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Abstract: Although a number of elaborate color con-
stancy algorithms have been proposed, methods such as
Grey World and Max-RGB are still widely used because
of their low computational costs. The Grey World algo-
rithm is based on the grey world assumption: the average
reflectance in a scene is achromatic. But this assumption
cannot be always satisfied well. Borrowing on some of
the strengths and simplicity of the Grey World algorithm,
W. Xiong et al. proposed an advanced illumination esti-
mation method, named Grey Surface Identification (GSI),
which identifies those grey surfaces no matter what the
light color is and averages them in RGB space. However,
this method is camera-dependent, so it cannot be applied
on the images from unknown imaging device. Motivated
by the paradigm of the GSI, we present a novel iteration
method to identify achromatic surface for illumination
estimation. Furthermore, the local Grey Edge method is
introduced to optimize the initial condition of the iteration
so as to improve the accuracy of the proposed algorithm.
The experiment results on different image datasets show
that our algorithm is effective and outperforms some cur-
rent state-of-the-art color constancy algorithms. � 2010

Wiley Periodicals, Inc. Col Res Appl, 00, 000 – 000, 2010; Published
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INTRODUCTION

As a simple and straightforward clue, color has been used

in many computer vision applications, such as object rec-

ognition and tracking, scene understanding, image repro-

duction, as well as photography. However, the color infor-

mation of any image recorded by a camera depends on

three factors: the physical content of the scene, the illumi-

nation incident on the scene, and the characteristics of the

camera.1,2 Different light sources will result in different

colors of the same object surface. Color constancy refers

to the genre of techniques that aim to recognize the color

of objects invariant of the color of the light source. It

generally includes two steps3: Firstly, estimate the color

of light source from image data. Secondly, the von Kries

diagonal transformation is applied on the image to get the

objects’ color under a known canonical light source.4

Past decades have witnessed significant progress in color

constancy algorithms. All these solutions can be roughly

divided into two major categories: unsupervised

approaches and supervised ones. The algorithms falling in

the first category are straightforward as they are based on

the nature of the color components of image itself. Max-

RGB estimates the light source color from the maximum

response of the different color channels.2 It assumes that

the brightest point in the scene is white, meaning that the

red, green, and blue values of the point represent the illu-

mination features. Another well-known algorithm is Grey

World algorithm, which assumes that the average reflec-

tance in the scene is achromatic.5 By using Minkowski-

norm, G.D. Finlayson et al.6 proposed Shades of Grey

(SoG) algorithm, which can integrate Max-RGB and Grey

World algorithms into a uniform framework. More

recently, Weijier et al.3,7 presented another Grey Edge hy-

pothesis: The average of the reflectance differences in a

scene is achromatic. Based on this hypothesis, edge-based

color constancy algorithm, which uses high-order deriva-

tive image to estimate illumination, was given out. Xiong8
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proposed a novel illumination color estimation solution,

called Grey Surface Identification (GSI), by detecting those

potential grey surfaces in the scene through a specific coor-

dinate system and averaging them in the RGB space. The

other color constancy category includes those training-

based solutions, the ingredients that they have in common

is to build up the relationship between image color distri-

bution and light attribute. The first important method is

Bayesian color constancy introduced by Brainard and Free-

man.9 It requires having a prior knowledge about the re-

flectance in real scenes and the distribution of light sour-

ces. However, it is very computationally expensive

because the number of parameters is a function of the num-

ber of surfaces. Another problem of this method is that it

depends on the performance of image segmentation. A

more practical solution is color by correlation proposed by

Finlayson.10 In essence, this algorithm is a discrete imple-

mentation of Bayesian concept. It establishes a correlation

matrix that describes the interrelation between illuminants

and image chromaticity distribution. The best estimate of

the specific illuminate incident on the image is chosen,

having the highest probability among all potential ones.

