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Abstract—The bag of visual words (BoW) model is one of
the most successful model in image classification task. However,
the major problem of the BoW model lies in the determination
of visual words, which consists of codebook training and
feature encoding phases. The traditional K-means and hard-
assignment method completely ignore the structure of the local
feature space, leading to high loss of information. To alleviate
the information loss, we propose to incorporate the neighbor-
hood information of the features into the codebook training and
feature encoding process. We firstly propose a model to roughly
measure the influence of the distribution of the neighboring
features. Then we combine the proposed model with the
traditional K-means method in a probability perspective to
train the visual codebook. Finally, in the feature encoding
phase, both the hard-assignment and soft-assignment method
are improved with the proposed neighborhood information
term. We investigate our method on two popular datasets: 15-
Scenes and Caltech-101. Experimental results demonstrate the
effectiveness of our proposed method.
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I. INTRODUCTION

Image classification remains to be one of the most sig-

nificant but challenging task in the computer vision and

machine learning community. In recent years the bag of

visual words(BoW)[1] model has been extremely popular

in image classification systems. The BoW model usually

starts from well-engineered local features such as SIFT[2]

or HOG[3], a visual codebook is then trained and local

features are encoded into an overcomplete representation. A

compact histogram representation is calculated as the global

image representation. Finally, a classifier, usually SVM or

logistic regression is trained to predict the semantic label of

the image.

The major problem of the BoW model is the determina-

tion of visual words which consists of two phases: code-

book learning and feature encoding. In the learning phase,

an overcomplete codebook is trained in an unsupervised

manner. Local features are then encoded by assigning the

feature vectors to the visual words. The traditional BoW

method applies K-means algorithm to train the codebook and

vector quantization(VQ) to encode the features to construct

high level image representations. The simplicity of such

a quantized codebook representation would come with a

high information loss and the discriminative information

Figure 1. A toy example illustrating the neighborhood information in
the codebook model. The blue dots are the feature samples, the labeled
red circles are the learned codewords, and the green triangles are the
data sample to be encoded. It is shown that the local distributions of the
feature space should be considered to assign the triangle data sample into
a reasonable codeword.

is considerably reduced. While the traditional VQ method

is found too restricted to encode the local features, [4]

proposed the visual word ambiguity model to soft-assign

the feature into several nearest codewords. Yang et al.[5] and

Wang et al.[6] proposed to relaxed the restrictive constraint

by sparsity or locally-constrained linearity regularization.

However, all the methods try to use some centroids to

represent the whole feature space without considering the

local structure of the feature space. As the toy example

shown in Fig.1, the labeled red circles are codewords trained

by unsupervised clustering method. By the traditional VQ

method, the triangle data sample A is assigned to the

codeword b. However, considering the local distribution of

the features, most of the similar neighbors of A are assigned

into the word d, it seems more reasonable to encode A into

the word d even if A is in the area of the codeword b. These

cases can be more common if the feature vector is very high-

dimensional (e.g. SIFT) and the codebook is highly over-

complete. While the traditional method can only capture the

global distribution and statistic property of the feature space,

we believe the local distribution of the features should also

be incorporated.
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To address above issues, this paper proposes to incorpo-

rate the neighborhood information to improve the K-means

and VQ algorithm making the codebook model more robust

and semantical. Firstly, we propose a model to roughly mea-

suring the influence of the distribution of the neighborhood,

as a complement to the centroid based assignment scheme.

Then, we combine the proposed model with the traditional

K-means method in a probability perspective to train the

visual codebook. In the feature encoding phase, we improve

both the hard-assignment and soft-assignment method with

the proposed neighborhood information term. We evaluate

the effect of the proposed model on the scene dataset 15-

Scenes and object dataset Caltech-101 and the improvement

over the baselines show the effectiveness and efficiency of

the proposed method.

The rest of the paper is organized as follows. Section II

reviews the related work of BoW models. In Section III-A,

we revisit the traditional BoW model, especially the coding

phase. We elaborate our proposed model of incorporating the

neighborhood information into the coding phase in Section

III-B. The experimental evaluation is given in Section IV,

and we conclude in Section V.

