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ABSTRACT
Successful semantic segmentation methods typically rely on
the training datasets containing a large number of pixel-wise
labeled images. To alleviate the dependence on such a ful-
ly annotated training dataset, in this paper, we propose a
semi- and weakly-supervised learning framework by explor-
ing images most only with image-level labels and very few
with pixel-level labels, in which two stages of Convolutional
Neural Network (CNN) training are included. First, a pixel-
level supervised CNN is trained on very few fully annotated
images. Second, given a large number of images with only
image-level labels available, a collaborative-supervised CNN
is designed to jointly perform the pixel-level and image-level
classification tasks, while the pixel-level labels are predict-
ed by the fully-supervised network in the first stage. The
collaborative-supervised network can remain the discrimina-
tive ability of the fully-supervised model learned with ful-
ly labeled images, and further enhance the performance by
importing more weakly labeled data. Our experiments on
two challenging datasets, i.e, PASCAL VOC 2007 and La-
belMe LMO, demonstrate the satisfactory performance of
our approach, nearly matching the results achieved when all
training images have pixel-level labels.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: [Vision and Scene Under-
standing]; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing
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1. INTRODUCTION
Image semantic segmentation is a core problem in com-

puter vision, aiming at parsing images into several semantic
regions and labeling them with their concepts. It demand-
s more fine-granular recognition of images, since pixel-wise
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classification is required along with understanding of various
image contents. The restrictions of limited fine-annotated
images and diversity of objects brings more challenges into
this task.

In the past decades, numerous efforts have been paid on
the task of semantic segmentation. According to the dif-
ferent levels of supervision, they can be roughly divided in-
to two categories: fully-supervised and weakly-supervised.
In the fully-supervised setting, CRF (Conditional Random
Field) models are used typically and have lots of effective
extensions [3]. Besides, the techniques of deep learning are
applied to solve the problem of semantic segmentation effec-
tively. Long et.al [8] proposed a fully convolutional network
constrained by strong supervision of pixel labels and refined
its results with a hierarchical structure. Although satisfac-
tory segmentation performance of the fully-supervised solu-
tions can be achieved when given a large amount of training
data, the high cost on the pixel-level annotations is bound
to restrict its extensive applications.

To alleviate the dependence on the fine-grained labeled da-
ta, weakly-supervised methods with only image-level labels
available have emerged and attracted much attention [4, 6,
7]. Liu et.al [6] built a graph propagation model considering
consistency of superpixels and weak supervision information
simultaneously. Liu et.al [7] formulated the problem as a
weakly-supervised dual clustering task to cluster superpix-
els and assign a suitable label to each cluster. And Xie et.al
[15, 16] further improved the graph construction method
of the model. Despite of largely decreasing requirement on
training data, the weakly-supervised methods suffer a poor
performance in discovering the object structure. To achieve
the balance of the dependence on training data and the mod-
el performance, we turn to a semi- and weakly-supervised
method in this paper, using mainly the image-level labeled
images as training data and very few pixel-level labeled im-
ages for supplementary.

In this paper, we propose a two-stage Convolutional Neu-
ral Network (CNN) based framework to accomplish a coarse-
to-fine learning process for image semantic segmentation. In
the first stage, we build a pixel-level supervised network (PS-
CNN), using only a small number of images with their pixel-
level labels. The network predicts labels for each pixel of the
input images and thus carries out a fine-grained learning on
various object details. The prediction can indicate the differ-
ences between objects or object parts from different classes
to some extent, but is too crude to ensure a satisfactory seg-
mentation performance because of too limited training data
explored in the first stage. Then, a collaborative-supervised
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Figure 1: The overview of our approach. The up-
per and lower parts in the figure show the training
process of the PS-CNN and CS-CNN respectively.
During the training of CS-CNN, the response of
its last convolutional layer is upsampled and aver-
aged respectively and then supervised by the pixel-
level and image-level labels collaboratively, which
enhances the sensitivity of the model to both the
object structures and the tiny objects.

network (CS-CNN) as the second stage is proposed to en-
hance the segmentation performance by making full use of
two sides of information: one is the outputs of the first
stage, the other is a large number of images associated with
only image-level labels. Specifically, we build a two-head
network to predict labels for each pixel and the entire im-
age at the same time. Given a training image, the pseudo
pixel labels obtained from the first stage and the image-
level labels are used to supervise the two label prediction
tasks respectively and the corresponding two loss functions
are combined to contribute to updating the network. With
such a collaborative-supervised network, we aim to refine the
model by expanding the training scale with weakly labeled
images, and better mask the object structure benefitting
from the discriminative ability of the fully-supervised model
learning with fully labeled images. Our experiments on t-
wo challenging datasets, i.e, PASCAL VOC 2007 dataset [1]
and LabelMe LMO dataset [10], demonstrate the attractive
performance of our approach, nearly matching the results
achieved when all training images have pixel-level labels.

