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ABSTRACT
The images we encounter throughout our lives make differ-
ent impressions on us: Some are remembered at first glance,
while others are forgotten. This phenomenon is caused by
the intrinsic memorability of images revealed by recent stud-
ies [5, 6]. In this paper, we address the issue of automat-
ically estimating the memorability of images by proposing
a novel multi-view adaptive regression (MAR) model. The
MAR model provides an effective mapping of visual features
to memorability scores by taking advantage of robust fea-
ture selection and multiple feature integration. It consists
of three major components: an adaptive loss function, an
adaptive regularization and a multi-view modeling strategy.
Moreover, we design an alternating direction method (ADM)
optimization algorithm to solve the proposed objective func-
tion. Experimental results on the MIT benchmark dataset
show the superiority of the proposed model compared with
existing image memorability prediction methods.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models—statistical ; I.2.10
[Artificial Intelligence]: Vision and Scene Understand-
ing—Modeling and recovery of physical attributes

General Terms
Algorithms, Experimentation

Keywords
Image Memorability, Adaptive Regression, Multi-view Learn-
ing, Prediction

1. INTRODUCTION
Every day, we continuously encounter new photographs

and images on social networks and in the media. While
we may glance at them only once, some pictures stick in
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Figure 1: Sample images whose memorability scores
are predicted by the proposed MAR method.

our minds whereas others fade away. Images are differen-
tially memorable — not all are equal in our memory. This
phenomenon demonstrates that memorability is an inherent
property of individual images. It characterizes the probabil-
ity that an observer will correctly recall a photograph after a
period of time [6]. Predicting image memorability recently
attracts lots of researchers’ attention due to its promising
applications in selecting magazine covers, designing logos,
decorating websites and much more.

The prediction of an image’s memorability is essentially
a regression problem which maps an image (or its features)
to a memorability score, where higher score indicates high
memorability. Most existing prediction models are mainly
based on support vector machine (SVM) technique. For ex-
ample, Isola et al. [6, 5] propose to train support vector
regression (SVR) on visual features and attributes to score
the memorability of images. Khosla et al. [7] design a novel
probabilistic process of memory forgetting, and exploit rank-
ing SVM (RSVM) to sort the memorability of all images. To
make use of attention mechanism, Celikkale et al. [2] intro-
duce an attention-driven spatial pooling strategy for feature
encoding and adopt SVR for prediction.

Although these existing SVM-based methods produce en-
couraging performance, two issues may prevent them from
further improvement: (1) They combine multiple features
through simple stacking or multiplication [6, 2], and feed
them into regressors. Such combination schemes may not
capture well the physical meaning of each feature and may
cause information redundancy in learning. (2) They have
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limitations in automatic feature selection, which is crucial
for image memorability prediction since it remains an open
problem that what makes an image memorable.

To address these problems, we propose a novel multi-view
adaptive regression (MAR) model, which consists of three
components: (1) an adaptive loss function which smoothly
interpolates between the traditional `1 and `2-norm, and is
robust to noises and outliers, (2) an adaptive penalty term
which automatically selects desirable features according to
training data, and (3) a multi-view framework which regards
each visual feature as an individual view for memorability
prediction. The proposed model not only pursues a mean-
ingful combination of multiple features, but also takes ad-
vantage of complementary characteristics of these features
from multiple views, e.g., low-level gradient information and
high-level object semantic. Compared with existing mem-
orability prediction models, the proposed method is more
effective and robust thanks to its adaptive feature selection
and multi-view modeling.

2. MULTI-VIEW ADAPTIVE REGRESSION
For clarity, before presenting the proposed multi-view adap-

tive regression, we first give out the single-view case, namely
the adaptive regression model.