Barnard et al.11 improved the promising method by extend-

ing it into 3D color space. Besides the chromaticity, the

extra information used is pixel brightness. The common li-

mitation of these two methods is the requirement of having

various predefined illuminations as the prediction is chosen

from one of them. This limitation can be elegantly

addressed with Neural Network, which inherently includes

a model of joint probability.12 The neural network is fed

with a binary chromaticity histogram and its output can be

any arbitrary illumination values. Recently, better results

have been achieved by using support vector regression that

minimizes the structure risk without knowing the expected

distribution of the image data.13,14 Interpolation was also

recently proved to be an efficient technique.15 In this

method, the illumination estimation is treated as a problem

of interpolating over a set of uniformly sampled thumb-

nails created by averaging adjacent pixels in the original

images. Other interesting solutions include color constancy

by KL-divergence16 and illumination color by voting.17

A complete review and comparison of color constancy

algorithms can be found in.1,2,18 Although statistical-based

methods have been shown to be superior to the others,

image-based color constancy solutions, such as Grey

World, Max-RGB, SoG, and GSI, are still widely used in

practical applications due to low computational cost and

simplicity.3,19 The Grey World algorithm has even been

extended to color constancy for multiple illuminants.18,20

In particular, GSI is drawing more attention as it can bring

more accurate performance without adding more complex-

ity. However, the potential grey pixel detection of this

method is camera dependent and suffers from calibration

requirement. In this article, we propose an iterative camera

independent achromatic surface identification method and

use R/G/B values of these surfaces to estimate the illumi-

nation’s color information. We name the method Color

Constancy using Achromatic Surface (CCAS).

The remainder of this article is organized as follows. In

Section 2, after reviewing Grey World, SoG, and GSI

algorithms, we explain the details of CCAS. The experi-

mental results on different image datasets are presented

next. Then finally the Conclusion.

COLOR CONSTANCY USING ACHROMATIC SURFACE

Grey World, Shades of Grey, and Grey Surface

Identification Algorithms Review

According to the Lambertian reflectance model, the

image f ¼ (R,G,B)T can be computed as follows:

f ðXÞ ¼
Z
x

eðkÞSðX; kÞcðkÞdk (1)

where X is the spatial coordinate, k is wavelength, and x
represents the visible spectrum. e(k) is spectrum of light

source, the surface reflectance is denoted as S(X,k), and
the camera sensitivity function is given by c(k) ¼ (R(k),
G(k), B(k))T. The goal of color constancy is to estimate e:

e ¼
Z
x

eðkÞcðkÞdk (2)

Because both e(k) and S(X, k) are unknown, it is an

underconstrained problem and it cannot be solved without

any further assumptions. The Grey World algorithm is

based on the grey world assumption, i.e., the average re-

flectance in a scene is achromatic. The assumption can be

described as follows: R
SðX; kÞdXR

dX
¼ k (3)

where k is a constant, representing the chromaticity. Then,

the light source color can be estimated by computing the

average pixel value:

R
f ðXÞdXR
dX

¼

R R
x
eðkÞSðk;XÞcðkÞdkdXR

dX

¼ k

Z
x

LeðkÞcðkÞdk ¼ ke ð4Þ

Finlayson et al.6 proposed a more general color constancy

algorithm based on the Minkowski-norm and called it

Shades of Grey (SoG). This algorithm is computed as:

R
f ðXÞð ÞpdXR

dX

� �1=p

¼ ke (5)

For p ¼ 1, the equation reduces to Grey World algorithm.

For p ¼ !, it is equal to Max-RGB algorithm. They also

found that the best performance result can be obtained

when p is set to be 6. Consequently, we will also apply

SoG (p ¼ 6) on the R/G/B values of identified achromatic

pixels to predict the illumination color.

