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Abstract

The Fisher linear discriminant analysis (FDA) is the

most well-known supervised dimensionality reduction

model. However, when the number of classes is much

larger than the reduced dimensionality, FDA suffers

from the class separation problem in that it will preserve

the distances of the already well-separated classes and

cause a large overlap of neighboring classes. To cope

with this problem, we propose a new model called con-

fused distance maximization (CDM). The objective of

CDM is to maximize the distance of the most confus-

able classes, according to the confusion matrix esti-

mated from the training data with a pre-learned classi-

fier. Compared with FDA that maximizes the sum of the

distances of all class pairs, CDM is more relevant to the

classification accuracy by weighting the pairwise dis-

tance according to the confusion matrix. Furthermore,

CDM is computationally inexpensive which makes it

indeed efficient and effective for large category prob-

lems. Experiments on two large-scale 3,755-class Chi-

nese handwriting databases (offline and online) demon-

strate that CDM can achieve the best performance com-

pared with FDA and other competitive weighting based

criteria.

1 Introduction

When solving a pattern classification problem, it is

common to apply a feature extraction method as a pre-

processing technique, not only to reduce the computa-

tion complexity, but also to obtain better generalization

performance, by reducing irrelevant and redundant in-

formation in the data, and overcoming the estimation

problems in statistical classifier learning.

The most well-known technique for linear dimen-

sionality reduction is the Fisher linear discriminant

analysis (FDA) [5], which learns a linear transforma-

tion matrix W ∈ R
d×d′

to transform the feature from

R
d into a low-dimensional space R

d′

. The objective of

FDA is to maximize the between-class distance as well

as minimize the within-class distance. When the class-

conditional distribution is Gaussian with equal covari-

ance matrix for all the classes (homoscedastic), and the

reduced dimensionality is K − 1 (K is the number of

classes), FDA is the optimal model for linear dimen-

sionality reduction.

However, for the large category problems where

K >> d > d′, FDA is only a suboptimal model which

suffers from the class separation problem. The objec-

tive of FDA can be formulated as maximizing the sum

of all the pairwise distances between different classes,

which will overemphasize the large distance of the al-

ready well-separated classes, and confuse the small dis-

tance classes that are close in the original feature space.

Many models have been proposed to solve the class sep-

aration problem of FDA. Loog et al. [10] proposed the

approximate pairwise accuracy criterion (aPAC), which

uses a weighting function to emphasize the close class

pairs in the between-class scatter matrix. Lotlikar and

Kothari [11] developed the fractional-step FDA, which

essentially is also a weighting approach but selects a

subspace through fractional steps. By proving that FDA

is equivalent to maximizing the arithmetic mean of all

pairwise distances, Tao et al. [12] proposed to use the

geometric mean, while Bian and Tao [2] proposed to

use the harmonic mean, to replace the arithmetic mean

used in FDA. Recently, the idea of maximizing the min-

imal pairwise distance was proposed by many authors to

solve the class separation problem [15] [13] [14] [3]. Si-

multaneously maximizing all the pairwise distances was

also proposed as a multi-objective optimization prob-

lem [1] to handle the class separation problem.

In this paper, we propose a new model of confused

distance maximization (CDM) to solve the class sepa-

ration problem. The objective of CDM is to maximize

the distance of the most confusable classes, by weight-

ing the pairwise distance according to the confusion ma-
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trix estimated from the training data with a pre-learned

classifier. Compared with the weighting criteria used

in [10] and [11], CDM is more relevant to the classifica-

tion accuracy since the weights are defined as the confu-

sion probability learned from the training data. Further-

more, while the above mentioned models usually need

a complex iterative optimization to solve the model, the

computation of CDM is still an eigen-decomposition

problem. This makes CDM indeed efficient and effec-

tive for large category problems. Experiments on two

large-scale 3,755-class Chinese handwriting databases

demonstrated that CDM can get the best performance

compared with FDA and other competitive extensions.

The rest of the paper is organized as following: Sec-

tion 2 gives an introduction of FDA and the class sepa-

ration problem; Section 3 presents the proposed model

of confused distance maximization (CDM); Section 4

reports the experimental results; and Section 5 draws

the concluding remarks.

2 FDA and the Class Separation Problem

Let µk ∈ R
d be the mean vector, and Σk ∈ R

d×d be

the covariance matrix for class k, where k = 1 · · ·K.