2.1 Adaptive Regression (AR)
Given a feature vector x ∈ Rp representing an image, the

prediction of its memorability score y ∈ R is a standard re-
gression problem formulated as f(x) → y, where f is the
fitting model learned on the training samples. In this pa-
per, we consider a linear regression model f formulated as
follows:

y = wTx + ε, (1)

where w ∈ Rp is the learned model’s parameter, and ε is
the residual error between the linear prediction and the true
response. Given n training images with their feature repre-
sentation X = (x1, . . . ,xn)T ∈ Rn×p as well as correspond-
ing memorability scores y = (y1, . . . , yn)T ∈ Rn, a common
way to estimate the parameter vector w is to penalize the
empirical risk minimization, which is defined as

ŵ = arg min
w

L(y,Xw) + λR(w), (2)

where L(·) is a loss function used to measure the error be-
tween the model’s prediction and ground truth, R(·) is a
regularization term to avoid overfitting through constrain-
ing the complexity of the model, and λ > 0 is a tradeoff
parameter between the two items.

There exists a large body of loss functions and regulariza-
tion alternatives in the community of statistics and machine
learning. For the sake of stable feature selection and robust
prediction, we propose a novel adaptive regression model
which is composed of an adaptive loss and an adaptive reg-
ularization and formulated as:

ŵ = arg min
w

‖y −Xw‖σ + λ‖XDiag(w)‖∗. (3)

Here, ‖·‖σ is the adaptive loss function with parameter σ
computed as

‖a‖σ =

n∑
i=1

(1 + σ)a2i
|ai|+ σ

, where a = [a1, ...an]T , (4)
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Figure 2: Illustration of the adaptive loss and regu-
larization, both of which are between `1 and `2-norm.

‖·‖∗ is the nuclear norm (the sum of singular values of a
matrix), and Diag(w) converts the vector w into a diagonal
matrix (the i-th diagonal entry is wi). The adaptive regular-
ization involves the sample matrix X and adaptively selects
desirable feature subset for regression analysis according to
the correlation information among samples [11].

The proposed regression model is adaptive because: (1)
The loss function ‖·‖σ takes advantage of both `1-norm loss
and squared `2-norm loss by smoothly interpolating between
them as shown in Fig. 2(a). Thus it is robust to the data
outliers (under Laplacian distribution) and efficient in learn-
ing the normal data (under Gaussian distribution) [12]. (2)
The adaptive regularization, a.k.a. trace lasso [4], balances
the `1 and `2-norm according to input samples (see Fig.
2(b)), and simultaneously groups correlated data together
and performs automatic feature selection.

2.2 Multi-view Adaptive Regression (MAR)
Exploiting information from multiple sources can effec-

tively improve the prediction performance as a result of their
complementary characteristics. In this subsection, we ex-
tend the proposed adaptive regression model to multi-view
setting that takes multiple visual features into account.

Contrary to the existing methods which simply concate-
nate multiple feature vectors into a single one [6, 2], our
method jointly combines all residuals, which are derived
from each individual features independently, to minimize the
loss in learning via a weight β. Thus, the objective function
Eq.(3) is extended to multi-view setting:

min
wv,βv

M∑
v=1

‖y − βvXvwv‖σ + λ‖XvDiag(wv)‖∗,

s.t.
M∑
v=1

βv=1, βv ≥ 0.

(5)

Here, v ∈ {1, ...,M} indexes M types of features including
color, texture, gradient, shape and semantics to be illus-
trated in Sec. 3. Xv, wv and βv represent the feature ma-
trix, model parameter and view weight corresponding to the
v-th visual feature respectively. This multi-view extension
not only preserves physical meaning of each feature, and also
leverages their complementary characteristics for prediction.

2.3 Optimization
Considering the balance between efficiency and accuracy

in practical applications, we adopt the well established alter-
nating direction method (ADM) [10] to optimize the convex
problem Eq.(5). (Eq.(3) can be viewed as a special case of
Eq.(5)). We first introduce an auxiliary variable Hv to make
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Figure 3: A flowchart to illustrate the proposed multi-view model for image memorability prediction.

the objective function Eq.(5) separable,

min
wv,βv

M∑
v=1

‖y − βvXvwv‖σ + λ‖Hv‖∗,

s.t. Hv = XvDiag(wv),
M∑
v=1

βv=1, βv ≥ 0.