2 COLOR research and application



Grey World and SoG use all pixels in the image to esti-

mate light chromaticity values. A more reasonable trick is

to identify those grey surfaces and use them to solve color

constancy problem. Under some assumption and con-

straints, Finalyson et al. proved that varying the illumina-

tion’s color temperature or its intensity of a surface will

cause (log R, log G, log B) to move within a plane and the

planes from different surface reflectance are parallel to

each other.21 Based on this conclusion, Xiong et al. further
proposed a new coordinate system, named LIS, that repre-

sents illumination (‘L’), reflectance (‘S’), and intensity

(‘I’) as separately as possible.8,19 The potential grey surfa-

ces, no matter what the lighting condition is, can be gained

if they have an S axis of nearly zero and only these pixels’

R/G/B values are averaged to get the light color.

Achromatic Surface Identification using Iteration

From previous section, we can see that the key point of
GSI is to detect those potential grey pixels through a trans-
formation between R/G/B space and LSI coordinate sys-
tem. But this transformation requires calibrating the imag-
ing device.8,19 Therefore, it will inevitably fail on those
images from any unknown cameras. Inspired by the basic
idea of GSI, we develop an iterative achromatic surface
identification method from the image itself. The SoG
method is applied on the R/G/B values of these detected
surfaces, and its output will be served as illumination color.

Before describing the CCAS algorithm, we define some

functions and variants that will be used. The function

isAch(px) is used to decide whether the pixel is poten-

tially achromatic or not, it is defined as:

isAchðpxÞ ¼
(
1 if

R

B
� 1

����
���� < s and

G

B
� 1

����
���� < s and ðR 6¼ 0;G 6¼ 0;B 6¼ 0Þ

0 else

(6)

where px represents the pixel, R,G,B are the values of

each color channel of pixel px in the image F0, which is

the adjusted image under canonical illumination by esti-
mated illumination color. Threshold s indicates the close-

ness among R/G/B values and it is empirically set to be
0.1 in this article. Besides s, the angular error threshold e
and iteration times threshold CTimes are also used to con-

trol the algorithm performance and efficiency. To alleviate
the effect of image noise, we also define another pixels

number threshold Tnum to determine whether there exists
enough achromatic surface in the scene. The brief steps of

proposed algorithm are as follows:

Step 1. Set i ¼ 0. Suppose all the pixels in the image F
are achromatic. Therefore the achromatic pixel set Ii: Ii
¼ F. Estimate the illumination color ei by applying SoG
algorithm on all pixels in set Ii.
Step 2. Use the diagonal model4 to map the image F to
F0, which is the image under canonical illumination
according to the estimated illumination ei.
Step 3. Set i ¼ i þ 1. Select out the achromatic pixels
from image F0 to compose the new achromatic set Ii as:
Ii ¼ {px| isAch(px) ¼ 1}. Where the function isAch(px)
is defined in Eq. (6).

Step 4. If Num(Ii) \ Tnum, where Num(Ii) is the total
pixel number in set Ii, then return ei. otherwise, estimate
the illumination color ei by applying SoG algorithm on
updated pixel set Ii and compute the angular error Terr
¼ angular(ei21,ei), where the function () is angular error
defined in Section 3 [Eq. (12)].

Step 5. If Terr [ e or i ‡ CTimes, return ei and stop the
procedure;

Otherwise go back to Step 2.

In the above steps, if Num(Ii) [ Tnum, we believe that

the achromatic pixels in the image are not enough for illu-

mination estimation, the algorithm returns the previous

result ei21. Therefore, if Num(Ii) [ Tnum, the CCAS will

reduce to the SoG algorithm. Tnum is always set to be

1000 in our experiments. Figure 1 shows an example of

the achromatic surface detection results. The identified

achromatic surfaces after first iteration are marked in

‘White’ in Fig. 1(B). Figure 1(C) is the final results after

three iterations. It shows that nearly all the achromatic

surfaces are picked out correctly.

Optimization of the Initial Condition

The initial value used by the iterative algorithm is very

crucial for the result we obtained. The simplest way is to

assume that all the pixels in the image are achromatic.

