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Abstract In this paper, an optimization method based on
adaptive dynamic programming is developed to improve the
electricity consumption of rooms in office buildings through
optimal battery management. Rooms in office buildings are
generally divided into office rooms, computer rooms, storage
rooms, meeting rooms, etc., and each category of rooms have
different characteristics of electricity consumption, which
is divided into electricity consumption from sockets, lights
and air-conditioners in this paper. The developed method
based on action-dependent heuristic dynamic programming
is explained in detail, and different optimization strategies of
electricity consumption in different categories of rooms are
proposed in accordance with the developed method. Finally,
a detailed case study on an office building is given to demon-
strate the practical effect of the developed method.

Keywords Office buildings · Electricity consumption
optimization · Battery management · Optimal control ·
Adaptive dynamic programming · Neural networks

1 Introduction

Over the past years, humans have become increasingly
dependent on electricity both in life and work. The con-
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stantly rising cost, growing environmental pollution and
severe resource shortage have posed new opportunities and
challenges to the development of efficient control and man-
agement strategies for energy consumption. Smart grid, as
an intelligent power grid, has attracted widespread attention
in recent years. Extensive research has been conducted in
both theory and practice. Severini et al. (2013) developed
a hybrid algorithmic framework including genetic, neural
network and deterministic optimization algorithms to opti-
mize energy consumption in smart homes. Arsuaga-Rios
andVega-Rodriguez (2015) presented amulti-objective brain
storm algorithm (MOBSA) to improve energy use in grid sys-
tems. Ma et al. (2014) proposed a distributed algorithm for
energy consumers to control their energy consumption. Li et
al. (2013) studied a data-driven strategy based on the type-2
fuzzy method to model and optimize energy consumption in
smart homes and intelligent buildings. Anvari-Moghaddam
et al. (2015) presented a management scheme to improve
the efficiency of residential energy consumption in a typi-
cal smart micro-grid. With in-depth development of smart
grid, increasing intelligence is required in the design of
efficient energy management systems. Therefore, optimal
battery management has become an important approach to
saving expense on electricity in smart grid.

Proposed byWerbos (1977, 1991), adaptive dynamic pro-
gramming (ADP) (Wei and Liu 2014; Song et al. 2013),
also known as “adaptive critic designs” (Prokhorov and
Wunsch 1997; Ni et al. 2013), “approximate dynamic pro-
gramming” (Xu et al. 2014a; Molina et al. 2013), “neural
dynamic programming” (Enns andSi 2003), “neuro-dynamic
programming” (Bertsekas andTsitsiklis 1996;Xu and Jagan-
nathan 2013) and “reinforcement learning” (Ni et al. 2013;
Xu et al. 2014b), has been verified with strong ability to
solve the optimization problem of complex nonlinear sys-
tems by means of its strong self-learning capacity. The
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method of ADP approximates the optimal performance
index function and optimal controller by using function
approximation structures (Wang et al. 2009) and circum-
vents the “curse of dimensionality” in dynamic programming
(DP) by using the forward-in-time approach to solve the
Hamilton-Jacobi-Bellman equation (Werbos 1991). Recent
years witnessed extensive research on ADP (Liu and Wei
2012; Ni and He 2013; Wei et al. 2014, 2016a; Na and
Herrmann 2014; Zhao et al. 2014). In Werbos (1991), ADP
was divided into four major schemes, i.e., heuristic dynamic
programming (HDP), action-dependent heuristic dynamic
programming (ADHDP), dual heuristic dynamic program-
ming (DHP) and action-dependent dual heuristic dynamic
programming (ADDHP). In Prokhorov and Wunsch (1997),
twomore schemes ofADPwere proposed, namely globalized
dual heuristic dynamic programming (GDHP) and action-
dependent globalized dual heuristic dynamic programming
(ADGDHP). As one of the typical schemes of ADP, ADHDP
has been effectively used in optimal battery control of home
energy management systems (Huang and Liu 2013; Boaro
et al. 2013), in which renewable resources, including wind
and solar energies, were introduced into the energy systems.

