected from the training set, and
use the color histograms of patches as their own supervision

217978-1-4799-8339-1/15/$31.00 ©2015 IEEE ICIP 2015

Color
Names

probabilities features

color histogram

SS-CNN

Finetuning
CNN

&
Sample

Selection

Fig. 1. Framework of our two-stage approach for color names
learning. The two networks describe the SS-CNN and the
finetuned classic CNN, respectively. The parts surrounded
by blue dot lines represent the layers fixed during finetuning,
while the red parts represent the variation. The flow chart in
the bottom describes our sample selection process, which can
be applied in turns with finetuning iteratively.

information to train the SS-CNN model. In this way, we can
augment our dataset thousands of times larger and satisfy the
demand of CNN training, yet without any cost. Meanwhile,
with the guidance of the color histograms, the network will
be trained to grasp color information from the input patches
with no use of the noisy labels. In the second stage, we fine-
tune the SS-CNN model with only the last layer retrained, on
image patches labeled with the 11 color names. Sample selec-
tion is applied iteratively in turns with the finetuning process,
in order to filter out part of noisy samples detrimental to our
model. The flowchart of our integrated process is shown in
Fig. 1. Experiments on a publicly available image set demon-
strate the effectiveness of our proposed method.

2. OUR APPROACH

Our approach consists of two stages. We first train the SS-
CNN model to grasp general color characteristics, and fine-
tune it in the second stage to make it specialized for our task.

2.1. Training Self-supervised CNN Model

In this stage, we train the SS-CNN model on a newly built
training set consisting of randomly selected image patches
from the original training set. We choose the color histogram
as the supervision to form the self-supervised learning struc-
ture, considering that it describes the probabilistic distribution
of different colors in an image patch and hence provides ef-
fective guidance for the network to distinguish between them.
In this paper, we employ a cluster-based color histogram for a
better description on different colors, and modify the softmax
loss function to fit the new supervision information.

We do not employ the commonly used color histogram
algorithm which divides the color space equally, because the
spatial distribution of colors in RGB space is uneven. Some
colors may occupy very small areas and are too close to each
other which are hard to be separated, such as black and grey,
while some others are just the reverse. In our approach, we
first implement a K-means cluster on all the pixels in the train-
ing set with each of them represented by its RGB values. Then
we use the cluster centers as a codebook, and form the color
histogram of a certain image patch by mapping each of its pix-
els into the corresponding cluster class. After that, we sharp-
en the color histogram by doing an exponentiation to each
element of it to make the dominant colors more outstanding
and weaken the other colors at the same time. Finally, we
normalize the sharpened color histogram and use it as the su-
pervised label vector of the image patch. Each element in the
label vector can represent the probability of the image patch
to be predicted to the corresponding cluster class.

With the sharpened color histogram as supervision, we
modify the softmax loss function as [13] to minimize the KL-
Divergence between the supervised label vector and the pre-
dictions made by the network. The new loss function used in
the SS-CNN model can be written as:

Loss = − 1

n

n∑
i=1

c∑
j=1

p̂ij log(pij) (1)

pij =
exp(fj(xi))∑c
k=1 exp(fk(xi))

(2)

where n is the batch size used when training the SS-CNN
model, and c is the number of cluster classes which equal-
s 128 in our settings. pij is the probability of image xi to
be predicted to class j by the network, while p̂ij is the cor-
responding supervised probability in the label vector. f(xi)
represents the output of the last fully connected layer of the
network for image xi, and fj(xi) is the jth element of f(xi).

2.2. Finetuning with Classic CNN Structure

In this stage, we finetune the pre-trained SS-CNN model tar-
geting the 11 color names proposed by [1], along with a sam-
ple selection method based on the features provided by the
SS-CNN model. During the finetuning, the model is trained
with all the feature extraction layers fixed and only the last
fully connected layer is retrained, following the structure of
classic CNN models.

Assuming that the pre-trained SS-CNN model is repre-
sented as Net1, we first finetune it directly on the training
patches we collected above but label them with the color
names of their “father” images. The newly obtained model
is represented as Net2, which is certainly affected by the
weakly labeled samples. So we apply sample selection in the
following steps to discard part of the noisy samples injurious
to our model.

218

cars dresses pottery shoes overall
CH 65.36 ± 1.74 84.82 ± 1.29 74.00 ± 0.47 83.55 ± 0.52 76.93 ± 0.48

c-CNN 73.45 ± 1.47 79.18 ± 1.00 75.55 ± 0.29 88.00 ± 0.57 79.05 ± 0.56
SS-CNN∗ 70.55 ± 1.61 87.64 ± 0.64 78.45 ± 0.61 86.45 ± 0.52 80.77 ± 0.34
SS-CNN 73.18 ± 1.37 91.82 ± 0.43 83.36 ± 0.96 91.18 ± 0.86 84.89 ± 0.46

PLSA-bg [5] 71.82 86.36 83.64 92.73 83.64
χ2 ranking [8] 73.63 88.18 79.01 92.73 83.41

Table 1. Color naming results in percentages on foreground objects of Ebay color name set

First, we predict color names for all the training patches
with Net2. And for each color name, we select the top N
samples with the highest scores from the patches correctly
predicted, as “seeds” for this color name. Then, we extract the
color features for all the training patches from the penultimate
layer of Net1 which possess a powerful feature extraction
ability. (It can also be accomplished with Net2 which shares
the same feature extraction layers with Net1.) We average
the features of the “seeds” within each of 11 color classes and
regard them as the class centers. Finally, we select samples in
each color class according to the Euclidean distance between
them and the class center, and discard the samples that are too
far away.