The within-class and between-class scatter matrices are

defined as:

Sw =
K∑

k=1

pkΣk , (1)

Sb =
1

2

K∑

i,j=1

pipj(µi − µj)(µi − µj)
> , (2)

where pk = Nk/N , N =
∑K

k=1
Nk (Nk is the num-

ber of samples in class k). The objective of FDA is to

learn a transformation matrix W ∈ R
d×d′

to minimize

the within-class variance and as well as maximize the

between-class variance. There are many formulations

of FDA. Two typical criteria are given in the follow-

ing [5]:

max tr
{(

W>SwW
)−1 (

W>SbW
)}

, (3)

max ln
∣∣W>SbW

∣∣− ln
∣∣W>SwW

∣∣ , (4)

which are equivalent to a constrained problem:

max
W∈Rd×d′

tr
(
W>SbW

)
s.t. W>SwW = I , (5)

where I is the identity matrix. Usually, this model is

solved by a two-step approach. The first step is the

whitening:

Wwhiten = PΛ−1/2 ∈ R
d×d , (6)

Figure 1. An illustration of the class sepa-

ration problem.

where P is the eigenvector matrix and Λ is the diagonal

eigenvalue matrix1 of the within-class scatter matrix:

Sw = PΛP> . (7)

The whitening transformation satisfy

W>
whitenSwWwhiten = I . (8)

Let WFDA = WwhitenW , we can rewrite FDA of (5)

as:

max
W∈Rd×d′

tr
(
W>W>

whitenSbWwhitenW
)
,

s.t. W>W = I .
(9)

Hence the second step of FDA is to solve (9). This is

exactly the principal component analysis (PCA) among

W>
whiten

µ1, · · · ,W>
whiten

µK . Let 4ij be the distance

of class i and j in the transformed subspace

4ij =
∥∥W>W>

whiten(µi − µj)
∥∥2

2
. (10)

The model of (9) is equivalent to:

max
W∈Rd×d′

K∑

i,j=1

pipj4ij s.t. W>W = I . (11)

The first step of FDA is to learn a suitable distance

metric: in the whitened space, the Euclidean distance

become the optimal measurement. The dimensionality

reduction is actually implemented in the second step of

model (11). Because (11) is to maximize the sum of

all the pairwise distances, it will cause the class separa-

tion problem [10]. To illustrate this, consider that one

class is located remotely from the other classes and can

be considered as an outlier (Figure 1). In this case, by

optimizing (11), the projection axis of FDA is the one

that separates the outlier from the remaining classes as

much as possible. The pairs of large-distance classes

completely dominate the solution of (11). As a conse-

quence, there is a large overlap among the remaining

classes, leading to an overall low and suboptimal clas-

sification performance.

1The diagonal zero values in Λ are set to be a small constant.
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To solve the class separation problem, Tao et

al. [12] proposed to maximize the geometric mean

{max
∑

i 6=j pipj log4ij}. Bian and Tao [2] fur-

ther proposed to maximize the harmonic mean

{max−∑
i 6=j pipj4−1

ij }. Recently, many authors

have proposed to maximize the minimal distance

{maxmini 6=j4ij} [15] [13] [14] [3]. Abou-Moustafa

et al. [1] further proposed to maximize all the pair-

wise distances simultaneously. Although these methods

have reported improved performance, they are all based

on some complex iterative optimization procedures to

solve the models, which makes them not scalable for

large category (e.g. thousands of classes) problems.

3 Confused Distance Maximization

The proposed confused distance maximization

(CDM) model is aimed to solve the class separation

problem of FDA, and is very efficient and effective for

large category problems.

3.1 CDM

Instead of maximizing the sum of all the pairwise

distances, we focus on maximizing the distance of the

most confusable classes. To do so, (11) is generalized

by introducing a weighting function:

max
W∈Rd×d′

K∑

i,j=1

fijpipj4ij s.t. W>W = I , (12)

where fij ≥ 0 is a weighting function that depends on

the probability of confusion between class i and class j.

The model of (12) is equivalent to:

max
W∈Rd×d′

tr
(
W>ŜbW

)
s.t. W>W = I , (13)

where

Ŝb =
K∑

i,j=1

fijpipj(µ̂i − µ̂j)(µ̂i − µ̂j)
> , (14)

and µ̂i = W>
whiten

µi is the whitened class-mean. The

model of (13) can be solved by taking the columns of

the d × d′ matrix W to be the d′ eigenvectors corre-

sponding to the d′ largest eigenvalues of Ŝb. The final

transformation matrix of CDM is then defined as:

WCDM = WwhitenW ∈ R
d×d′

. (15)

Clearly, choosing fij to be the constant function will

reduce CDM to the ordinary FDA. The complete pro-

cedure of CDM is shown in Algorithm 1, which is very

efficient for large category problems.