However, most of previous research on management of
energy consumption based on ADP focused on residential
energy systems (Huang and Liu 2013; Boaro et al. 2013;
Fuselli et al. 2013; Wei et al. 2015a, b, 2016b), rather than
energy consumption in office buildings. Nevertheless, as a
significant component of urban structure, office buildings
account for a great proportion of social energy consump-
tion, in which electricity consumption plays the key role.
Moreover, with the rapid development of electricity storage
technology, optimalmanagement based on electricity storage
has been widely concerned (Amjadi and Williamson 2010;
Guerrero et al. 2013). Therefore, it is of great importance to
improve the electricity consumption of office buildings based
on electricity storage.

In our previous work (Shi et al. 2015), a data-driven
method based on echo state network (ESN) is developed to
classify rooms in office buildings into different categories,
including office rooms, computer rooms, storage rooms and
meeting rooms. Hence, it is necessary to further develop cor-
responding optimization strategies to improve the electricity
consumption of rooms in office buildings in accordance with
different characteristics of different categories of rooms and
therefore save the total expense on electricity from the power
grid. As far as we know, no research has been conducted in
this respect, which motivates our research.

The rest of the paper is arranged as follows. Problem
formulation of the electricity consumption management sys-
tem of a room in an office building is given in Sect. 2. The
developed optimization algorithm of electricity consumption
based on ADP is elaborated in Sect. 3, and implementation
by neural networks is explained. In Sect. 4, a detailed case

study is presented to show the effectiveness and superiority
of the developed algorithm. Finally, in Sect. 5, the conclusion
is drawn and future work is proposed.

2 Problem formulation

In this section, the electricity consumption management sys-
tem of a room in an office building is described, and the
optimization target is presented.

2.1 Electricity consumption management system

As shown in Fig. 1, the electricity consumption management
system consists of the power grid, a battery system (com-
posed of a battery and an inverter), a power management
unit and electricity demand, in which the electricity demand
is divided into electricity demand from sockets, lights and
air-conditioners for a typical room in an office building.

Based on Huang and Liu (2013), the model of the battery
applied in this paper is described as

Eb(t + 1) = Eb(t) − Pb(t) × η(Pb(t)), (1)

where Eb(t) denotes the energy of the battery at time t with a
time step of 1 h, Pb(t) denotes the output power of the battery,
while Pb(t) > 0 denotes battery discharging, Pb(t) < 0
denotes battery charging and Pb(t) = 0 denotes an idle state
of the battery. The charging/discharging efficiency η(Pb(t))
of the battery can be derived as

η(Pb(t)) = 0.898 − 0.173|Pb(t)|/Prate, (2)

where Prate denotes the rated output power of the battery.
Specifically, electricity consumption management in this

paper is treated as a discrete-time battery control problem

Fig. 1 Electricity consumption management system of a room in an
office building
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with a time step of 1 h as the data of electricity consumption
are collected hourly, so the power output Pb(t) of the battery
satisfies Pb(t)(kW)× 1(h) = Pb(t)(kWh), which equals the
value of power. Therefore, the battery model expressed in (1)
makes sense.

2.2 Optimization target

In this paper, electricity flow from the battery to the power
grid is forbidden, i.e., Pg(t) ≥ 0 is defined as electricity from
the grid. To facilitate our analysis, a 1-h delay is introduced in
Pb(t) and PL(t), where PL(t) denotes electricity demand at
time t with PL(t) = PLs(t)+ PLl(t)+ PLa(t), where PLs(t),
PLl(t) and PLa(t) denote electricity demand from sockets,
lights and air-conditioners, respectively. Then, the demand
balance equation is expressed as

PL(t − 1) = Pb(t − 1) + Pg(t), (3)

which indicates that the electricity supply (from the battery
and the power grid) should necessarily balance the electricity
demand at each hour. It is also assumed that electricity from
the grid is enough to satisfy the electricity demand.