II. RELATED WORK

Over the years the BoW[1] image representation mod-

el has been proven effective and widely used in image

classification due to its invariance to illumination, object

translation, and rotation. Once local features(i.e. SIFT[2],

HOG[3], or LBP[7]) are extracted, the codebook training

and feature encoding phase would be the most important and

govern the quality of image representation. Traditional BoW

applies the K-means method to generate the codebook which

minimizes the variance between the clusters and the data.

However, the simplicity and compactness of such a quan-

tized codebook representation comes with a high cost and

the discriminative information is considerably reduced[8].

The discriminative power may be improved by alternative

clustering algorithms[9][10] or incorporating some super-

vised information[11][12][13]. The feature encoding process

can be regarded as assigning each feature to the trained

codewords. Traditional BoW adopts the vector quantization

which is also regarded as the hard assignment scheme. The

hard assignment method may induce severe information loss

by assigning each feature to only one codeword. To relax

the too restricted sparsity, [4] proposed the soft-assignment

scheme by assigning each local feature to several nearest

codewords.

Another problem of the BoW model is the ignorance of

the spatial information as the model describes an image as

an orderless collection of local features. To overcome this

problem, one popular extension, called as Spatial Pyramid

Matching(SPM)[14], has been shown effective by exploiting

the absolute spatial information of location regions. More

specially, the SPM model requires to first partition each

image into a sequence of increasingly finer uniform grids

(i.e. 1×1, 2×2, 4×4) and then concatenate the BoW features

in each grids to form a high dimensional image feature.

More recently, Yang et al.[5] extended the SPM model

using Sparse Coding(ScSPM), and showed obvious improve-

ment in image classification. By replacing Kmeans and hard-

assignment with sparse coding, their method automatically

learn the codebook and search for the optimal weight to

assign each local feature into the corresponding codewords.

Wang et al.[6] proposed to extent the SPM model with the

locality-constrained linear coding (LlcSPM), which consid-

ers the locality information in the codebook training and

feature encoding process. Fisher encoding[15] and Super

vector encoding[16] are proposed to capture the average first

and second order differences between local features and their

distribution centres modeled by Gaussian Mixture Models.

However, all the above methods only use the cluster centers

to represent the feature distribution, which is limited in

the high-dimensional feature space, and the local structures

of the features is totally neglected in the feature encoding

phase. In this paper, we mainly consider to incorporate some

local structure information of the feature space to improve

the discrimination of the BoW model.IEEEhowto:kopka

III. METHOD

A. BoW Model Revisited

In this section, we briefly review the image classification

pipeline based on the BoW model, which mainly consists of

two procedures of coding and spatial pooling. Specifically,

we will focus on the coding section.

1) Coding: Starting from the raw images, the local

features such as SIFT are extracted firstly, usually in the

densely sampling scheme. Then two phases are needed to

encode them into distinct visual words: codebook learning

and feature encoding.

For learning the codebook, a sampled feature set is needed

by randomly sampling from the features of the whole

images. In standard BoW model, the K-means algorithm

is applied to cluster the sampled features into V clusters,

which is considered as the visual codebook. We denote the

sampled feature set as X = [x1, x2, . . . , xN ](N >> V ),
and the centroids of the clusters as C = [c1, c2, . . . , cV ]. In

the Kmeans algorithm, the features are hard-assigned to the

nearest centroid:

fv(x) =

{
1 if v = argminiD(x, ci)

0 otherwise
(1)

The mapping function fv(x) here is also known as the

standard 1-of-V hard-assignment coding scheme.

With the learned over-complete (V >> the dimension

of feature) codebook, the local patches of each image are

then encoded into the visual codewords using the 1-of-

V hard-assignment scheme, which is a maximally sparse
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representation that has been most frequently used. It is

generally believed that having an over-complete codebook

while keeping the activations sparse helps classification.

However, the hard-assignment may be too restricted with too

much information loss and discriminative power reduced.

2) Spatial Pooling: After encoding the local patches into

sparse codes, the global BoW representations are then gen-

erated by the max pooling or average pooling operation. The

BoW model thus describes an image as an orderless statistics

of local features, while the spatial layout of the features is

completely neglected. To embed the spatial information, [14]

proposed the Spatial Pyramid Matching(SPM) model, which

has been shown effective for image classification. The SPM

model requires to first partition each image into a sequence

of increasingly finer uniform grids (i.e.1× 1, 2× 2, 4× 4).