After getting the “purified” training patches, we finetune
Net2 again with the same method as above. The sample se-
lection and finetuning process can be applied in turns, to im-
prove the performance of our model iteratively.

2.3. Training Details

Our network is implemented with Caffe [14]. We build the
SS-CNN model with 3 convolutional layers and 1 fully con-
nected layer, with 32, 96, 96, 128 nodes for each of them re-
spectively. The 1st and 2nd convolutional layers are followed
by ReLU layers, max pooling layers, and local response nor-
malization layers [10], while for the 3rd convolutional layer,
there are only a ReLU layer and a max pooling layer. The
sizes of the convolutional filters are all 3 × 3, and the strides
used are 1, 1, 2 respectively. For the max pooling layers, the
sizes of pooling masks are also 3 × 3, and the strides are al-
l 2. The sizes of image patches used in this paper are 37 ×
37, which can be changed if needed, along with small adjust-
ments on the network parameters.

3. EXPERIMENT

We pre-train and finetune our model on the Google color
name set [5], and test it on the Ebay color name set [5] by
predicting color names for the entire objects as well as pix-
els, to validate the performance of our approach in different
situations.

Google color name set: The dataset contains 1100 im-
ages evenly divided into 11 basic color names which are cho-
sen based on the study of [1]. All the images in the dataset

are collected using Google Image and most of the images are
weakly labeled.

Ebay color name set: The dataset contains 528 images
evenly distributed in the 11 color classes from 4 object cate-
gories, of which 440 images are used as the testing set while
the rest as the validation set. Images in this dataset are all
collected from the the Ebay website and hand-segmented into
foreground and background. Following the work in [5], we
only consider foreground objects in our experiments.

3.1. Color Naming for Entire Objects

We first make an “object-level” prediction with our model to
judge the color names for the entire foreground objects in
Ebay images. For the evaluation, we randomly select 100
quadrate patches from the foreground of each image with s-
tochastic sizes, then we resize them and use the average of
their predictions as the prediction for the image. We repeat
this process for 10 times, and report the mean accuracy along
with the standard deviation.

The effectiveness of our model mostly relies on the pre-
trained SS-CNN model, which combines the CNN structure
and the color histogram, so we use them seperately for this
task as two baselines of our method. To use the CNN model
alone, we train a classic CNN model (c-CNN) directly on im-
age patches labeled with the 11 color names, and for the color
histogram (CH), we train a softmax classifier on it, which is
the same with the last layer of our model. Sample selection
is applied for both of the two methods. We report the results
of our model (SS-CNN), as well as the results with no use of
sample selection (SS-CNN∗). For other baselines, we com-
pare our method with the PLSA-bg model provided by [5]
and the χ2 ranking model proposed by [8].

The performance of different methods is shown in Table
1. It can be found that the model trained directly on color his-
tograms achieves the worst results, while the SS-CNN based
model achieves the best, which demonstrates that the CNN
model supervised by traditional hand-craft features can learn
a more powerful feature representation which is consisten-
t with the supervisory feature but possesses a stronger expres-
sion ability. Compared with the classic CNN based model,
the SS-CNN based model without sample selection already
shows a better performance. And sample selection further
improves our results significantly by about 4% on overall ac-
curacy. The obvious outperformance over the classic CNN

219

0 2 4 6 8 10 12 14 16

66

68

70

72

74

Padding Radius

Ac
cu

ra
cy

(%
)

64

SS−CNN
PLSA−bg [5]

Fig. 2. Pixel classification accuracy with different padding
radiuses

based model also proves that our model is much more robust
and thus achieves a better learning on color characteristics,
benefitting from the self-supervised structure.

While compared with [5] and [8], our model also shows
the best performance on overall accuracy. However, for sin-
gle categories, our model performs best in only one of them.
But it should be noticed that, in the category of “dresses”, our
model achieves a result far exceeding the other two method-
s, and in the other categories, our model also achieves results
very close to the best results, which is impossible for the other
two methods. It shows the general applicability of our model
under different reflection properties of objects and in various
scenes. Moreover, the model of [8] is trained on Google-512
dataset which is 5 times as large as our training set, and the
model of [5] demands several preprocessing steps. In con-
trast, our approach can be accomplished on a smaller dataset
with no need of any pretreatment, yet achieves better perfor-
mance.

3.2. Color Naming for Pixels

We also conduct a “pixel-level” experiment using our mod-
el to predict color names for pixels. To evaluate the perfor-
mance of our model, we traverse all the foreground pixels of
Ebay images and calculate the classification accuracy. For the
baseline, we cite the pixel classification result reported in [5]
with the PLSA-bg method.