Given the electricity demand and the electricity price
which is denoted by C(t), the optimization target of electric-
ity consumption is to obtain theoptimal charging/discharging/
idle strategy of the battery at each time step to minimize the
total performance index function

JT =
∞∑

t=0

C(t) × Pg(t) (4)

while meeting the demand balance Eq. (3) and other condi-
tions including Pg(t) ≥ 0 for the electricity from the grid and
|Pb(t)| ≤ Prate for the charging/discharging power of the bat-
tery. JT refers to the total expense from the grid incurred over
time. Let x1(t) = Pg(t), x2(t) = Eb(t) and u(t) = Pb(t), the
equation of the electricity consumption management system
can be derived as

x(t + 1) = F(x(t), u(t), t) =
(
PL(t) − u(t)
x2(t) − u(t)η(u(t))

)
,

(5)

where x(t) = [x1(t), x2(t)]T.
Adaptive dynamic programming (ADP), which solves

dynamic programming (DP) by approximating optimal solu-
tions, can be applied to obtain the optimal control u∗(t) of
the above nonlinear system. Furthermore, given the optimal
control u∗(t), we can calculate u∗

s (t) = γs(t) ·u∗(t), u∗
l (t) =

γl(t) ·u∗(t) and u∗
a(t) = γa(t) ·u∗(t), to satisfy the electricity

demand from sockets, lights and air-conditioners, respec-

tively, where γs(t) = PLs(t)/PL(t), γl(t) = PLl(t)/PL(t)
and γa(t) = PLa(t)/PL(t).

3 Optimization algorithm of electricity
consumption based on ADP

In this section, the optimization algorithm of electricity con-
sumption based on ADP is developed to find optimal control
strategies for the electricity consumption management sys-
tem of a room in an office building.

3.1 Adaptive dynamic programming

In accordance with Bellman’s principle of optimality (Bell-
man 1957), the method of DP is applicable to obtaining
optimal control actions to solve complex and nonlinear opti-
mization problems. Given the discrete-time nonlinear system
in (5), where x(t) denotes the state vector, u(t) denotes the
control vector and F(·) denotes the system function, the per-
formance index function (4) of the system can be derived
as

J [x(t), t] =
∞∑

l=t

γ l−tU [x(l), u(l), l], (6)

where U [x(l), u(l), l] = C(l) · x1(l) is the utility function,
γ is the discount factor satisfying 0 < γ ≤ 1, while J (·)
depends on the initial state x(l) and the initial time l. DP aims
to obtain a series of control actions u(l), l = t, t + 1, . . .,
whichminimize the performance index function in (6). Based
on Bellman’s principle of optimality (Bellman 1957), the
optimal performance satisfies theHamilton–Jacobi–Bellman
(HJB) equation as follows

J ∗[x(t), t] = min
u(t)

(U [x(t), u(t), t] + γ J ∗[x(t + 1), t + 1]).
(7)

The optimal control u∗(t) which achieves the minimum
cost at time t is given by

u∗(t) = argmin
u(t)

(U [x(t), u(t), t] + γ J ∗[x(t + 1), t + 1]).
(8)

ADP is a method based on the iteration between policy
improvement and value approximation of solutions to DP.
Compared with traditional ADP schemes including heuristic
dynamic programming (HDP) and dual heuristic dynamic
programming (DHP), action-dependent heuristic dynamic
programming (ADHDP) does not explicitly require a model
network in its design, and the control is included in the input
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of the critic network besides the state, so that the computa-
tion precision is higher (Werbos 1991). Therefore, ADHDP
is adopted to solve the problem in this paper. Next, the design
of ADHDP will be elaborated.

3.2 Action-dependent heuristic dynamic programming

For the optimal control problem concerned in this paper,
the method of ADHDP is adopted. Figure 2 shows a typi-
cal scheme of ADHDP.