Algorithm 1 Confused Distance Maximization

Input:

mean and covariance: µk,Σk, k = 1 · · ·K
prior probabilities: pk, k = 1 · · ·K
confusion matrix: F = {fij} ∈ R

K×K

1: Sw =
∑K

k=1
pkΣk

2: Wwhiten = PΛ−1/2 where Sw = PΛP>

3: µ̂i = W>
whiten

µi , i = 1, · · · ,K
4: Ŝb =

∑K
i,j=1

fijpipj(µ̂i − µ̂j)(µ̂i − µ̂j)
>

5: W be the d′ eigenvectors of Ŝb corresponding to the

d′ largest eigenvalues

Output: WCDM = WwhitenW ∈ R
d×d′

3.2 Confusion Matrix

The key problem of CDM is how to define the confu-

sion matrix F = {fij} ∈ R
K×K . We estimate the con-

fusion matrix from the training data with a pre-learned

classifier.

fij =





Ni j

Ni
, i 6= j

0, i = j

(16)

where Ni is the number of samples in class i, and Ni j

is the number of samples that come from class i but

classified into class j by a specific classifier. In real ap-

plications, it is a small probability event to get a zero

confusion matrix (fij = 0, ∀i, j), because the classifi-

cation accuracy can seldom be 100%.2

The confusion matrix is classifier-specific. Different

classifiers will have their own dimensionality reduction

matrices, which are estimated based on their own con-

fusion information. This makes CDM more relevant to

the classification accuracy. The classes are weighted ac-

cording to their confusion probabilities: if one class is

very likely to be confused with another class, the dis-

tance between them are much more important in the di-

mensionality reduction model (12).

To get better generalization performance, the confu-

sion matrix should be estimated from a dataset which

is different from the dataset used to train the basic clas-

sifier. In our experiments, we randomly partition the

training set into two subsets3: using 3/4 for training

the basic classifier, and 1/4 for estimating the confu-

sion matrix. After that the CDM model is trained on

the whole training dataset, and the classifier is also re-

trained on the whole training dataset in the reduced

space.

2In practice, we can also define a modified confusion matrix as

f ′

ij = (1 − δ)fij + δ, where 0 ≤ δ ≤ 1 is a tradeoff parameter to

balance between CDM and FDA.
3When the number of training samples is small, the cross-

validation may be better to estimate a more precise confusion matrix.
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! ! ! !

! ! ! ! ! (a)!aPAC! ! ! ! ! ! ! ! ! ! ! (b)!POWER! ! ! ! ! ! ! ! ! (c)!CDM!(Euclidean)! ! ! ! (d)!CDM!(MQDF)!

Figure 2. The 100 × 100 weighting matrix of different methods for the first 100 classes of the

3, 755-class problem.

The confusion matrix can be defined either in the

original feature space or the reduced low-dimensional

space. Since we want to reduce the dimensionality from

R
d to R

d′

, we can estimate a confusion matrix in the Rd

space, and then use the confusion matrix to reduce the

dimensionality based on Algorithm 1. We denote this

method CDM1. However, the confusion matrix in the

original space may be different from that in the low-

dimensional space, and will not reflect the real confu-

sion information. To solve this problem, we can first

use FDA to reduce the dimensionality to R
d′

, and then

estimate the confusion matrix in this low-dimensional

space. After that, the confusion matrix is incorporated

into the CDM algorithm to learn the dimensionality

reduction matrix again. We call this model CDM2.

Because of the more accurate confusion information,

CDM2 is hoped to give better performance than CDM1.