The spatial pooling operation is then applied within each

grid to get the representation for each region. The BoW

representation for each grids are concatenated to form a high

dimensional image feature.

Finally, a classifier, usually SVM is trained using the

global image feature to predict the final label of the image.

The most commonly used kernel functions are linear, χ2 or

histogram intersection.

B. Codebook Learning with Neighborhood Information

The traditional dictionary learning methods all try to learn

several cluster centroids as the codebook to encode each

feature, which is only able to capture the global structure or

statistic property of the feature space. As shown in Fig.1, the

local structure or distribution is very important to assign the

feature into a reasonable visual codeword especially in the

very high-dimensional and complex feature space. To this

end, we propose to incorporate the neighboring information

into the feature assignment scheme to roughly indicate some

local structure of the feature distribution. To relax the too

restricted 1-of-V hard-assignment scheme, we also adopt the

soft-assignment scheme, which assigns a certain feature into

several nearest clusters.

We firstly reformulate the 1-of-V hard-assignment scheme

in a probability perspective. To a feature point x, the

probability to assign it into the v-th cluster is:

pcentroid(x→ cv) =
Kσ(D(x, cv))∑V
v Kσ(D(x, cv))

(2)

where K is a kernel function to smooth the local neigh-

borhood of the data sample. In this paper, we use the

SIFT descriptor that draws on the Euclidean distance as the

distance function D, which assumes a Gaussian distribution.

Hence, we adopt the Gaussian-shaped kernel Kσ(x) =
1√
2πσ

exp(− 1
2
x2

σ2 ) as the kernel function. The Gaussian-

shaped kernel has a smoothing parameter σ representing the

size of the kernel, which determines the degree of similarity

between feature samples, dependent on the data set, the

feature dimensionality and the range of the feature values.

Therefore, we tune the parameter discriminatively by cross

validation in our experiments.
With the probability defined above, the hard-assignment

is:

fv(x) =

{
1 if v = argmaxi pcentroid(x→ ci)

0 otherwise
(3)

the feature is assigned to the codeword with the maximum

probability, which is equivalent to the Eq.1.
We propose to incorporate some local structure informa-

tion into the feature assignment process, as a complement

to the hard-assignment based on the centroids of the feature

clusters. Since it is difficult to exactly model the local

structure in the high-dimensional space, we only consider the

neighborhood of the certain feature for simplicity, to roughly

indicate some local information. Given a feature x, we firstly

find out the k nearest neighbors in the sampled feature set,

which is denoted as {xn1 , xn2 , xn3 , . . . , xnk
}, and if xni is

belonged to the j-th cluster we denote it as xni,j . Thus we

define the probability function to assign a certain feature

x into the v-th cluster considering the influence of the k
nearest neighbors as:

pknn(x→ cv) =

∑
i Kσ(D(x, xni,v))∑
j Kσ(D(x, xnj

))
(4)

In this probability function, we assume that the assignment

of the certain feature x is determined by the distribution of

the k nearest neighbors. We both consider the number and

the distance of the neighboring features in the certain cluster.

The feature is tended to be encoded into the cluster in which

there are more neighboring features assigned into the cluster

and the feature is more close to these features. We call this

definition as the neighborhood information term.
In order to train a more robust and semantical visual

codebook, we combine the neighborhood information with

the traditional K-means algorithm. In the probability refor-

mulation, it is very nature to combine the centroid-based

assignment term and the neighborhood information term.

Thus the combined probability to assign the feature into the

v-th cluster is defined as:

p(x→ cv) = pcentroid(x→ cv) + λpknn(x→ cv) (5)

where λ is the tradeoff coefficient.
To relax the too restricted sparsity of the hard assignment

in K-means, we adopt the soft-assignment scheme which

assigns the feature into several clusters according to the

probability, regarding the probability as the weights of the

feature point in the cluster:

fv(x) = p(x→ cv) (6)

We conclude our codebook training procedure in Algo-

rithm 1. Note that in the algorithm, we firstly run several

standard k-means iterations to initialize the centroids of the

clusters which we find helpful to improve the performance

in our experiments.
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Algorithm 1 K-means with neighboring information

Input:
feature set X , codebook size V , tradeoff coefficient λ,

number of soft assignment θ, max iterations I
Output:

codebook C = {c1, c2, . . . , cv}
1: Init C using standard k-means

2: for iter = 1 : I do
3: Update the soft assignment for each feature x using

Eq.5 and Eq. 6

4: Update the codebook C: cv = 1
Nv

∑
i fv(xvi)xvi

5: Stop the process when the update of new centroids

reach convergence criteria

6: end for

C. Feature Encoding with Neighborhood Information

Given the visual codebook, we then encode the local

features of the images according to the mapping function.