2. OUR APPROACH
Our approach consists of two stages of CNN training to

progressively elaborate our model, of which one is a pixel-
supervised CNN (PS-CNN) as a pre-trained model and the
other is a collaborative-supervised CNN (CS-CNN) as a re-
fined model. Both of the two networks are finetuned on the
ImageNet-pretrained VGG 16-layer net [11], and the pro-
cesses are implemented with Caffe [2]. An overview of our
approach is shown in Figure 1.

2.1 Pixel-supervised CNN Model
In the first stage, we train a pixel-supervised CNN to learn

the details of different objects, using few fully-supervised
images. The model is built as a fully convolutional neu-

ral network referring to FCN [8]. The FCN model replaces
the fully connected layers by convolutional ones with kernels
covering their entire input regions, which further extends a
convnet to adapt arbitrary-sized inputs and output a clas-
sification map. With this network structure, a feature map
can be achieved from the last convolutional layer, of which
each feature vector indicates the response of a receptive field
in the input image. To connect the coarse output with the
pixel-wise annotations, the feature map is then up-sampled
with bilinear interpolation to the size of the input image .
And classification is made on each pixel to make detailed
segmentation.

The softmax loss function is used in this network for pixel-
wise supervision and the averaged loss value of all the pixels
in a training batch is used as the final loss. The loss function
can be defined as follows,

Loss1 = − 1

mn

n∑
i=1

m∑
j=1

c∑
k=1

1{yij = k}log(p̂pixelij,k ) (1)

p̂pixelij,k =
exp(xpixelij,k )∑c
l=1 exp(x

pixel
ij,l )

(2)

where n, m, c are the batchsize, pixel number in an image
and the number of object classes, respectively. p̂pixelij,k stands
for the probability of the jth pixel in the ith image to be
predicted to class k. xpixelij stands for the feature vector
of pixelij given out by the last convolutional layer of the

network and xpixelij,k is the value in its kth channel. yij is

the groundtruth label of the pixelij and 1{yij = k} is an
indicator function judging whether the groundtruth label
equals k.

2.2 Collaborative-supervised CNN Model
In this stage, more weakly-supervised images with only

image-level labels are added to expand training scale and
refine our model. To utilize them, we design a collaborative-
supervised CNN model which takes both of the pixel-level
and image-level information into consideration.

For the pixel-level loss term, we employ the same net-
work structure as in the first stage and use pseudo pixel-
level labels for the weakly-supervised images as supervision.
The pseudo labels are pixel-wise prediction generated by the
PS-CNN model achieved above. It is coarse because of the
limited training data but already competent to distinguish
most objects or their parts. So we use it here to maintain
the discriminating ability of the network on different object
details.

But as the pseudo pixel labels contain much noise and
may be insensitive to tiny objects, we add an image-level
loss term to alleviate the problem. We average the response
of each receptive field as the response of the entire image and
then make the image-level classification. As there are always
more than one object in the image, we use KL-Divergence to
formulate the loss function and assume that the prediction
probability should distribute evenly on all the object classes
existing in the image. That is, for an image containing q
kinds of objects, we set 1

q
as the groundtruth probability for

the q classes while 0 for the others. In this way, we actually
demand that every existing object should be given equal
notice by the network. Therefore, some of the tiny objects or
unconspicuous object parts will be forced to produce higher
response to ensure that they are not ignored or mislabeled,
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Figure 2: Performance of different CNN models on
the PASCAL VOC 2007 dataset
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Figure 3: Performance of different CNN models on
the LabelMe LMO dataset

which helps neutralizing the noise brought by the pseudo
pixel labels. The loss function is as follows,

Loss2 = − 1

n

n∑
i=1

c∑
k=1

pimage
i,k log(p̂image

i,k ) (3)

p̂image
i,k =

exp(ximage
i,k )∑c

l=1 exp(x
image
i,l )

(4)

where p̂image
i,k denotes the probability of imagei to be pre-

dicted to class k. And pimage
i,k denotes the groundtruth prob-

ability. ximage
i is the averaged feature vector of imagei.

Finally, we combine the two loss terms with a weighting
parameter α and use them to constrain our model collabo-
ratively. The final loss function is as follows,

Loss = Loss1 + αLoss2 (5)

3. EXPERIMENT
Extensive experiments are performed on PASCAL VOC

2007 dataset [1] and LabelMe Outdoor dataset [10], which
are focused on object and scene segmentation, respective-
ly. Both mean class accuracy and mean IU (intersection
over union) are used as metrics to evaluate our model. Our
approach is compared with several fully- and weakly- super-
vised methods and outperforms the state-of-the-art method-
s on both two datasets, which indicates the effectiveness of
our approach. The results on different kinds of segmentation
tasks also confirm the universality of our approach.

3.1 PASCAL VOC 2007 Dataset
The PASCAL VOC 2007 dataset consists of 422 training-

validation images and 210 testing images belonging to 20
object classes. During the training process, we randomly

sample a small percentage of images to train the PS-CNN
with their pixel-level labels and the rest images are further
added to train the CS-CNN with only image-level labels.
The impact of the pixel-level labeled images is further e-
valuated by changing their numbers from 40 (< 10%) to
100 (< 25%). And the evaluations when the whole training
set is pixel-level labeled (fully-supervised CNN, using only
the pixel-level supervision) or image-level labeled (weakly-
supervised CNN, using only the image-level supervision) are
also performed for comparison.