As shown in Fig. 2, an explicit model network is not
required, while the critic network is trained to minimize the
following error:

Eq =
∞∑

t=0

Eq(t) =
∞∑

t=0

[Q(t − 1) −U (t) − γ Q(t)]2, (9)

where Q(t) denotes the output of the critic network at time t ,
and the critic network follows the input–output relationship
denoted by

Q(t) = Q[x(t), u(t)], (10)

where x(t) is the state vector and u(t) is the control vector.
If Eq(t) = 0 at all time t , it is implied by (9) that

Q(t − 1) = U (t) + γ Q(t)

= U (t) + γ [U (t + 1) + γ Q(t + 1)]
= · · ·

=
∞∑

l=t

γ l−tU (l). (11)

By comparing (6) and (11),we have Q(t−1) = J [x(t), t].
Basedon the error function (9), the critic network is trained

with the forward-in-time approach as follows.
Given the output target Q(t − 1) = U (t) + γ Q(t), the

critic network is trained at time t − 1. That is, the critic
network is trained to achieve the mapping as follows

Fig. 2 A typical scheme of ADHDP

{
x(t − 1)
u(t − 1)

}
→ {Q(t − 1)} , (12)

where x(t −1) and u(t −1) denote the inputs of the network
and Q(t − 1) denotes the output of the network. The target
output for the network training is calculated with the output
at time t as presented in (12). The objective of approximating
the mapping denoted by (12) is to satisfy the output of the
critic network as

Q(t − 1) ≈ U (t) + γ Q(t), (13)

which is required by (11) for approximation of solutions to
DP.

After the training of the critic network is completed, the
action network is then trained to obtain the control action
u(t) which minimizes the output of the critic network Q(t).
Therefore, the action network is trained to achieve the map-
ping as follows

{x(t)} → {u(t)}, (14)

where u(t) denotes the target output of the action network.
As shown in Fig. 2, the action network is linked to the critic
network during the process of training.

After the training of the action network is completed, the
performance of the system is checked to terminate or con-
tinue the training by returning to the training of the critic
network if the performance is unsatisfactory.

Remark 1 In previous research, relevant methods of ADP
were developed and successfully applied to the optimization
of energy consumption in residential systems. Huang and
Liu (2013) proposed a self-learning scheme based on ADP
to control residential energy consumption.Boaro et al. (2013)
used ADP for renewable energy scheduling and battery man-
agement in a residential system. Fuselli et al. (2013)managed
home energy sources by using ADHDP. Wei et al. (2015a, b)
optimized energy consumption in residential environments
via two different iterative ADP methods, respectively. Based
on these results, we adopt the scheme of ADHDP or Q-
learning (Lewis et al. 2012; Prokhorov andWunsch 1997) to
manage energy consumption in office buildings. The conver-
gence analysis of the algorithm is given inWei et al. (2016c),
which lays a theoretical basis for our research.

3.3 Neural network implementation

Both the above-mentioned neural networks, i.e., critic and
action networks, are established as three-layer back-
propagation (BP) networks.
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3.3.1 Critic network

The target of training the critic network is to obtain Q(t −1)
in accordance with (12). The critic network can be estab-
lished with three input neurons, 14 hidden neurons and
one linear output neuron. The three input neurons represent
x(t−1) ∈ R2 and u(t−1) ∈ R, respectively. The output neu-
ron represents Q(t −1) ∈ R. The number of hidden neurons
is decided by trial and error.With k = 0, 1, . . . as the training
step, and Zc(t − 1) = [x(t − 1)T, u(t − 1)]T as the input
vector of the critic network, the output of the critic network
is expressed as Q̂k(t − 1) = WT

c (k)σ (Zc(t − 1)), where
Zc(t − 1) = Y T

c Zc(t − 1) and σ(·) is a sigmoid function (Si
and Wang 2001). To improve the efficiency of training, the
input-hidden weight matrix Yc is fixed during the training,
and only the hidden-output weight matrix Wc(k) is updated.
Based on Si andWang (2001), the weight matrix of the critic
network is updated as

Wc(k + 1) = Wc(k) − αc

[
∂Ec(k)

∂Wc(k)

]
, (15)

where Ec(k) = 1
2 (ec(k))

2, ec(k) = Q̂k(t − 1) − Qk(t − 1),
and αc > 0 denotes the learning rate of the critic network.