As the centroids of the codebook is too limited to represent

the structure of the codebook, we combine the neighborhood

information as described in Eq.5. The training feature set X
should be remained in the coding phase, since the k nearest

neighbors in the feature set should be found out firstly

for a given feature, which is different from the traditional

coding method. Note that our model can be applied to both

hard-assignment and soft-assignment scheme, we will both

investigate the two coding scheme in our experiments. In

the hard-assignment scheme, we assign the feature point to

the codebook with the maximum probability according to

Eq. 5 while keeping others zero, while the soft-assignment

assigns the feature to several codeword with max assignment

probability. A normalization operation is usually needed in

the soft-assignment scheme.

IV. EXPERIMENTS AND RESULTS

In the experiments, we mainly compare our method with

the popular kernel SPM[14] on two popular datasets, 15-

Scenes and Caltech-101. We start our experiments with an

in-depth analysis of our methods on the dataset of 15-Scenes,

after which we transpose these findings to the experiments

on the Caltech-101. First, we evaluate the effectiveness of

our method in the codebook training phase. Then we inves-

tigate the hard-assignment and soft-assignment scheme with

the proposed neighborhood information term incorporated.

For our experimental setup we closely follow Lazebnik et
al.[14] for fair comparison. We use a single local descriptor,

the popular SIFT descriptor, by densely extracting local

patches of 16×16 pixels computed over a grid with spacing

of 8 pixels. When training SVM classifier, we apply the

histogram intersection kernel and use the well implemented

LIBSVM[17] package. The SVM regularization terms are

chosen via 5-flod cross validation on the training data.

The detailed comparisons and analysis are presented in the

following subsections.

A. Results on 15-Scenes Dataset

We firstly experiment with a popular scene classifica-

tion benchmark, 15-Scenes dataset, complied by several

researchers[18][14]. The dataset is composed of 15 scene

classes (e.g. kitchen, coast, highway), with each class con-

taining 200 to 400 images and there are 4485 gray-scale

images in total. Following the experiment setup of [14], we

take 100 images per class for training and the rest for testing,

and the size of the visual codebook is fixed to 400. The final

SVM classifier are trained in the one-versus-others scheme

and the image is classified to the category with the max

score.

1) The Effect of the Neighborhood Information on the
Ccodebook Learning: We first evaluate the effect of the

neighborhood information term in Eq.4 on the codebook

training phase, while we apply the traditional 1-of-V hard-

assignment scheme in the coding phase for fair comparison.

We randomly sample 10, 000 SIFT features from the features

extracted from the whole images. The tradeoff term λ
in the Eq.5 controls the proportion of the neighborhood

information term: the bigger λ is, the more the neighborhood

information contribute to the assignment probability. Thus

we evaluate the effect of the neighborhood information

term by varying the tradeoff term λ, as shown in Fig.2.

K-means+NIH denotes the proposed method of the im-

proved K-means with the neighborhood information and

hard-assignment scheme, while K-means+NIS denotes the

method of the improved K-means with the neighborhood

information and soft-assignment scheme. Note that when

λ equals 0, the algorithm degenerates to the standard K-

means, and when λ is large enough the assignment is almost

dependent on the neighborhood term. It is shown that incor-

porating the neighborhood term does help to improve the

performance. The K-means+NIS outperforms the other two

methods and the best performance are achieved with well

balanced coefficient. Empirically, we found that keeping the

tradeoff term λ to be around 0.7 yields good results.