That is, the initial condition defined in Subsection 2.2 is

from the output of global Grey World. In this subsection,

to improve the accuracy, we use the local Grey Edge to

optimize the initial condition of the proposed algorithm,

which is called CCAS (optimized). In some color con-

stancy algorithms, a local Grey World22,23 is used as the

illumination of the spatial position X, which can be

described as:

eðXÞ ¼ f rðXÞ ¼ f ðXÞ � Gr (7)

where e(X) is the illumination color of the spatial position

X. f r(X) ¼ f(X)�Gr is the convolution of the image f(X)
with a Gaussian filter with scale parameter r. This local

Grey World algorithm has an obvious problem; the esti-

mated illumination color will bias to the pixel’s color in

the uniformed region. To avoid this situation, by introduc-

ing Grey Edge algorithm,3,8 we use local Grey Edge

instead of local Grey World for local illumination estima-

tion, which can be represented as Eq. (8).
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eðXÞ ¼ f rX ðXÞ ¼ ðRr
X;G

r
X;B

r
XÞT (8)

where the subscript X indicates the spatial derivative at

scale r. Assuming sensor sensitivity functions are narrow-

band enough to follow the Dirac delta function,24 accord-

ing to Eq. (1) and Eq. (8), we obtain (9):

f ðXÞ ¼ ScðXÞEc ) ScðXÞ ¼ f ðXÞ
Ec

¼ f ðXÞ
f rX ðxÞ

(9)

were Sc(X) 2 S(X, kc) and Ec 2 e(kc). kc is the central

wavelength for each channel. From Eq. (9), we can find

that
f ðXÞ
f rX ðXÞ can approximatively represent the object’s

surface reflectance. Consequently, we will construct a

surface reflectance descriptor for the image edge re-

gion as D ¼ fd1; d2; d3g ¼ f R
Rr
X
; G
Gr

X
; B
Br
X
g ðRr

X 6¼ 0;Gr
X 6¼ 0;

Br
X 6¼ 0Þ.
By using descriptor D, we will get achromatic pixels

from image edges with d1 � d2 � d3 (dk = 0, k ¼ 1,2,3)

to compose the initial achromatic pixel set instead of

using all the pixels in CCAS. Here, we introduce a new

function apAch(px) to extract those achromatic pixels

from original input image, shown in Eq. (10).

FIG. 1. An example of achromatic surface identification. The white color means these pixels are achromatic. (A) is original
image. (B) is the identification result after first iteration, pixels identified as achromatic are indicated in white. (C) is the final
result using CCAS, pixels identified as achromatic are indicated in white.

apAchðpxÞ ¼
(
1 if

d1
d2

� 1

����
���� < s and

d2
d3

� 1

����
���� < s and dk 6¼ 0 ðk ¼ 1; 2; 3Þ

0 else

(10)

Now the initial condition (Step 1) in Section 2.2 can be

optimized as:

Step 1. Set i ¼ 0. Select out the achromatic pixels from

image F to compose the original achromatic set Ii as: Ii
¼ {px|apAch(px) ¼ 1}. If Num(Ii) \ Tnum, Ii ¼ F.
Estimate the illumination color ei by applying SoG

algorithm on all pixels in set Ii.

Now, we can see that, if the total number of detected

grey pixels from color invariant technique is too small,

i.e., Num(I0) \ Tnum, the algorithm CCAS(optimized)

will reduce to the CCAS.

To check the effect of the optimized initial step and

select the best r for the descriptor D, we use the opti-

mized initial step to estimate the initial illumination and

compare its performance with SoG algorithm in the initial

step of the original CCAS. The median angular error is

used as the evaluating indicator. This comparison experi-

ment is done on the 321 SFU Image Dataset. The detail

of the 321 SFU Image Dataset and median angular error

will be introduced in Sections 3.1 and 3.2. The experi-

ment results are shown in Fig. 2.

From the experiment results, we can conclude that the

optimization with local Grey Edge can significantly

improve the initial illumination estimation accuracy than

Shade of Grey algorithm. The best value can be reached

if we set r ¼ 4. The value will also be used in the fol-

lowing experiments.