3.3.2 Action network

The target of training the action network is to determine the
control action u(t) which minimizes the output of the critic
network Q(t) as indicated in (14). The action network can
be established with two input neurons, nine hidden neurons
and one linear output neuron. The two input neurons repre-
sent x(t) ∈ R2, the output neuron represents u(t) ∈ R and
the number of hidden neurons is also decided by trial and
error. The output of the action network can be expressed as
ûk(t) = WT

a (k)σ (Za(t)), whereZa(t) = Y T
a x(t) and σ(·) is

a sigmoid function (Si andWang 2001). Similarly, the input-
hidden weight matrix Ya is fixed during the training, and only
the hidden-output weight matrixWa(k) is updated. Based on
Si andWang (2001), the weight matrix of the action network
is updated as

Wa(k + 1) = Wa(k) − αa

[
∂Ea(k)

∂Wa(k)

]
, (16)

where Ea(k) = 1
2 (ea(k))

2, ea(k) = ûk(t)−uk(t), andαa > 0
denotes the learning rate of the action network.

4 Case study

In this section, a detailed case study is given to illustrate the
effectiveness and superiority of the developed method. The

case study is based on an office building in one of our prac-
tical applications. The building is composed of 14 floors in
total, each of which contains 6 rooms except the first floor,
since it is used as the entrance hall of the entire building.
The entire building adopts a central air-conditioning system,
where each room is allowed to control air-conditioning by
several switches. The data of each room are divided into elec-
tricity consumption from sockets, lights and air-conditioners,
which are, respectively, measured on site by three electricity
meters installed inside the room. The three types of elec-
tricity consumption can basically cover the entire electricity
consumption in a room.

In our previous work (Shi et al. 2015), a data-driven clas-
sification method based on echo state network (ESN) is
developed to classify rooms in office buildings into different
categories, including office rooms, computer rooms, storage
rooms and meeting rooms. Proposed by Jaeger (2001) and
Jaeger and Haas (2004), ESN is a recurrent neural network
(RNN) which has achieved extensive applications in chaotic
time series prediction and classification. The method based
on ESN developed in Shi et al. (2015) is divided into two
steps. Given the data of electricity consumption in a room,
the first step is to reconstruct the behavior of electricity con-
sumption in three types by using three ESNs. The second step
is to classify the room into a certain category by establishing
another ESN.

The purpose of reconstructing electricity consumption is
to show that a certain category of rooms in an office build-
ing corresponds to a fixed pattern of electricity consumption.
Based on different characteristics of electricity consumption
in a room, the room can be classified into a certain category.
Generally, the electricity consumption in a room of a certain
category does not frequently vary in view of relatively fixed
working routines for personnel who work in the room, which
lays the foundation for our room classification. With rooms
classified into different categories, we aim to develop differ-
ent strategies to optimize electricity consumption in different
rooms.

Based on the results in Shi et al. (2015), we apply the
developed method to optimize the electricity consumption of
each room by installing a battery in each room (if necessary),
so as to reduce the expense on electricity from the power grid.
For the reason that stepped electricity price rather than real-
time electricity price is implemented in China, we refer to
typical real-time electricity price in non-summer seasons in
the USA from ComEd Company. Combined with the real-
time electricity price shown in Fig. 3, results of different
categories of rooms are, respectively, presented as follows.

4.1 Office room

As given in Shi et al. (2015), Room 3 on the 4th floor is an
office room, whose original electricity consumption in three
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Fig. 3 Typical electricity price in non-summer seasons

types in 5workingdays and results of electricity consumption
behavior reconstructed by ESNs are shown in Fig. 4. It can
be seen that all the three types of electricity consumption
display a typical “double-peak” characteristic. On one hand,
all the three curves reach their peaks in mid-morning around
11:00 and mid-afternoon around 16:00 on a working day. On
the other hand, they achieve a low point at noon because part
of personnel in the office room who usually go out for lunch
thenmay switch off some electrical appliances using sockets,
turn off some lights or adjust the temperature set for the air-
conditioners, while some others who have their lunch inside
the room may still consume some electricity. However, due
to no special requirements on electricity consumption before
and after work, all the appliances consuming electricity are
turned off when nobody stays in the room, so the electricity
consumption in non-working hours is close to zero.

