
S. Li et al. (Eds.): CCPR 2014, Part I, CCIS 483, pp. 1–10, 2014.
© Springer-Verlag Berlin Heidelberg 2014

A Nonlinear Classifier
Based on Factorization Machines Model

Xiaolong Liu, Yanming Zhang, and Chenglin Liu

National Laboratory of Pattern Recognition (NLPR)
Institute of Automatic, Chinese Academy of Science

No. 95, Zhongguancun East Road, Beijing, 100190, China
{xiaolong.liu,ymzhang,liucl}@nlpr.ia.ac.cn

Abstract. Polynomial Classifier (PC) is a powerful nonlinear classification me-
thod that has been widely used in many pattern recognition problems. Despite
its high classification accuracy, its computational cost for both training and test-
ing is polynomial with the dimensionality of input data, which makes it unsuit-
able for large-scale problems. In this work, based on the idea of factorization
machines (FMs), we propose an efficient classification method which approx-
imates PC by performing a low-rank approximation to the coefficient matrix of
PC. Our method can largely preserve the accuracy of PC, while has only linear
computational complexity with the data dimensionality. We conduct extensive
experiments to show the effectiveness of our method.

Keywords: Polynomial Classifier, Factorization Machines model, Low-rank
Approximation.

1 Introduction

Classification is one of the most fundamental problems in machine learning, and plays
a central role in many applications, such as characters recognition [1], visual object
classification [2], and text classification [3]. Actually, classifier design has always
been a focus of the machine learning community, and obtained great development in
the past decades.

According to the form of the classification function, classification methods can be
roughly divided into two categories: linear methods and nonlinear methods. Linear
classification methods, such as perceptron [4], linear discriminant analysis (LDA) [5]
and linear Support Vector Machines (SVM) [6], are efficient in both training and
testing, and thus are ready for large-scale applications which becomes more and more
common nowadays. However, due to the limited representation ability of linear func-
tions, these methods are often abused for their low accuracies. On the other hand,
nonlinear methods, such as multilayer perceptron (MLP) [7], polynomial classifier
(PC) [8], kernel SVM [9], are much more powerful and can always obtain better accu-
racies than linear methods. However, their computational cost for both training and
testing is much higher, and cannot fulfill the requirements of many applications.
For example, the cost of kernel SVM is at least 2()O n for training and ()svO n (svn

is the number of support vectors) for testing.

2 X. Liu, Y. Zhang, and C. Liu

Due to its high performance, PC is a very popular nonlinear classification method
in pattern recognition and machine learning. However, for a d-order PC, it has

()dO p parameters to learn and takes ()dO p to perform one evaluation operation.

Thus, it is slow in both training and testing. In this work, we focus on speeding up PC,
while preserving its accuracy as much as possible. Essentially, based on the idea of
Factorization Machines (FMs) [10], our approach approximates the coefficient matrix
in polynomial function by a low-rank matrix. Using the factorization, our classifier
has only ()O kdp parameters (k is the dimensionality of the factorization matrix)

and the cost for predicting one sample is also ()O kdp .

FMs [10] were originally proposed in the context of Recommender Systems, and
have obtained great success in many real-world applications. The current study of
FMs is mainly on two aspects: improving the accuracy of FMs by adding specific
context-aware information [11, 12], and fast learning algorithms [13]. As far as we
know, there is no study about the application of FMs for classifier design.

The paper is organized as follows: Section 2 gives a detailed introduction to the
FMs model, including its definition, relationship with PC and the evaluation cost.
Section 3 proposes the method for applying the FMs in the classification problem and
our learning algorithm. Experiments results are shown in Section 4 to verify the effec-
tiveness of our method.

2 Factorization Machines Model

In this section, we introduce the FMs model in detail and discuss its computational
cost for evaluation operation.