Comparison between different settings are shown in Fig-
ure 2. It shows that, with both sampling rates, the proposed
CS-CNN model outperforms the PS-CNN by about 10 per-
cent on both the two evaluation metrics. It indicates the ef-
fectiveness of our semi-supervised approach which enhances
the model with weakly-labeled images. Moreover, compar-
ison between the results achieved with different sampling
rates indicates the influence of the fully-supervised train-
ing data. Our results get an obvious improvement when
the number of pixel-level labeled samples rises from 40 to
100. While compared with the weakly-supervised and fully-
supervised CNN, the CS-CNN model always shows better
results than the weakly-supervised CNN, by the reason of
the few fully-supervised images. And it should be noticed
that our CS-CNN model trained with only 100 (< 25%)
pixel-level labeled images already achieves very similar per-
formance with the fully-supervised CNN using the whole
training set with pixel-level annotations, which further com-
firms the effectiveness of our approach.

Finally, results of our approach (semi-supervised, indi-
cated as SS) and other fully-supervised (FS) or weakly-
supervised (WS) methods are compared in Table 1. Our
results are achieved using the CS-CNN model trained with
100 pixel-level labeled images. It can be seen that our ap-
proach shows better accuracy and robustness, which wins
the highest accuracy in 8 classes among all of these meth-
ods and outperforms the state-of-the-art method [16] by 7
percent on mean accuracy.

3.2 LabelMe Outdoor Dataset
This dataset is a subset of LabelMe dataset [10] provided

by [5]. It contains 2688 fully annotated images of 33 cat-
egories, of which 2488 images are for training and the rest
for testing. Most of the images are outdoor scenes includ-
ing sky, buildings and mountain. We continue to use the
same settings as above and conduct our experiments with
200 (< 10%) and 500 (< 25%) pixel-level samples, respec-
tively. The results are shown in Figure 3, which further
verifies the above conclusion that our semi-supervised ap-
proach effectively enhances the model by exploiting more
weakly-supervised images and is able to achieve similar per-
formance with the fully-supervised CNN with only few pixel-
level samples. Comparison with the state-of-the-art meth-
ods are shown in Table 2. Our result outperforms even the
fully-supervised methods and exceeds the state-of-the-art
method [9] by 12 percent on mean accuracy.

4. CONCLUSION
In this paper, we propose a semi- and weakly- supervised

learning method for image semantic segmentation, which
consists of two stages of CNN training. In the first stage,
we train a pixel-supervised CNN to learn the discrimination
between objects with very few pixel-level labeled images. In
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Table 1: Semantic segmentation results on PASCAL VOC 2007 dataset.
S
u
p
er
v
is
io
n

M
et
h
o
d

p
la
n
e

b
ik
e

b
ir
d

b
o
a
t

b
o
tt
le

b
u
s

ca
r

ca
t

ch
a
ir

co
w

ta
b
le

d
o
g

h
o
rs
e

m
o
to
rb

ik
e

p
er
so
n

p
la
n
t

sh
ee
p

so
f a

tr
a
in

tv b
k
g
d

m
ea

n

WS

[6] 28 20 52 28 46 41 39 60 25 68 25 35 17 35 56 36 46 17 31 20 65 38
[18] 48 20 26 25 3 7 23 13 38 19 15 39 17 18 25 47 9 41 17 33 - 24
[17] 65 25 39 8 17 38 17 26 25 17 47 41 44 32 59 34 36 23 35 31 - 33
[15] 85 55 87 45 42 31 34 57 21 81 23 16 6 11 42 31 72 24 49 40 41 42
[16] 77 48 87 50 56 48 44 60 27 76 18 38 25 31 52 38 59 31 51 34 41 47

FS
[3] 27 33 44 11 14 36 30 31 27 6 50 28 24 38 52 29 28 12 45 46 - 30
[14] 19 21 5 16 3 1 78 1 3 1 23 69 44 42 0 65 30 35 89 71 - 31

SS Ours 53 66 11 40 46 69 46 94 15 41 67 51 56 74 87 19 62 26 84 43 93 54

Table 2: Semantic segmentation results on LabelMe
LMO dataset.

Supervision FS WS SS
Method [5] [12] [9] [13] [7] Ours
Accuracy 24 29 32 21 26 44

the second stage, a collaborative-supervised CNN is designed
to jointly perform the pixel-level and image-level classifica-
tion tasks, given a large number of images with only image-
level labels available. For the collaborative-supervised mod-
el training, the pixel-level labels are pseudo ones predicted
by the fully-supervised network in the first stage. Our re-
sults on two commonly used datasets have proved that our
model can achieve a result close to or better than the fully-
supervised methods with the help of only a small amount of
pixel-level labeled images. Experiments on larger external
datasets will be implemented in the future to further confirm
the effectiveness and scalability of our method.
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