3.3 Comparing Other Weighting Methods

The idea of weighting the pairwise distance was also

proposed by other authors [10] [11]. The approximate

pairwise accuracy criterion (aPAC) proposed by [10]

used a weighting function as following

fij =
1

2d2ij
erf

(
dij

2
√
2

)
, (17)

where erf(·) is the error function4 which results in

[−1, 1], and dij is the distance of the whitened-mean

between class i and class j:

dij =
∥∥W>

whiten(µi − µj)
∥∥
2
. (18)

Lotlikar and Kothari [11] proposed a weighting func-

tion as:

fij = d−m
ij , (19)

where fij should drop fast than dij increasing, then m is

suggested to be m ≥ 3. Since Eq. (19) is a power func-

tion, we denote this method POWER. The idea of re-

ducing the dimensionality by a fractional-step proposed

4http://wikipedia.org/wiki/Error_function

by [11], can be actually used for all the weighing func-

tions (CDM, aPAC and POWER), therefore is not the

focus of this paper.

The weighting matrices of aPAC and POWER are

based on the pairwise distance dij , while the confu-

sion matrix used in CDM is based on the classifica-

tion results. This makes CDM more relevant to the

classification accuracy. We show the weighting matri-

ces of different methods for a 3,755-class online hand-

writing problem in Figure 2. The weighting matrix

is symmetrical for aPAC and POWER, but unsymmet-

rical for CDM. Furthermore, the weighting matrix of

CDM is much more sparse than aPAC and POWER, be-

cause each class is only confused with a small num-

ber of classes. We can find that the weighting matrix

of POWER (m = 8) in Figure 2(b) is much like the

confusion matrix of CDM, but there are many addi-

tional small noises (small non-zero elements). The lo-

cality property makes CDM more relevant to the clas-

sification accuracy by focusing on the most confusable

classes. Moreover, the confusion matrix used in CDM

is classifier-specific. We show the confusion matrices

for two different classifiers (Section 4.2) in Figure 2(c)

and Figure 2(d). We can find that the confusion matrices

are different for different classifiers. This indicates that

CDM is more relevant to a particular classifier, since the

weighting matrices of aPAC and POWER are indepen-

dent with the classifier.

4 Experiments

4.1 Database

We evaluate the performance of different models

on two 3, 755-class Chinese handwriting databases [8]:

the offline handwriting database CASIA-HWDB1.1 and

the online handwriting database CASIA-OLHWDB1.1.

Both of them contain handwritten Chinese characters

from 300 writers (240 for training and 60 for testing).

Each writer has about 3, 755 characters (one for each

class). For representing a offline character sample, we

extract features from gray-scale character images (back-
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Table 2. The classification accuracy (%) of different models on the offline handwriting database.

d = 512 Euclidean MQDF

d′ FDA aPAC POWER CDM1 CDM2 FDA aPAC POWER CDM1 CDM2

60 78.80 78.84 79.23 79.19 79.69 86.35 86.33 86.55 86.80 87.04

80 80.56 80.58 80.86 80.83 81.00 88.14 88.13 88.29 88.44 88.49

100 81.43 81.41 81.55 81.54 81.67 88.87 88.87 89.00 89.13 89.22

120 81.88 81.89 82.00 81.89 82.02 89.26 89.26 89.34 89.40 89.41

140 82.09 82.05 82.13 82.03 82.10 89.47 89.46 89.47 89.55 89.58

160 82.13 82.13 82.16 82.12 82.10 89.53 89.49 89.54 89.49 89.54

180 82.19 82.16 82.13 82.13 82.13 89.51 89.50 89.53 89.47 89.52

200 82.15 82.13 82.10 82.07 82.06 89.39 89.32 89.37 89.40 89.38

Average 81.40 81.40 81.52 81.48 81.60 88.82 88.80 88.89 88.96 89.02

#class #dim #train #test

offline 3, 755 512 897, 758 223, 991
online 3, 755 512 898, 573 224, 559

Table 1. The database information.

ground eliminated) using the normalization-cooperated

gradient feature (NCGF) method [7]. For representing

a online character sample, we use a benchmark feature

extraction method [9]: 8-direction histogram feature ex-

traction combined with pseudo 2D bi-moment normal-

ization (P2DBMN). We also add the direction values of

off-strokes (pen lifts) to real strokes with a weight of

0.5 [4]. The feature dimensionality is 512 for both the

offline and the online handwriting samples. We sum-

marize the complete information of the two databases

in Table 1 .

4.2 Experimental Setting

Two classifiers are used to evaluate the classifica-

tion performance in the reduced low-dimensional space.