2.1 FMs Model [10]

The model equation for a factorization machine of degree 2d = is defined as:

 0
1 1 1

ˆ() ,
p p p

i i i j i j
i i j i

y x w w x v v x x
= = = +

= + +∑ ∑ ∑ , (1)

where p is the dimensionality of input x , and ,⋅ ⋅ denotes the inner product of

two vectors. 0w ∈ ,

pw∈ ,

p kV ×∈ are model parameters which can be

estimated from the training set. 0w is the global bias, iw is the weight of the fea-

ture ix , and ,ˆ : ,i j i jw v v= is the weight of the second-order feature i jx x .

2.2 Relationship with PC

The decision function of a second-order PC can be written as:

 0

1
ˆ() ' '

2
y x w w x x Wx= + + (2)

 A Nonlinear Classifier Based on Factorization Machines Model 3

where W is a symmetric matrix of size p-by-p. Due to the second-order terms, the

evaluation of PC needs 2()O p operations. On the other hand, it is easy to show the

FMs model defined in Eq. (1) can be written as:

 0

1
ˆ() ' '(' ('))

2
y x w w x x VV diag VV x= + + − (3)

where 1 2[, ,...,]' p k
pV v v v ×= ∈ , and (')diag VV is a matrix of size p-by-p with its

diagonal equals to the diagonal of 'VV and all the off-diagonal elements equal to 0.
Thus, from the perspective of matrix approximation, the core idea of FMs is to ap-

proximate a symmetric matrix W by ' (')VV diag VV− . And as we will show imme-

diately, by utilizing this matrix factorization form, a FMs model can be evaluated in

()O kp , instead of 2()O p as in the second-order PC. When the dimensionality of

V is low (k p), FMs will significantly faster than PC.

2.3 Evaluation Cost

In this section, we show that the evaluation of a FMs model can be done in linear time
()O kp , which is the main advantage of our method. We reformulate the third term in

Eq. (1) as:

1 1

1 1 1

, , , ,
1 1 1 1 1

2

2 2
, ,

1 1 1

,

1 1
, ,

2 2

1

2

1

2

p p

i j i j
i j i

p p p

i j i j i j i i
i j i

p p pk k

i f j f i j i f i f i i
i j f i f

p pk

i f i i f i
f i i

v v x x

v v x x v v x x

v v x x v v x x

v x v x

= = +

= = =

= = = = =

= = =

= −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑

∑∑ ∑

∑∑∑ ∑∑

∑ ∑ ∑

 (4)

This equation has only linear complexity for both k and p , thus its computation

complexity is ()O kp .

2.4 d-way Factorization Machines

The 2-way FMs described above can be smoothly generalized to a d-way FMs:

1 1

()
0 ,

1 2 1 1 11 1

ˆ ()
l

j j

l l

kp p p l ld
l

i i i i f
i l i i i fj j

y x w w x x v
−= = = = + == =

⎛ ⎞⎛ ⎞
= + + ⋅⋅ ⋅ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑∑ ∑ ∑∏ ∏ (5)

4 X. Liu, Y. Zhang, and C. Liu

where the weight matrices for the l -order product are factorized by the PARAFAC

model [14] with the parameters below ()
0,lp kl

lV k× +∈ ∈ .

The straight forward computation complexity for Eq. (5) is ()d
dO k p . But with

the same arguments as in section 2.3, we can show it can be computed in linear

dO(k dp) .

3 Training FMs for Classification

In this section, we present how to apply FMs models to classifier design.

3.1 Objective Function

We propose to optimize the following objective function to train a FMs classifier:

 2

(,)

(,) ˆarg min ((|),)
x y S

OPTREG S l y x y θ
θ

λ λ θ
Θ ∈ ∈Θ

= Θ +
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑ (6)

where ˆ (|)y x Θ is the FMs classifier, Θ are the classifier parameters, and

ˆ((|),)l y x yΘ is the loss function that measures the prediction error of the FMs clas-

sifier on x . Thus, the first term of the objective function is to minimize the predic-
tion error of the classifier on the training set, and the second term is to regularize the
classifier from over-fitting.