For a single pixel, we can simply duplicate it into a patch
with the size fit for our network and predict its color name.
And we have also tried predicting the color name for a pix-
el with the help of its surrounding pixels, since the adjacent
pixels often have similar colors with the central pixel in a real-
world image, which helps improving our accuracy. We resize
the small patch made by our object pixel together with its
surrounding pixels and predict its color name with the same
method as above. The padding radius ranges from 0 to 16 in
our settings, where padding 0 pixel means making predictions
with a single pixel.

Our results are shown in Fig. 2. It can be found that
our approach also achieves satisfying results in pixel classi-
fication. With no padding pixels, our approach has already
achieved a result a little higher than [5]. And by padding with

(a) Our model (b) Zeiler’s model

Fig. 3. Visualization of filters in the first convolutional layer
of our model, compared with Zeiler’s model [12].

just 1 pixel around, which makes a single pixel into a 3 ×
3 patch, our result shows an obvious improvement. As the
padding radius becomes larger, the result of our approach ris-
es and then tends to be stable, because the padding pixels in-
crease the robustness of our prediction. When the padding ra-
dius becomes too large, the results also benefit from the con-
sistency of the foreground colors. The results demonstrate the
effectiveness of our model to describe colors for more refined
tasks such as pixels or small image regions.

3.3. Filter Visualization

To intuitively investigate the ability of our model in grasping
color characteristics, we visualize the filters in the first layer
of the SS-CNN model. Compared with the filters achieved in
previous work, such as [12] which trains the CNN model on
the ImageNet dataset, our filters show more color-specificity.

Fig. 3 shows the comparison of our filters with Zeiler’s
filters [12]. It can be found that our model shows more sen-
sibility on various colors while almost ignores the edge infor-
mation of the images, which could be an explanation for the
color feature extraction ability of our model.

4. CONCLUSION

We propose a two-stage framework for color names learning,
which predicts color names for tiny image patches by grasp-
ing the dominant colors in them. To avoid the influence of
noisy labels, we pre-train a self-supervised CNN model guid-
ed by the color histograms which shows fairly good generality
and feature extraction ability. Finetuning is then applied for
color names classification along with sample selection to fur-
ther improve the performance. Extensive experiments have
shown the effectiveness of our model in color naming under
different situations.

5. ACKNOWLEGMENT

This work was supported by 973 Program (2012CB316304)
and National Natural Science Foundation of China (61332016,
61272329, and 61472422).

220

6. REFERENCES

[1] Brent Berlin and Paul Kay, “Basic color terms: their u-
niversality and evolution,” Berkeley: University of Cal-
ifornia, 1969.

[2] Robert Benavente, Francesc Tous, Ramon Baldrich, and
Maria Vanrell, “Statistical modelling of a colour naming
space,” in Conference on Colour in Graphics, Imaging,
and Vision, 2002, pp. 406–411.

[3] Jeffrey Heer and Maureen Stone, “Color naming models
for color selection, image editing and palette design,”
in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2012, pp. 1007–1016.

[4] Dimitris Mylonas, Lindsay MacDonald, and Sophie
Wuerger, “Towards an online color naming model,” in
Color and Imaging Conference, 2010, pp. 140–144.

[5] Joost Van De Weijer, Cordelia Schmid, and Jakob Ver-
beek, “Learning color names from real-world images,”
in Computer Vision and Pattern Recognition, 2007, pp.
1–8.

[6] Joost Van De Weijer, Cordelia Schmid, Jakob Verbeek,
and Diane Larlus, “Learning color names for real-world
applications,” Image Processing, IEEE Transactions on,
vol. 18, pp. 1512–1523, 2009.

[7] Thomas Hofmann, “Probabilistic latent semantic index-
ing,” in Proceedings of the 22nd annual international
ACM SIGIR conference on Research and development
in information retrieval, 1999, pp. 50–57.

[8] Boris Schauerte and Gernot A Fink, “Web-based learn-
ing of naturalized color models for human-machine in-
teraction,” in International Conference on Digital Im-
age Computing: Techniques and Applications, 2010, pp.
498–503.

[9] Yann LeCun, Bernhard Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel, “Backpropagation applied to hand-
written zip code recognition,” Neural Computation, vol.
1, pp. 541–551, 1989.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information
processing systems, 2012, pp. 1097–1105.

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jiten-
dra Malik, “Rich feature hierarchies for accurate object
detection and semantic segmentation,” in Computer Vi-
sion and Pattern Recognition, 2014, pp. 580–587.

[12] Matthew D Zeiler and Rob Fergus, “Visualizing and
understanding convolutional networks,” in Computer
Vision–ECCV 2014, 2014, pp. 818–833.

[13] Yunchao Gong, Yangqing Jia, Thomas Leung, Alexan-
der Toshev, and Sergey Ioffe, “Deep convolutional rank-
ing for multilabel image annotation,” arXiv preprint
arXiv:1312.4894, 2013.

[14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell, “Caffe: Convolutional archi-
tecture for fast feature embedding,” arXiv preprint arX-
iv:1408.5093, 2014.

221