Next, in accordance with the electricity demand in three
types in Fig. 4 and the real-time electricity price in Fig. 3,
the electricity consumption of the office room is optimized
with the developed method based on ADHDP. A battery with
a capacity of 15 kWh and a rated power output of 2 kW is
installed in the room. Given the performance index function
(4), the optimization method based on ADHDP is imple-
mented by neural networks for 50 iterations to guarantee the
computation precision of the entire algorithm as 10−4. Both
the critic and action networks are trained with a learning rate
of 0.01 and a network precision of 10−6. Meanwhile, car-
ried out in the MATLAB R2012a environment on an Intel
Core 2, the simulation of the office room only takes less
than 1 min, which could meet practical demands especially
when the number of rooms increases. Based on the electricity
demand and electricity price in 5 working days, optimal con-
trol strategies of the battery are shown in Fig. 5, from which
we can see that the control strategies for all the electricity
demand in three types follow the same pattern given a similar
pattern of demand, i.e., the battery is generally charged when
the electricity price is low during a day and discharged to sat-
isfy the demandwhen the electricity price is high. The battery

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Electricity consumption of an office room. a Electricity con-
sumption from sockets in 5 working days. b Electricity consumption
from sockets reconstructed by ESN. c Electricity consumption from
lights in 5 working days. d Electricity consumption from lights recon-
structed by ESN. e Electricity consumption from air-conditioners in 5
working days. f Electricity consumption from air-conditioners recon-
structed by ESN

(a)

(b)

(c)

Fig. 5 Electricity management of the office room. a Electricity man-
agement of sockets in 5 working days. b Electricity management of
lights in 5 working days. c Electricity management of air-conditioners
in 5 working days
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Fig. 6 Battery level of the office room

level is shown in Fig. 6, which indicates proper changes in
the level of the battery by using the optimization method.
In addition, the total expense on electricity from the grid in
the office room in 5 working days, i.e., 120 h, is originally
262.78 cents and reduced to 209.07 cents after optimization
with a total saving of 20.44%.

4.2 Computer room

For the computer room of Room 4 on the 6th floor, which
contains some computer equipments including hosts, servers,
switches, etc., its original electricity consumption in three
types in 5 working days and results of electricity consump-
tion behavior reconstructed by ESNs are shown in Fig. 7.
The most remarkable difference of the curves from those
of the office room above is shown by the curve of elec-
tricity consumption from sockets, which almost remains
unchanged during a whole working day, since all the com-
puter equipments using sockets in the room require stable
running in 24 h. However, in terms of the curves of elec-
tricity consumption from lights and air-conditioners, both
of them are almost in the same form as those in the office
room, with the “double-peak” characteristic specifically, due
to similar working schedules of personnel in the computer
room. It is noteworthy that electricity consumption from air-
conditioners in the computer room remains at a constant
nonzero value at night given the requirement on temperature
from the computer equipments.

Then, a battery with the same parameters as the one in
the office room is installed in the computer room. Initialized
by the same performance index function and neural network
parameters, the optimization method based on ADHDP is
implemented to improve the electricity consumption in the
computer room. Optimal control strategies of the battery
in 5 working days are shown in Fig. 8. It can be seen that

(a) (b)

(c) (d)

(e) (f)

Fig. 7 Electricity consumption of a computer room. a Electricity con-
sumption from sockets in 5 working days. b Electricity consumption
from sockets reconstructed by ESN. c Electricity consumption from
lights in 5 working days. d Electricity consumption from lights recon-
structed by ESN. e Electricity consumption from air-conditioners in 5
working days. f Electricity consumption from air-conditioners recon-
structed by ESN