Figure 3 gives another example, showing that the pre-

sented optimization solution can improve the performance

of achromatic surface identification. Figure 3(A) is the

original image. Figure 3(B) is the identification result af-

ter first iteration of CCAS(optimized). Figure 3(C) is the

FIG. 2. The median angular error of the optimized initial
step changes with the r.
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final identification result using optimized initial condition.

Figure 3(D) is the final identification result iterations

using original CCAS. Some achromatic surfaces that are

not identified using normal solution, shown in Fig. 3(D),

which can now be detected out by using optimized initial

condition, shown in Fig. 3(C).

EXPERIMENTS

The two thresholds in the proposed algorithm, which is

used to control iteration, are set as follows: The angular

error threshold e ¼ 0.5 and iteration times threshold

CTimes ¼ 5. We evaluate the proposed algorithm andcom-

pare it with others on three real image datasets. The first

one is Barnard’s set of 321 SFU images,25 the second one

is Cardei’s 900 uncalibrated images from different cam-

eras12; the last experiment are tested on Ciurea et al.26

indoor and outdoor images captured from a digital video.

Error Measure

Several error measures are used to evaluate perform-

ance of the proposed algorithms. For each image, the

distance Ed between the measured actual illumination

chromaticity (ra, ga) and the estimated illumination

(re, ge) is calculated as:

Ed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðra � reÞ2 þ ðga � geÞ2

q
(11)

Assuming there are N test images, we will also report root

mean square (RMS), maximum and median distance.8,19,27

The RMS of the chromaticity distance RMSd is defined as:

RMSd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

E2
dðiÞ

vuut (12)

where the Ed(i) is the illumination chromaticity distance

error of ith image. The angular error Ea between the meas-

ured actual illumination chromaticity ea ¼ (ra, ga, ba) and
the estimated illumination ee ¼ (re, ge, be) is also used.

The angular error function angular(ea, ee) is defined as:

Ea ¼ angularðea; eeÞ

¼ cos�1 ðra; ga; baÞðre; ge; beÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a þ g2a þ b2a

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e þ g2e þ b2e

p
 !

3
180�

p

(13)

FIG. 3. An example of achromatic surface identification. The white color means these pixels are achromatic. (A) is original
image. (B) is the identification result after first iteration of CCAS (optimized), pixels identified as achromatic are indicated
in white. (C) is the final identification result using optimized initial condition. (D) is the final identification result iterations
using original CCAS, pixels identified as achromatic are indicated in white.

FIG. 4. (A) Examples of the images from the 11,346 real-world image set. (B) Cropped images for experiments.
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TABLE II. Comparison of CCAS to other algorithms via the Wilcoxon signed-rank test.

Max_RGB Grey-World SoG Grey-Edge
Second-order
Grey-Edge CCAS

CCAS
(optimized)

Max_RGB 2 2 2 2 2 2
Grey World þ 2 2 2 2 2
SoG þ þ 2 2 2 2
Grey-Edge þ þ þ 2 2 2
Second-order
Grey-Edge

þ þ þ þ ¼ 2

CCAS þ þ þ þ ¼ 2
CCAS (optimized) þ þ þ þ þ þ

A ‘þ’ means the algorithm listed in the row is statistically better than the one in the column. A ‘2’ indicates the opposite, and an ‘¼’
indicates that the performance difference of these two algorithms is statistically trivial.

TABLE III. Comparison of CCAS to Max_RGB, Grey-World, Shades of Grey, and Grey-edge performance.

Method Parameters
Median
angle

Max
angle

RMS
angle

Median
dist (3102)

Max
dist (3102)

RMS
dist (3102)

Max_RGB* – 2.96 27.16 6.39 2.17 22.79 4.75
Grey World* – 4.34 31.44 6.65 3.17 29.99 5.26
SoG* p ¼ 6 3.02 19.71 4.99 2.19 15.96 3.80
Grey-Edge e1,7,4 3.27 31.76 5.79 2.44 28.15 4.40
Second-order
Grey-Edge

e2,7,5 3.34 34.98 5.85 2.53 31.08 4.48

CCAS e ¼ 0.5, p ¼ 6,
CTimes ¼ 5,
Tnum ¼ 1000

2.26 19.60 4.72 1.63 14.90 3.59
CCAS (Optimized) 2.07 19.43 4.32 1.51 13.85 3.24

The tests are based on the 900 uncalibrated images. The results of other algorithms marked by ‘*’ are from Ref. 19.