For a binary classification problem ({ 1,1}y∈ −), we adapt the negative log-

likelihood as the loss function, which is defined as:

 ˆ ˆ((|),) ln ((|))l y x y y x yσΘ = − Θ ⋅ (7)

where
1

()
1 x

x
e

σ −=
+

. For a multi-class problem, we solve it by the standard one-vs-

all strategy.

3.2 Learning Algorithm

In this work, we use stochastic gradient descent (SGD) algorithm for training a FMs
classifier.

3.3 Stochastic Gradient Descent (SGD)

FMs can be optimized with SGD [10] which has low computation and storage com-
plexity.

The algorithm iterates over all the samples in the training dataset and performs up-
dates on the model parameters.

 A Nonlinear Classifier Based on Factorization Machines Model 5

 ˆ((|),) 2l y x y θθ θ η λ θ
θ
∂

← − Θ +
∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (8)

where +η ∈ is the learning rate for gradient descent. The gradient of the negative
log-likelihood loss function is:

 ˆ ˆ(((|)) 1) (|)ˆ ˆ(y(x |), y) ln ((|)) y x y y y xl y x y σ
θ

σ
θ θ

∂
Θ ⋅ − Θ

∂

∂ ∂
Θ = − Θ ⋅ =

∂ ∂
 (9)

3.4 Complexity and Hyper-Parameters

The SGD algorithm for FMs has a linear computational and constant storage com-
plexity. For one iteration over all training cases, the runtime of SGD is ()O knp .

For SGD algorithm, there are several critical hyper-parameters.

─ Leaning rate η : The convergence of SGD depends largely on η . If η is chosen
too big, the SGD doesn’t converge, and too small, convergence is slow.

─ Regularization parameter λ : The generalization capabilities of FMs depends
largely on λ , and in this paper we use grid search to chose the proper λ for
SGD algorithm. As there are several regularization parameters, the grid has expo-
nential size and thus this search is very time-consuming. To make the search more
feasible, the number of regularization parameters is reduced to only two: wλ for

0w and w , and vλ for factorization matrix V .

─ Initialization σ : The model parameters of FMs are initialized with non-constant
values which are sampled from a zero-mean normal distribution with standard dev-
iation σ . Typically small values are used for σ .

4 Experiments

To examine the classification performance of FMs model, we compared it with couple
of commonly used classifiers on 7 datasets.

4.1 Compared Classifiers

We compare the FMs with PCA-PNC (polynomial network classifier with dimensio-
nality reduction by principal component analysis) [15], linear-SVM, and poly-SVM
(SVM with polynomial kernel function).

The PCA-PNC is a subspace-feature-based PNC that can efficiently reduce the
computation complexity of PNC and perform fairly well in practice [15]. First, the
input feature vector is projected onto an m-dimensional principal subspace (m p<);

then, the network is computed on the subspace features; finally, the input pattern is
classified to the class of maximum output.

6 X. Liu, Y. Zhang, and C. Liu

For SVM, liblinear [16] and libSVM [17] are used as implementations of linear-
SVM and poly-SVM. And the kernel function used for poly-SVM in our experiments
is (,) (') , 0d

i j i jK x x x x rγ γ= + > , where 2d = .

The linear-SVM and poly-SVM are typical linear and polynomial classifiers on full
feature space; comparing with them, we can evaluate the classification capability of FMs.
FMs and PCA-PNC have similar structures, so we want to compare the performance of
them. Table 1 below lists the training and test computation complexity of them.

Table 1. Training and test computation complextity

Classifier Training Test

FMs (bi-class) ()O knp [10] ()O kp [10]

PCA-PNC (multi-class) 3 2() ()O p O m n+

2() ()O pm O m M+

linear-SVM (bi-class) ()O pn [6] ()O p [6]

poly-SVM (bi-class) 2()O pn [6] ()svO pn [6]

Where p is the original dimensionality of feature vectors; n is the sample num-

ber of train data subset; M is the number of classes; k is the factorization matrix
dimensionality of FMs; m is the subspace dimensionality of PAC-PNC; and svn is

the number of support vectors of SVM.

