
S. Li et al. (Eds.): CCPR 2014, Part I, CCIS 483, pp. 1–10, 2014. 
© Springer-Verlag Berlin Heidelberg 2014 

A Nonlinear Classifier  
Based on Factorization Machines Model 

Xiaolong Liu, Yanming Zhang, and Chenglin Liu 

National Laboratory of Pattern Recognition (NLPR) 
Institute of Automatic, Chinese Academy of Science 

No. 95, Zhongguancun East Road, Beijing, 100190, China 
{xiaolong.liu,ymzhang,liucl}@nlpr.ia.ac.cn 

Abstract. Polynomial Classifier (PC) is a powerful nonlinear classification me-
thod that has been widely used in many pattern recognition problems. Despite 
its high classification accuracy, its computational cost for both training and test-
ing is polynomial with the dimensionality of input data, which makes it unsuit-
able for large-scale problems. In this work, based on the idea of factorization 
machines (FMs), we propose an efficient classification method which approx-
imates PC by performing a low-rank approximation to the coefficient matrix of 
PC. Our method can largely preserve the accuracy of PC, while has only linear 
computational complexity with the data dimensionality. We conduct extensive 
experiments to show the effectiveness of our method. 

Keywords: Polynomial Classifier, Factorization Machines model, Low-rank 
Approximation. 

1 Introduction 

Classification is one of the most fundamental problems in machine learning, and plays 
a central role in many applications, such as characters recognition [1], visual object 
classification [2], and text classification [3]. Actually, classifier design has always 
been a focus of the machine learning community, and obtained great development in 
the past decades. 

According to the form of the classification function, classification methods can be 
roughly divided into two categories: linear methods and nonlinear methods. Linear 
classification methods, such as perceptron [4], linear discriminant analysis (LDA) [5] 
and linear Support Vector Machines (SVM) [6], are efficient in both training and 
testing, and thus are ready for large-scale applications which becomes more and more 
common nowadays. However, due to the limited representation ability of linear func-
tions, these methods are often abused for their low accuracies. On the other hand, 
nonlinear methods, such as multilayer perceptron (MLP) [7], polynomial classifier 
(PC) [8], kernel SVM [9], are much more powerful and can always obtain better accu-
racies than linear methods. However, their computational cost for both training and 
testing is much higher, and cannot fulfill the requirements of many applications.  
For example, the cost of kernel SVM is at least 2( )O n  for training and ( )svO n  ( svn  

is the number of support vectors) for testing. 
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Due to its high performance, PC is a very popular nonlinear classification method 
in pattern recognition and machine learning. However, for a d-order PC, it has 

( )dO p  parameters to learn and takes ( )dO p  to perform one evaluation operation. 

Thus, it is slow in both training and testing. In this work, we focus on speeding up PC, 
while preserving its accuracy as much as possible. Essentially, based on the idea of 
Factorization Machines (FMs) [10], our approach approximates the coefficient matrix 
in polynomial function by a low-rank matrix. Using the factorization, our classifier 
has only ( )O kdp  parameters ( k  is the dimensionality of the factorization matrix) 

and the cost for predicting one sample is also ( )O kdp . 

FMs [10] were originally proposed in the context of Recommender Systems, and 
have obtained great success in many real-world applications. The current study of 
FMs is mainly on two aspects: improving the accuracy of FMs by adding specific 
context-aware information [11, 12], and fast learning algorithms [13]. As far as we 
know, there is no study about the application of FMs for classifier design. 

The paper is organized as follows: Section 2 gives a detailed introduction to the 
FMs model, including its definition, relationship with PC and the evaluation cost. 
Section 3 proposes the method for applying the FMs in the classification problem and 
our learning algorithm. Experiments results are shown in Section 4 to verify the effec-
tiveness of our method. 

2 Factorization Machines Model 

In this section, we introduce the FMs model in detail and discuss its computational 
cost for evaluation operation. 