TABLE IV. Comparison of CCAS to other algorithms via the Wilcoxon signed-rank test.

Max_RGB Grey-World SoG Grey-Edge
Second-order
Grey-Edge CCAS

CCAS
(Optimized)

Max_RGB þ ¼ þ þ 2 2
Grey World 2 2 2 2 2 2
SoG ¼ þ þ þ 2 2
Grey-Edge 2 þ 2 ¼ 2 2
Second-order
Grey-Edge

2 þ 2 ¼ 2 2

CCAS þ þ þ þ þ 2
CCAS (Optimized) þ þ þ þ þ þ

The labelings ‘þ’ ‘2’ and ‘¼’ have same meanings as those shown in Table II.

TABLE I. Comparison of CCAS to Max_RGB, Grey World, Shades of Grey, and Grey-Edge performance.

Method Parameters
Median
angle

Max
angle

RMS
angle

Median
dist (3102)

Max
dist (3102)

RMS
dist (3102)

Max_RGB* – 6.44 36.24 12.28 4.46 25.01 8.25
Grey World* – 7.04 37.31 13.58 5.68 35.38 11.12
SoG* p ¼ 6 3.97 28.70 9.027 2.83 19.77 6.21
Grey-Edge e1,7,4 3.20 31.57 8.30 2.37 20.13 5.81
Second-order
Grey-Edge

e2,7,5 2.74 26.75 7.75 2.03 17.74 5.47

CCAS e ¼ 0.5, p ¼ 6,
CTimes ¼ 5,
Tnum ¼ 1000

2.49 29.66 8.28 1.83 19.65 5.49
CCAS (optimized) 2.18 27.17 7.32 1.61 19.14 4.94

The tests are based on the 321 indoor images. The results of other algorithms marked by ‘*’ are from Ref 19.
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As with the distance’s measure, we also report RMS, max-

imum and median angular error over the test set of images.

To evaluate the error distribution difference in the per-

formance of two competing methods, the Wilcoxon

signed-rank is applied.19,27 The threshold for accepting or

rejecting the null hypothesis is set to be 0.01.

321 SFU Image Dataset

First, the proposed algorithms were tested on a large

dataset of colorful objects under different light sources.25

The set consists of 321 images taken under 11 varying

light sources of 30 different scenes containing both matte

and specular objects.

In Table I, the results of many algorithms, such as

Grey World, Max-RGB, SoG, and Grey-Edge are sum-

marized. The parameters of Grey-Edge are determined

according to their best performance.7 From the result

shown in Tables I and II, we can find that the proposed

algorithms CCAS and CCAS (optimized) outperform all

other existing algorithms. Interestingly, the median angle

and chromatic distance of CCAS (optimized) are 2.18

and 1.61 respectively, which reduces by 20.4 and 20.7%

compared with the Second-order Grey-Edge algorithm.

Table II tells us that CCAS with optimized initial value

has the best performance.

900 Uncalibrated Image Dataset

We next consider Cardei’s set of 900 uncalibrated

images taken by a variety of different digital cameras.

The experimental results are tabulated in Table III.

Table IV summarizes the Wilcoxon test among several

algorithms.

From Tables III and IV, the proposed algorithms

CCAS and CCAS(optimized) still outperform all other

algorithms. The median angle and chromatic distance

of CCAS(optimized) are only 2.07 and 1.51 respectively,

which reduces by 30.1 and 30.4% compared with

the Max_RGB, which is best one in existing algorithms

on this dataset. Furthermore, Table IV again proves that

the optimized initial value is effective and useful for

CCAS.