4.2 Datasets

We select 7 datasets, 5 of them are from the UCI Machine Learning Repository [18]
and 2 from LibSVM datasets [19], as summarized in Table 2. We select the multi-
class datasets that have at least 10 features.

Most of the data sets have been partitioned into standard training and test subsets.
For the others, we arrange the samples in random order and evaluate in 5-fold cross-
validation; and we give the average value and standard deviation of the classification
accuracy on each of them.

Table 2. Summary of 7 datasets. The right column shows the dimensionality of factorization
matrix for FMs or the subspace dimensionality for PCA-PNC (multiple of m1).

Name #class #feature #train #test 1m

1 Waveform 3 21 5,000 5-fold 2
2 Vehicle 4 18 846 5-fold 2
3 Segment 7 19 2,100 210 3
4 Letter 26 16 16,000 4,000 3
5 Splice 2 60 1,000 2,175 2
6 Isolet 26 617 6,238 1,559 10
7 Gisette 2 5,000 6,000 1,000 10

 A Nonlinear Classifier Based on Factorization Machines Model 7

4.3 Experiment Design

The PCA-PNC is a network with M output nets, so it can be directly applied to
multi-class classification. FMs, linear-SVM and poly-SVM are all bi-class classifiers,
and we adopt one-vs-all strategy to make them available for multi-class classification.

For PCA-PNC, we set the dimensionality of subspace as 1m l m= ⋅ , 1,...,5l = .

1m depends on the dataset, and has been listed in the right columns of Table 2. For

FMs, we set the dimensionality of factorization matrix as 1k l m= ⋅ , 1,...,5l = , cor-

responding to PCA-PNC. For SVMs, the feature vectors are uniformly scaled.

4.4 Experiments Results

1. FMs and PCA-PNC
The classification accuracy (%) of FMs and PCA-PNC on test subset of the 7 datasets
is shown in Table 3. For each dataset, the accuracy of PCA-PNC and FMs on variable
dimensionalities is listed in two rows. And we can see, FMs can give test accuracy
comparable to PCA-PNC.

Table 3. Test accuracies (%) of FMs and PCA-PNC on 7 dataset

Dataset
PCA= 1m PCA= 12m PCA= 13m PCA= 14m PCA= 15m

factor= 1m factor= 12m factor= 13m factor= 14m factor= 15m

Waveform
63.78 86.40 86.92 87.12 86.98

83.92 1.50 84.36 1.27 85.32 1.01 85.70 0.77 85.90 0.86

Vehicle
53.19 67.38 71.75 76.24 78.37

78.37 2.91 78.61 2.49 78.85 2.49 79.32 2.89 80.15 2.88

Segment
69.14 80.48 83.76 85.86 85.71
91.10 91.33 92.00 92.29 92.33

Letter
26.73 58.73 75.78 84.67 88.20
78.20 84.33 87.33 89.60 91.33

Splice
70.30 77.89 82.94 84.23 84.18
85.47 85.52 85.56 85.61 85.66

Isolet
80.18 91.28 93.52 94.16 95.19
94.18 94.24 94.78 95.02 95.45

Gisette
95.80 97.30 97.60 98.10 98.10
97.10 97.40 97.60 98.00 98.10

For Waveform, when the dimensionality is low, FMs give a higher accuracy than

PCA-PNC; when the dimensionality goes up, PCA-PNC surpasses FMs gradually.
This can be explained that when the dimensionality is low, the linear terms of FMs
with full dimensionality make FMs more expressive; but when the dimensionality
goes up, the PCA-PNC shows its power.