2.1 FMs Model [10] 

The model equation for a factorization machine of degree 2d =  is defined as: 

 0
1 1 1

ˆ( ) ,
p p p

i i i j i j
i i j i

y x w w x v v x x
= = = +

= + +∑ ∑ ∑ , (1) 

where p  is the dimensionality of input x , and ,⋅ ⋅  denotes the inner product of 

two vectors. 0w ∈ , 

pw∈ , 

p kV ×∈  are model parameters which can be 

estimated from the training set. 0w  is the global bias, iw  is the weight of the fea-

ture ix , and ,ˆ : ,i j i jw v v=  is the weight of the second-order feature i jx x . 

2.2 Relationship with PC 

The decision function of a second-order PC can be written as: 

 0

1
ˆ( ) ' '

2
y x w w x x Wx= + +  (2) 
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where W  is a symmetric matrix of size p-by-p. Due to the second-order terms, the 

evaluation of PC needs 2( )O p  operations. On the other hand, it is easy to show the 

FMs model defined in Eq. (1) can be written as:  

 0

1
ˆ( ) ' '( ' ( '))

2
y x w w x x VV diag VV x= + + −  (3) 

where 1 2[ , ,..., ]' p k
pV v v v ×= ∈ , and ( ')diag VV  is a matrix of size p-by-p with its 

diagonal equals to the diagonal of 'VV  and all the off-diagonal elements equal to 0. 
Thus, from the perspective of matrix approximation, the core idea of FMs is to ap-

proximate a symmetric matrix W  by ' ( ')VV diag VV− . And as we will show imme-

diately, by utilizing this matrix factorization form, a FMs model can be evaluated in 

( )O kp , instead of 2( )O p  as in the second-order PC. When the dimensionality of 

V  is low ( k p ), FMs will significantly faster than PC. 

2.3 Evaluation Cost 

In this section, we show that the evaluation of a FMs model can be done in linear time 
( )O kp , which is the main advantage of our method. We reformulate the third term in 

Eq. (1) as: 
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 (4) 

This equation has only linear complexity for both k  and p , thus its computation 

complexity is ( )O kp . 

2.4 d-way Factorization Machines 

The 2-way FMs described above can be smoothly generalized to a d-way FMs: 
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where the weight matrices for the l -order product are factorized by the PARAFAC 

model [14] with the parameters below ( )
0,lp kl

lV k× +∈ ∈ . 

The straight forward computation complexity for Eq. (5) is ( )d
dO k p . But with 

the same arguments as in section 2.3, we can show it can be computed in linear 

dO(k dp) . 

3 Training FMs for Classification  

In this section, we present how to apply FMs models to classifier design. 

3.1 Objective Function 

We propose to optimize the following objective function to train a FMs classifier: 

 2

( , )

( , ) ˆarg min ( ( | ), )
x y S

OPTREG S l y x y θ
θ

λ λ θ
Θ ∈ ∈Θ

= Θ +
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑  (6) 

where ˆ ( | )y x Θ  is the FMs classifier, Θ  are the classifier parameters, and 

ˆ( ( | ), )l y x yΘ is the loss function that measures the prediction error of the FMs clas-

sifier on x . Thus, the first term of the objective function is to minimize the predic-
tion error of the classifier on the training set, and the second term is to regularize the 
classifier from over-fitting. 

For a binary classification problem ( { 1,1}y∈ − ), we adapt the negative log-

likelihood as the loss function, which is defined as: 

 ˆ ˆ( ( | ), ) ln ( ( | ) )l y x y y x yσΘ = − Θ ⋅  (7) 

where 
1

( )
1 x

x
e

σ −=
+

. For a multi-class problem, we solve it by the standard one-vs-

all strategy. 

3.2 Learning Algorithm 

In this work, we use stochastic gradient descent (SGD) algorithm for training a FMs 
classifier. 

3.3 Stochastic Gradient Descent (SGD) 

FMs can be optimized with SGD [10] which has low computation and storage com-
plexity. 