(6)

Now the problem Eq.(6) can be solved with the ADM, which
minimizes the following augmented Lagrangian function:

L(Hv,wv, βv) =
M∑
v=1

‖y − βvXvwv‖σ + λ‖Hv‖∗

+tr((Φv)T (Hv −XvDiag(wv))) + φv(
M∑
v=1

βv − 1)

+µ
2
{‖Hv −XvDiag(wv)‖2F +(

M∑
v=1

βv − 1)2},

(7)

where Φv ∈ Rn×p and φv ∈ R are the Lagrange multipliers,
and µ > 0 is the penalty parameter for violation of the
linear constraints. To solve Eq.(7), we search for the optimal
Hv, wv and βv iteratively as summarized in Algorithm 1.
Specifically, Step 1 in Alg.1 can be optimized by the singular
value thresholding operator [1], while Step 2 is solved via the
iteratively re-weighted algorithm proposed in [12].

3. MAR-BASED IMAGE MEMORABILITY
PREDICTION

Algorithm 1 Solving MAR via ADM.

Input: M types of feature matrices {Xv}Mv=1 ∈ Rn×p, the mem-
orability score y ∈ Rn, the parameters σ and λ .

Initialize: Hv ,wv , βv , φv ,Φv , ρ, and µmax.
While not converged do
1. Fix the others and update {Hv}Mv=1 by Hv=

arg min
Hv

λ
µ
‖Hv‖∗ + 1

2

∥∥∥Hv − (XvDiag(wv)− 1
µ

Φv)
∥∥∥2
F

.

2. Fix the others and update {wv}Mv=1 by wv= arg min
wv

‖y − βvXvwv‖σ + µ
2

∥∥∥XvDiag(wv)− ( 1
2
Hv + 1

µ
Φv)

∥∥∥2
F

.

3. Fix the others and update {βv}Mv=1 by βv =

((Xvwv)TDvXvwv + u/2)−1[(Xvwv)TDvy + (µ− φv)/2]
where Dv = diag(dv1 , ..., d

v
n) and

dvi = (1 + σ)

∥∥∥yi−βv(w(v))
T
x
(v)
i

∥∥∥
2
+2σ

2(
∥∥∥yi−βv(w(v))

T
x
(v)
i

∥∥∥
2
+σ)

2 .

4. Update the multipliers φv = φv + µv(
M∑
v=1

βv − 1),

Φv = Φv + µv(Hv −XvDiag(wv)).
5. Update the parameter µv = min(ρµv , µmax).
6. Check the convergence conditions Hv −XvDiag(wv)→

0 and
M∑
v=1

βv − 1→ 0 for v = 1, ...,M .

End While
Output: The coefficients {wv}Mv=1 and {βv}Mv=1.

This section elaborates on the prediction of image mem-
orability using the proposed multi-view adaptive regression
model. Our prediction method consists of three major stages
as illustrated in Fig. 3. (1) We first extract features from
each input image considering color, texture, gradient, etc.
(2) For each type of feature, we build a dictionary using k-
means and apply local-constraint linear coding (LLC) [16] to
soft-encode each feature into some dictionary entries. Sim-
ilar to [5], we perform max pooling with a spatial pyramid
matching (SPM) [16] to obtain the final feature vector in
each view of the input image. (3) Finally, we exploit the
proposed MAR model to learn a regressor on the training
data, and then conduct prediction on the testing data.

In more details, we extract five common features in terms
of low, middle and high-level visual information to repre-
sent images. Considering the power of low-level features in
human vision system, we extract the color, texture and gra-
dient for our task. For color feature, we convert the image
to color names [15], then learn a dictionary of size 128 and
apply LLC at 2-level SPM to obtain the color descriptor.
To encode visual texture perception information, we use the
popular local binary pattern (LBP) [13] and perform a 2-
level SPM of non-uniform LBP descriptors. For gradient
information, we densely sample HOG [3] with a cell size of
2× 2 and build a dictionary of size 256. The descriptors are
max-pooled at 2-level SPM using LLC. We further exploit
the mid-level shape feature to represent images. The shape
is denoted as a histogram of local self-similarity geometric
patterns (SSIM [14]) with the size of 256 pooled at 2-level
SPM. Moreover, high-level semantic meaning has been ver-
ified to be strongly correlated to image memorability [6].
Similar to [7], we use the automatic object bank [9] feature
to model the presence of various objects in the images.