8 X. Liu, Y. Zhang, and C. Liu

On the other datasets, FMs always give higher accuracy than PCA-PNC, especially
on lower dimensionality, however, when the dimensionality goes up, the gap is grad-
ually narrowing.

Table 4. Highest accuracier of FMs, PCA-PNC, linear-SVM and poly-SVM

Dataset FMs PCA-PNC linear-SVM poly-SVM

Waveform 85.90 0.86 87.12 86.76 82.37
Vehicle 80.15 2.88 78.37 78.01 81.21
Segment 92.33 85.86 91.24 92.14

Letter 91.33 88.20 67.50 94.43
Splice 85.66 84.18 83.63 88.32
Isolet 95.45 95.19 94.61 96.28

Gisette 98.10 98.10 98.10 98.75
Average Acc 89.85 88.15 85.69 90.50

2. FMs, PCA-PNC, and SVM
The highest accuracies of FMs, PCA-PNC, linear-SVM and poly-SVM on the 7 data-
sets are compared in Table 4, and the average classification accuracy of all the clas-
sifiers is in the last row.

We can find that in most datasets, the FMs give classification accuracy between li-
near (linear-SVM) and polynomial (poly-SVM) classifiers. Comparing the accuracy
of FMs and PCA-PNC, it is evident that the classification accuracy of FMs is higher
than PCA-PNC on most datasets.

4.5 Computation Complexity of FMs

To compare the predict computation complexity of different classifiers, we chose
three datasets (Vehicle, Splice, and Isolet) from Table 2, The predict computation
time (ms) of FMs (15factor m=), PCA-PNC (15m m=), linear-SVM and poly-

SVM on the test subset is listed in Table 5.

Table 5. The predict computation time of FMs, PCA-PNC, linear-SVM and poly-SVM

Dataset #test
#dim

5m1/SVM
FMs PCA-PNC linear-SVM

poly-SVM

#sv time

Vehicle 169 10/18 4 6 2 667 11
Splice 2175 10/60 67 27 20 481 220

Isolet 1559 50/617 6230 654 800 3106 20410

For all the three datasets, the computation time of FMs and PCA-PNC are much

smaller than poly-SVM. This can be explained as the reduced dimensionality of FMs
and PCA-PNC speed up the predict operation.

 A Nonlinear Classifier Based on Factorization Machines Model 9

We can find that there is no fixed relationship between the computation time of
FMs and PCA-PNC, and this seems contradictory to what we have discussed in Table
1---the computation complexity of FMs is linear, and PCA-PNC is polynomial. We
would take a closer look at the computation complexity of FMs and PCA-PNC.

For a dataset whose dimensionality is p and number of classes is M , the com-

putation complexity of the FMs with factor k= , is supposed to be

((2 1))p k p M+ + ; and that of the PCA-PNC is 1 1
(1) ((1))

2 2
pm m m m m m M+ + + + +

(where m k=). So the practical computation time of FMs and PCA-PNC largely
depend on p and M . In most cases, m p is fulfilled, and this makes the prac-

tical computation time of FMs comparable, even larger than PCA-PNC when m k= .

4.6 Comparison of Classification Performance

To compare the performance of FMs and PCA-PNC, we plot them in Fig. 1, where
the horizontal axis is the amount of multiplication calculation for a feature vector, and
the vertical axis is the classification accuracy on the test subset.

Fig. 1. Performance of FMs and PCA-PNC on Vehicle, Segment, and Isolet

The figures in Fig. 1 from left to right are in turn of Vehicle, Splice, and Isolet da-
tasets. From the figures in Fig. 1, we can conclude that the FMs classifier can give
classification accuracy between linear-SVM and poly-SVM. And FMs give much
higher classification accuracy than PCA-PNC on low factorization dimensionality;
when the dimensionality goes up, they are still comparable.

5 Conclusion

In this paper, we attempt to apply Factorization Machines model to general classifier
design. Then we evaluate the classification performance of FMs, PCA-PNC, linear-
SVM, and poly-SVM on 7 datasets. And we can now carefully give the following
conclusions about FMs and the other three classifiers.