The algorithm iterates over all the samples in the training dataset and performs up-
dates on the model parameters. 
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 ˆ( ( | ), ) 2l y x y θθ θ η λ θ
θ
∂

← − Θ +
∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (8) 

where +η ∈  is the learning rate for gradient descent. The gradient of the negative 
log-likelihood loss function is: 

 ˆ ˆ( ( ( | ) ) 1) ( | )ˆ ˆ(y(x | ), y) ln ( ( | ) ) y x y y y xl y x y σ
θ

σ
θ θ

∂
Θ ⋅ − Θ

∂

∂ ∂
Θ = − Θ ⋅ =

∂ ∂
 (9) 

3.4 Complexity and Hyper-Parameters 

The SGD algorithm for FMs has a linear computational and constant storage com-
plexity. For one iteration over all training cases, the runtime of SGD is ( )O knp . 

For SGD algorithm, there are several critical hyper-parameters. 

─ Leaning rate η : The convergence of SGD depends largely on η . If η  is chosen 
too big, the SGD doesn’t converge, and too small, convergence is slow. 

─ Regularization parameter λ : The generalization capabilities of FMs depends 
largely on λ , and in this paper we use grid search to chose the proper λ  for 
SGD algorithm. As there are several regularization parameters, the grid has expo-
nential size and thus this search is very time-consuming. To make the search more 
feasible, the number of regularization parameters is reduced to only two: wλ  for 

0w  and w , and vλ  for factorization matrix V . 

─ Initialization σ : The model parameters of FMs are initialized with non-constant 
values which are sampled from a zero-mean normal distribution with standard dev-
iation σ . Typically small values are used for σ . 

4 Experiments 

To examine the classification performance of FMs model, we compared it with couple 
of commonly used classifiers on 7 datasets. 

4.1 Compared Classifiers 

We compare the FMs with PCA-PNC (polynomial network classifier with dimensio-
nality reduction by principal component analysis) [15], linear-SVM, and poly-SVM 
(SVM with polynomial kernel function). 

The PCA-PNC is a subspace-feature-based PNC that can efficiently reduce the 
computation complexity of PNC and perform fairly well in practice [15]. First, the 
input feature vector is projected onto an m-dimensional principal subspace ( m p< ); 

then, the network is computed on the subspace features; finally, the input pattern is 
classified to the class of maximum output. 
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For SVM, liblinear [16] and libSVM [17] are used as implementations of linear-
SVM and poly-SVM. And the kernel function used for poly-SVM in our experiments 
is ( , ) ( ' ) , 0d

i j i jK x x x x rγ γ= + > , where 2d = . 

The linear-SVM and poly-SVM are typical linear and polynomial classifiers on full 
feature space; comparing with them, we can evaluate the classification capability of FMs. 
FMs and PCA-PNC have similar structures, so we want to compare the performance of 
them. Table 1 below lists the training and test computation complexity of them. 

Table 1. Training and test computation complextity 

Classifier Training Test 

FMs (bi-class) ( )O knp  [10] ( )O kp  [10] 

PCA-PNC (multi-class) 3 2( ) ( )O p O m n+  

2( ) ( )O pm O m M+  

linear-SVM (bi-class) ( )O pn  [6] ( )O p  [6] 

poly-SVM (bi-class) 2( )O pn  [6] ( )svO pn  [6] 

 
Where p  is the original dimensionality of feature vectors; n  is the sample num-

ber of train data subset; M  is the number of classes; k  is the factorization matrix 
dimensionality of FMs; m  is the subspace dimensionality of PAC-PNC; and svn  is 

the number of support vectors of SVM. 

4.2 Datasets 

We select 7 datasets, 5 of them are from the UCI Machine Learning Repository [18] 
and 2 from LibSVM datasets [19], as summarized in Table 2. We select the multi-
class datasets that have at least 10 features. 