2) The Effect of the Neighborhood Information on the
Feature Encoding: Then we investigate the performance of

various types of feature encoding scheme with the codebook

training method fixed to K-means in our experiments, which

is shown in Fig.3. Similar to the above experiment, we

vary the tradeoff coefficient λ to evaluate the effect of

the neighborhood information term. In Fig.3, HA denotes

the traditional hard-assignment method, and SA denotes

the traditional soft-assignment method. HA+NI and SA+NI

denotes the hard-assignment and soft-assignment scheme

combined with the proposed neighborhood information term

respectively. It is shown that the soft-assignment scheme

outperforms the hard-assignment in general. The neighbor-

hood information term really helps to improve the classifi-
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Figure 2. Performance comparisons on the 15-Scenes to investigate the
effect of the neighborhood information on the codebook training with
varying tradeoff coefficient λ.

Figure 3. Performance comparisons on the 15-Scenes to investigate the
effect of different coding scheme varying tradeoff coefficient λ.

cation accuracy, which is not very sensitive to the tradeoff

parameter λ. The best performance is achieved when the

parameter λ is around 0.8. As shown in the figure, when

λ is large, the performance is still slightly better than the

traditional method, further indicating the importance of the

neighborhood term.

Finally, we summarize the comparisons of different meth-

ods we implemented in Table I. We repeat every method

5 times and report the mean and standard deviation of

the mean class accuracy. Note that our implementations of

KSPM are not able to reproduce the results reported in [14]

probably due to the SIFT descriptor extraction and normal-

ization process. The best performance is achieved by using

K-means+NIS in the codebook training phase and SA+NI

in the feature encoding phase. Our method outperforms the

KSPM by more than 3% according to our implementations.

It is noted that our method also outperforms ScSPM[5]

which adopts the Sparse Coding (SC) to learn the codebook

and encode the local patches. The improvement of our

simple scheme to roughly incorporate the neighborhood

information has shown the importance of the local structure

of the features in the codebook training and feature encoding

phase.

B. Results on Caltech-101 Dataset

We conduct our second set of experiments on the Caltech-

101 dataset[19]. The Caltech-101 dataset contains 9144

Table I
CLASSIFICATION RATE (%) COMPARISON ON 15-SCENES.

Method Codebook Encoding Classification Rate
KSPM[14] K-means HA 81.40± 0.50
ScSPM[5] SC SC 80.28± 0.93

KSPM K-means HA 80.10± 0.71
KSPM K-means SA 80.90± 0.36
Ours K-means SA+NI 82.81± 0.31
Ours K-means+NIS HA 82.32± 0.23
Ours K-means+NIS SA+NI 83.23± 0.22

Table II
CLASSIFICATION RATE (%) COMPARISON ON CALTECH-101.

Method 15 training 30 training
KSPM[14] 56.40 64.6± 0.80

KC[20] — 64.14± 1.18
KSPM 56.13± 0.30 63.70± 0.35
Ours 58.53± 0.23 66.52± 0.36

images totally from 102 different categories, including 101

object categories and 1 additional background category with

high shape variability. The number of images per category

varies from 31 to 800, and most images are medium resolu-

tion, i.e. about 300× 300 pixels. We follow the experiment

setup of [14], namely, training on 15 and 30 images per class

and test on the rest. For efficiency, we limit the number of

test images to 50 per class. We randomly sample from the

whole local features to get a feature set containing 10, 000
local features to tain the codebook with the size fixed to

1000. We repeat every method 5 times and report the mean

and standard deviation of the mean class accuracy.

The performance comparison results are shown in Ta-

ble II. We use the empirical parameter values in the 15-

Scenes experiments. The best performance of our method

is achieved by using Kmeans+NIS to train the codebook

and SA+NI to encode the features. As shown, our method

outperforms the baseline by more than 2 percent for both

15 training and 30 training per category.

V. CONCLUSION

In this paper, we address the issue of the determination of

visual words in the BoW image classification model. As the

local structure of the features are neglected in the existing

algorithms, we propose a neighborhood information model

to roughly indicate the local distribution. Then we combine

the proposed model with the standard K-means method to

improve the process of the codebook learning. In the feature

encoding phase, our model is also able to incorporated into

the hard-assignment and soft-assignment method to improve

the robustness and discrimination. The experiments on 15-

Scenes and Caltech-101 datasets have shown the effect of

the incorporated neighborhood information term, and our

method outperforms the traditional BoW model. Possible

future work involves more carefully engineered local struc-

tures of the feature space, and unsupervised learning of such
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information. Another interesting direction is to incorporate

the neighborhood information into the framework of the

sparse coding or local coordinate coding.
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