For large-category problems, the nearest neighbor clas-

sifier is too expensive, we only consider the nearest

class-mean classifier: x ∈ argminKk=1 d(x, µk), where

d(x, µk) is the distance between x and µk, which can

be either the Euclidean distance:

de(x, µk) = ‖x− µk‖22 , (20)

or the Mahalanobis distance5:

dm(x, µk) = (x−µk)
>Σ−1

k (x−µk)+log |Σk| . (21)

To efficiently compute Σ−1

k , we use the modified

quadratic discriminant function (MQDF) [6] method,

which replace the minor eigenvalues of Σk with a con-

stant to stabilize the generalization performance. The

5This is actually the quadratic discriminant function (QDF), de-

rived from the Bayes decision theory, under the assumption of Gaus-

sian class-conditional distribution.

minor eigenvalues are set to be common for all the

classes and selected with cross-validation on the train-

ing dataset. The number of principal components used

in MQDF is set to be 50 for all the methods.

The FDA (Section 2), CDM1, CDM2 (Section 3.2)

and aPAC, POWER (Section 3.3) are compared accord-

ing to the classification accuracy in the reduced low-

dimensional space (d = 512 → d′ = 60, 80, · · · , 200).

For the POWER method, we change m = 3, 4, · · · , 12
for Eq. (19) and report the best performance on the test

dataset.

4.3 Experimental Results

The experimental results are shown in Table 2 (of-

fline) and Table 3 (online). We can see that the clas-

sification accuracies of aPAC and FDA are nearly the

same. For the POWER method, the best results are

achieved when m = 9 for the offline database and

m = 8 for the online database. From the results we

can conclude that: (1) The CDM can get consistently

better performance than the other methods, especially

when the reduced dimensionality is small. This indi-

cates that the confusion matrix (CDM) is more suitable

than the distance based weighting (aPAC, POWER), to

measure the importance of the pairwise distance in di-

mensionality reduction. (2) CDM2 can achieve higher

classification accuracy than CDM1, which implies that

the confusion matrix estimated in the low-dimensional

space (CDM2) is more accurate than that estimated in

the original space (CDM1), because the final classifier

is directly evaluated in the reduced space. (3) Com-

pared with the baseline model FDA, the CDM algo-

rithms can improve the classification accuracy consis-

tently, for both Euclidean distance based classifier and

MQDF, on either the offline or the online handwriting

database. The computation cost of CDM is nearly the

same with FDA, except the process of confusion matrix

estimation. This makes CDM an efficient and effective

candidate for large category dimensionality reduction.

217



Table 3. The classification accuracy (%) of different models on the online handwriting database.

d = 512 Euclidean MQDF

d′ FDA aPAC POWER CDM1 CDM2 FDA aPAC POWER CDM1 CDM2

60 86.12 86.20 86.46 86.58 86.85 91.30 91.32 91.53 91.72 91.77

80 87.32 87.33 87.65 87.61 87.79 92.40 92.39 92.58 92.66 92.66

100 87.85 87.87 88.04 88.09 88.20 92.85 92.84 93.05 93.09 93.09

120 88.15 88.15 88.28 88.29 88.37 93.11 93.12 93.18 93.29 93.25

140 88.22 88.22 88.39 88.35 88.41 93.20 93.18 93.29 93.33 93.37

160 88.24 88.24 88.38 88.37 88.44 93.22 93.18 93.23 93.29 93.32

180 88.20 88.20 88.30 88.30 88.34 93.19 93.17 93.19 93.21 93.21

200 88.15 88.16 88.25 88.23 88.30 93.09 93.06 93.13 93.15 93.15

Average 87.78 87.80 87.97 87.98 88.09 92.80 92.78 92.90 92.97 92.98

5 Conclusion

In this paper, the confused distance maximization

(CDM) is proposed to solve the class separation prob-

lem for large category dimensionality reduction. The

objective of CDM is to maximize the distance of the

most confusable classes, by weighting the pairwise dis-

tance according to a confusion matrix estimated from

the training data with a pre-learned classifier. Compared

with other weighting based methods, CDM is more rel-

evant to the classification accuracy. Moreover, the com-

putation of CDM is still an eigen-decomposition prob-

lem, which makes CDM efficient for large scale appli-

cations. Experiments on two 3,755-class Chinese hand-

writing databases demonstrated that CDM can achieve

the best performance compared with FDA and other

weighting based extensions. Our future work involves

the integration of the fractional-step [11] and CDM for

further boosting the performance. Because the confu-

sion matrix is highly dependent on the particular classi-

fier, the joint learning of the confusion matrix, classifier

and the dimensionality reduction matrix is also an inter-

esting topic.
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