Most of the data sets have been partitioned into standard training and test subsets. 
For the others, we arrange the samples in random order and evaluate in 5-fold cross-
validation; and we give the average value and standard deviation of the classification 
accuracy on each of them. 

Table 2. Summary of 7 datasets. The right column shows the dimensionality of factorization 
matrix for FMs or the subspace dimensionality for PCA-PNC (multiple of m1). 

# Name #class #feature #train #test 1m  

1 Waveform 3 21 5,000 5-fold 2 
2 Vehicle 4 18 846 5-fold 2 
3 Segment 7 19 2,100 210 3 
4 Letter 26 16 16,000 4,000 3 
5 Splice 2 60 1,000 2,175 2 
6 Isolet 26 617 6,238 1,559 10 
7 Gisette 2 5,000 6,000 1,000 10 
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4.3 Experiment Design 

The PCA-PNC is a network with M  output nets, so it can be directly applied to 
multi-class classification. FMs, linear-SVM and poly-SVM are all bi-class classifiers, 
and we adopt one-vs-all strategy to make them available for multi-class classification. 

For PCA-PNC, we set the dimensionality of subspace as 1m l m= ⋅ , 1,...,5l = . 

1m  depends on the dataset, and has been listed in the right columns of Table 2. For 

FMs, we set the dimensionality of factorization matrix as 1k l m= ⋅ , 1,...,5l = , cor-

responding to PCA-PNC. For SVMs, the feature vectors are uniformly scaled. 

4.4 Experiments Results 

1. FMs and PCA-PNC  
The classification accuracy (%) of FMs and PCA-PNC on test subset of the 7 datasets 
is shown in Table 3. For each dataset, the accuracy of PCA-PNC and FMs on variable 
dimensionalities is listed in two rows. And we can see, FMs can give test accuracy 
comparable to PCA-PNC. 

Table 3. Test accuracies (%) of FMs and PCA-PNC on 7 dataset 

Dataset 
PCA= 1m  PCA= 12m  PCA= 13m  PCA= 14m  PCA= 15m  

factor= 1m  factor= 12m  factor= 13m  factor= 14m  factor= 15m  

Waveform 
63.78 86.40 86.92 87.12 86.98 

83.92 1.50 84.36 1.27 85.32 1.01 85.70 0.77 85.90 0.86 

Vehicle 
53.19 67.38 71.75 76.24 78.37 

78.37 2.91 78.61 2.49 78.85 2.49 79.32 2.89 80.15 2.88 

Segment 
69.14 80.48 83.76 85.86 85.71 
91.10 91.33 92.00 92.29 92.33 

Letter 
26.73 58.73 75.78 84.67 88.20 
78.20 84.33 87.33 89.60 91.33 

Splice 
70.30 77.89 82.94 84.23 84.18 
85.47 85.52 85.56 85.61 85.66 

Isolet 
80.18 91.28 93.52 94.16 95.19 
94.18 94.24 94.78 95.02 95.45 

Gisette 
95.80 97.30 97.60 98.10 98.10 
97.10 97.40 97.60 98.00 98.10 

 
For Waveform, when the dimensionality is low, FMs give a higher accuracy than 

PCA-PNC; when the dimensionality goes up, PCA-PNC surpasses FMs gradually. 
This can be explained that when the dimensionality is low, the linear terms of FMs 
with full dimensionality make FMs more expressive; but when the dimensionality 
goes up, the PCA-PNC shows its power. 
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On the other datasets, FMs always give higher accuracy than PCA-PNC, especially 
on lower dimensionality, however, when the dimensionality goes up, the gap is grad-
ually narrowing. 