Large Real-World Image Dataset

Next, the color constancy algorithms were tested on a

large database provided by Ciurea and Funt.26 The data-

base contains 11,346 images extracted from 2 h of digi-

tal video, which include both indoor and outdoor scenes

under a wide variety of lighting conditions. Figure 4(A)

gives some example images. A matte grey sphere ball

was mounted onto the video camera, appearing at right-

bottom corner of each image. The averaged R/G/B

value on the bright part of the ball is used as the

ground truth of the illumination color in the scene. As

shown in Fig. 4(B), all images are cropped to remove

the effect of the grey sphere ball on the algorithm. The

size of the remaining image is 240 3 240. The parame-

ters of Grey-Edge are also decided according to their

best performance in.7 Tables V and VI show that the

performance of the proposed algorithm CCAS (opti-

TABLE VI. Comparison of CCAS to other algorithms via the Wilcoxon signed-rank test.

Max_RGB Grey-World SoG Grey-Edge
Second-order
Grey-Edge CCAS

CCAS
(optimized)

Max_RGB þ 2 2 2 2 2
Grey World 2 2 2 2 2 2
SoG þ þ 2 2 2 2
Grey-Edge þ þ þ 2 þ 2
Second-order Grey-Edge þ þ þ þ þ ¼
CCAS þ þ þ 2 2 2
CCAS (Optimized) þ þ þ þ ¼ þ

The labelings ‘þ’ ‘2’ and ‘¼’ have same meanings as those shown in Table II.

TABLE V. Comparison of CCAS to Max_RGB, Grey-World, Shades of Grey, and Grey-edge performance.

Method Parameters
Median
angle

Max
angle

RMS
angle

Median
dist (3102)

Max
dist (3102)

RMS
dist (3102)

Max_RGB – 5.17 38.90 8.70 3.71 31.51 6.40
Grey World – 6.84 47.63 9.49 5.10 41.65 7.54
SoG p ¼ 6 5.33 43.36 7.53 4.10 32.22 5.58
Grey-Edge e1,1,6 5.12 46.68 7.56 3.88 33.51 5.76
Second-order Grey-Edge e2,1,5 5.11 46.06 7.36 3.84 33.05 5.56
CCAS e ¼ 0.5, p ¼ 6, CTimes ¼ 5,

Tnum ¼ 6
5.18 43.40 7.52 3.94 32.59 5.57

CCAS (Optimized) 5.13 41.86 7.44 3.83 32.12 5.56

The tests are based on the more than 11,346 real-world images.
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mized) is better than Max-RGB, Grey World, SoG, and

Grey-Edge algorithms and is comparable to Second

order Grey-Edge method.

Iteration

One of the key parameters in the proposed methods is

the number of iterations CTimes. In this section, we ana-

lyze its impact on the performance of CCAS (optimized).

We set CTimes change from 1 to 10. The median angular

errors on different datasets are used to evaluate the per-

formance. The experimental results are shown in Fig. 5.

With the CTimes increasing, the median angular errors

become smaller. When CTimes [ 5, the change of me-

dian angular error trends to stability. Therefore CTimes ¼
5 would be suitable for most situations.

Achromatic Pixels in Image Datasets

The proposed algorithms require enough achromatic

pixels in the scene. Otherwise, they will reduce to the

SoG algorithm. Actually, achromatic pixels often exist in

mostly real environments, they are from paper, wall,

clothe, floor, and others. Table VII gives out the average

number of achromatic pixels detected by the proposed

method CCAS (optimized) for the images in different

sets. It shows that nearly 20% of image pixels are achro-

matic in these datasets.

CONCLUSION

In this article, we present a new color constancy method

based on identifying achromatic surfaces iteratively. This

method is similar to what have been proposed in GSI.8

However, the achromatic surfaces detection here works on

the image itself without previous knowledge of the imag-

ing device. The local Grey Edge is also introduced to gen-

erate the optimal initial value of iteration to improve the

performance of the proposed algorithm. The experiments

on several real image datasets show that the method works

slightly better than other typical unsupervised color con-

stancy solutions.
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