1. FMs can give classification accuracy between linear (linear-SVM) and polynomial
(poly-SVM) classifiers, while its computation complexity is linear.

10 X. Liu, Y. Zhang, and C. Liu

2. FMs can always give higher classification performance than PCA-PNC, especially
on low dimensionality, however, when the dimensionality goes up, the gap is grad-
ually narrowing.

References

1. Cheriet, M., Kharm, N., Liu, C.L., et al.: Character recognition systems: A guide for stu-
dents and practitioners. John Wiley & Sons (2007)

2. Everingham, M., Van Gool, L., Williams, C.K.I., et al.: The pascal visual object classes
(voc) challenge. International Journal of Computer Vision 88(2), 303–338 (2010)

3. Joachims, T.: Text categorization with support vector machines: Learning with many rele-
vant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp.
137–142. Springer, Heidelberg (1998)

4. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algorithm.
Machine Learning 37(3), 277–296 (1999)

5. Lzenman, A.J.: Linear Discriminant Analysis. Springer, New York (2008)
6. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining

and Knowledge Discovery 2(2) (1998)
7. Pal, S.K., Mitra, S.: Multilayer perceptron, fuzzy sets, and classification. IEEE Transac-

tions on Neural Networks 3(5), 683–697 (1992)
8. Liu, C.L., Sako, H.: Class-specific feature polynomial classifier for pattern classification

and its application to handwritten numeral recognition. Pattern Recognition 39(4), 669–
681 (2006)

9. Schölkopf, B., Smola, A.J.: Learning with kernels: Support vector machines, regulariza-
tion, optimization, and beyond. MIT Press (2002)

10. Rendle, S.: Factorization machines. In: IEEE 10th International Conference on Data Min-
ing, ICDM (2010)

11. Rendle, S., Gantner, Z., Freudenthaler, C., et al.: Fast context-aware recommendations
with factorization machines. In: Proceedings of the 34th International ACM SIGIR Confe-
rence on Research and Development in Information Retrieval (2011)

12. Rendle, S.: Factorization machines with libFM. ACM Transactions on Intelligent Systems
and Technology (TIST) 3(3), 57 (2012)

13. Robbins, H., Monro, S.: A stochastic approximation method. The Annals of Mathematical
Statistics, 400–407 (1951)

14. Harshman, R.A.: Foundations of the PARAFAC procedure: Models and conditions for an
“explanatory” multimodal factor analysis. In: UCLA Working Papers in Phonetics (1970)

15. Liu, C.-L.: Polynomial network classifier with discriminative feature extraction. In:
Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR&SPR 2006.
LNCS, vol. 4109, pp. 732–740. Springer, Heidelberg (2006)

16. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library for large
linear classification. The Journal of Machine Learning Research 9, 1871–1874 (2008)

17. Chang, C.C., Li, C.J.: LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology (TIST) 2(3) (2011)

18. UC Irvine Machine Learning Repository, http://archive.ics.uci.edu/ml/
(accessed June 9)

19. LIBSVM Data, http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/ (accessed June 9)

	A Nonlinear Classifier Based on Factorization Machines Model
	1 Introduction
	2 Factorization Machines Model
	2.1 FMs Model [10]
	2.2 Relationship with PC
	2.3 Evaluation Cost
	2.4 d-way Factorization Machines

	3 Training FMs for Classification
	3.1 Objective Function
	3.2 Learning Algorithm
	3.3 Stochastic Gradient Descent (SGD)
	3.4 Complexity and Hyper-Parameters

	4 Experiments
	4.1 Compared Classifiers
	4.2 Datasets
	4.3 Experiment Design
	4.4 Experiments Results
	4.5 Computation Complexity of FMs
	4.6 Comparison of Classification Performance

	5 Conclusion
	References