Table 4. Highest accuracier of FMs, PCA-PNC, linear-SVM and poly-SVM 

Dataset FMs PCA-PNC linear-SVM poly-SVM 

Waveform 85.90 0.86 87.12 86.76 82.37 
Vehicle 80.15 2.88 78.37 78.01 81.21 
Segment 92.33 85.86 91.24 92.14 

Letter 91.33 88.20 67.50 94.43 
Splice 85.66 84.18 83.63 88.32 
Isolet 95.45 95.19 94.61 96.28 

Gisette 98.10 98.10 98.10 98.75 
Average Acc 89.85 88.15 85.69 90.50 

2. FMs, PCA-PNC, and SVM 
The highest accuracies of FMs, PCA-PNC, linear-SVM and poly-SVM on the 7 data-
sets are compared in Table 4, and the average classification accuracy of all the clas-
sifiers is in the last row. 

We can find that in most datasets, the FMs give classification accuracy between li-
near (linear-SVM) and polynomial (poly-SVM) classifiers. Comparing the accuracy 
of FMs and PCA-PNC, it is evident that the classification accuracy of FMs is higher 
than PCA-PNC on most datasets. 

4.5 Computation Complexity of FMs 

To compare the predict computation complexity of different classifiers, we chose 
three datasets (Vehicle, Splice, and Isolet) from Table 2, The predict computation 
time (ms) of  FMs ( 15factor m= ), PCA-PNC ( 15m m= ), linear-SVM and poly-

SVM on the test subset is listed in Table 5. 

Table 5. The predict computation time of FMs, PCA-PNC, linear-SVM and poly-SVM 

Dataset #test 
#dim 

5m1/SVM 
FMs PCA-PNC linear-SVM 

poly-SVM 

#sv time 

Vehicle 169 10/18 4 6 2 667 11 
Splice 2175 10/60 67 27 20 481 220 

Isolet 1559 50/617 6230 654 800 3106 20410 
 
For all the three datasets, the computation time of FMs and PCA-PNC are much 

smaller than poly-SVM. This can be explained as the reduced dimensionality of FMs 
and PCA-PNC speed up the predict operation. 
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We can find that there is no fixed relationship between the computation time of 
FMs and PCA-PNC, and this seems contradictory to what we have discussed in Table 
1---the computation complexity of FMs is linear, and PCA-PNC is polynomial. We 
would take a closer look at the computation complexity of FMs and PCA-PNC. 

For a dataset whose dimensionality is p  and number of classes is M , the com-

putation complexity of the FMs with factor k= , is supposed to be 

( (2 1))p k p M+ + ; and that of the PCA-PNC is 1 1
( 1) ( ( 1))

2 2
pm m m m m m M+ + + + +  

(where m k= ). So the practical computation time of FMs and PCA-PNC largely 
depend on p  and M . In most cases, m p  is fulfilled, and this makes the prac-

tical computation time of FMs comparable, even larger than PCA-PNC when m k= . 

4.6 Comparison of Classification Performance 

To compare the performance of FMs and PCA-PNC, we plot them in Fig. 1, where 
the horizontal axis is the amount of multiplication calculation for a feature vector, and 
the vertical axis is the classification accuracy on the test subset. 

 

Fig. 1. Performance of FMs and PCA-PNC on Vehicle, Segment, and Isolet 

The figures in Fig. 1 from left to right are in turn of Vehicle, Splice, and Isolet da-
tasets. From the figures in Fig. 1, we can conclude that the FMs classifier can give 
classification accuracy between linear-SVM and poly-SVM. And FMs give much 
higher classification accuracy than PCA-PNC on low factorization dimensionality; 
when the dimensionality goes up, they are still comparable. 

5 Conclusion 

In this paper, we attempt to apply Factorization Machines model to general classifier 
design. Then we evaluate the classification performance of FMs, PCA-PNC, linear-
SVM, and poly-SVM on 7 datasets. And we can now carefully give the following 
conclusions about FMs and the other three classifiers. 

1. FMs can give classification accuracy between linear (linear-SVM) and polynomial 
(poly-SVM) classifiers, while its computation complexity is linear. 
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2. FMs can always give higher classification performance than PCA-PNC, especially 
on low dimensionality, however, when the dimensionality goes up, the gap is grad-
ually narrowing. 
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