4. EXPERIMENTS AND RESULTS

4.1 Experimental Setup
We use the MIT image memorability dataset [6] to eval-

uate the proposed prediction model. This dataset contains
2222 natural images associated with human-annotated mem-
orability scores. For the quantitative analysis, we use Spear-
man’s rank correlation ρ and the precision-recall curve intro-
duced in [6] to measure the performance of models. Same
as [6], we evaluate the performance over 25 random splits
of the dataset with an equal number of images for training
and testing (1111). These train and test splits have been
scored by different halves of the participants, showing a hu-
man consistency of ρ = 0.75, which can be viewed as an
upper bound in the performance of prediction methods.

The tradeoff parameter λ of the MAR model is tuned on
a validation set using 5-fold cross validation and set to be
1 to balance the adaptive regularization and loss function.
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Color LBP HOG SSIM Semantic All (MAR) SVR-MGF[6] RSVM[7] SVR-SO[2] SVR-WOA[8] Human

Top 20 76% 79% 83% 82% 82% 85% 83% 85% 84% 85% 86%
Top 100 73% 76% 80% 79% 80% 83% 80% 81% 81% 81% 84%

Bottom 100 60% 57% 56% 59% 58% 56% 56% 55% 56% 55% 47%
Bottom 20 57% 55% 54% 53% 53% 51% 54% 52% 55% 52% 40%

ρ 0.26 0.37 0.45 0.44 0.46 0.52 0.46 0.50 0.47 0.49 0.75

Table 1: Comparison of predictions. Left: results produced by our method considering each individual
features and their combination. Right: baselines and the human prediction.
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Figure 4: Comparison of precision-recall curves av-
eraged across 25 random splits.

Upon our preliminary experiments, we empirically set the
adaptive parameter as σ=0.1 in all experiments.

4.2 Results
We first compare the prediction performance of our MAR

model with 4 other existing image memorability prediction
methods on the MIT dataset. The baseline methods are
SVR-MGF [6] which stacks multiple global features and uses
SVR as the prediction model, RSVM [7] which fuses the re-
sults of ranking SVM learned on six common features inde-
pendently, SVR-SO [2] which trains SVR over the combina-
tion of three groups of image features considering saliency
and objectness, and SVR-WOA [8] which trains SVR on
weighted object area features. Fig. 4 and Tab. 1 summarize
the experimental results. It is observed that our method
(MAR) outperforms SVR-MGF, SVR-SO and SVR-WOA
by 10.8%, 8.7% and 4.3% respectively (see Tab. 1). This
indicates the proposed multi-view learning model is more
robust than the stereotyped regression methods at lever-
aging multiple features for image memorability prediction.
Furthermore, our method achieves comparable performance
compared to RSVM, and the average measured memorabil-
ity of the 100 highest predicted images (“Top-100” shown in
Tab. 1) of our method is superior. This may be caused by
the fact that RSVM performs prediction by exploiting the
ranking scheme, rather than the regression strategy used in
our model. As shown in Fig. 4, the precision-recall curve of
our method is also superior to others. Fig. 1 shows some
sample images with their memorability scores predicted by
our MAR method.

5. CONCLUSIONS
Predicting image memorability is a recent research topic

which is crucial for the task of creating an image that a
viewer will remember. In this paper, we propose a novel
adaptive regression model to estimate image memorability.

It is made up of an adaptive loss and an adaptive regular-
izer, and capable of selecting desirable features and robust
to outliers. Moreover, we extend the regression model to
multi-view case which effectively leverage multiple features
for prediction. Extensive experiments show the superiority
of our method compared with the state of the arts.
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