(a)

(b)

(c)

Fig. 8 Electricity management of the computer room. a Electricity
management of sockets in 5 working days. b Electricity management
of lights in 5working days. cElectricitymanagement of air-conditioners
in 5 working days
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except similar control strategies for electricity demand from
lights and air-conditioners, the battery in the computer room
is charged more intensely when the electricity price is low
given the stable electricity demand from sockets. Moreover,
the total expense on electricity from the grid in the computer
room in 5working days, i.e., 120 h, is originally 362.71 cents
and reduced to 285.14 cents after optimization with a total
saving of 21.39%.

4.3 Storage room

Room 3 on the 13th floor is a storage room, where articles
requiring a constant temperature for storage are stored. Its
original electricity consumption in three types in 5 working
days and results of electricity consumption behavior recon-
structed by ESNs are shown in Fig. 9. It can be seen that
all the three curves present entirely different characteristics,
none of which still takes on the “double-peak” character-
istic, but the electricity consumption from air-conditioners
remains constant due to the special storage requirements of
articles stored inside, while the curves of both two other types
of electricity consumption are close to zero for the reason that
nobody regularly works in the storage room, thus generally
almost no electricity consumption from sockets and lights is
incurred.

(a) (b)

(c) (d)

(e) (f)

Fig. 9 Electricity consumption of a storage room. a Electricity con-
sumption from sockets in 5 working days. b Electricity consumption
from sockets reconstructed by ESN. c Electricity consumption from
lights in 5 working days. d Electricity consumption from lights recon-
structed by ESN. e Electricity consumption from air-conditioners in 5
working days. f Electricity consumption from air-conditioners recon-
structed by ESN

(a)

(b)

(c)

Fig. 10 Electricity management of the storage room. a Electricity
management of sockets in 5 working days. b Electricity management of
lights in 5 working days. c Electricity management of air-conditioners
in 5 working days

Similarly, with a same battery installed, the optimization
method based on ADHDP is implemented to improve the
electricity consumption in the storage room. Optimal control
strategies of the battery in 5 working days are shown in Fig.
10. Given almost no electricity demand from sockets and
lights in the storage room, the output of the battery is not
linked to the two demands but only satisfies the demand from
air-conditioners, and given the similar stable demand from
air-conditioners, the battery is intensely charged aswellwhen
the electricity price is low during a day. In addition, the total
expense on electricity from the grid in the storage room in
5 working days, i.e., 120 h, is originally 315.17 cents and
reduced to 243.69 cents after optimization with a total saving
of 22.68%.

4.4 Meeting room

Finally, the meeting room of Room 5 on the 8th floor is
given as an example, whose original electricity consumption
in three types in 5 working days and results of electricity
consumption behavior reconstructed by ESNs are shown in
Fig. 11. Since the meeting room is occasionally used without
a fixed pattern, we can see that all the three curves of elec-
tricity consumption reconstructed by the ESNs are close to
zero.

Since the electricity demand from sockets, lights and air-
conditioners in the meeting room almost equals zero, it is
unnecessary to install a battery in the room and therefore the
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 Electricity consumption of a meeting room. a Electricity con-
sumption from sockets in 5 working days. b Electricity consumption
from sockets reconstructed by ESN. c Electricity consumption from
lights in 5 working days. d Electricity consumption from lights recon-
structed by ESN. e Electricity consumption from air-conditioners in 5
working days. f Electricity consumption from air-conditioners recon-
structed by ESN

optimization method becomes meaningless. In other words,
the cost of installing batteries in rooms classified as meeting
rooms in the office building can be saved.

4.5 Expense comparison

To evaluate the superiority of the developedmethod,we com-
pare it with the particle swarm optimization (PSO) algorithm
(Fuselli et al. 2013) with respect to expense on electricity
from the grid in the above-mentioned office room. In the
PSOalgorithm, each particle naturallymoves to an optimal or
near-optimal position. Initialized by the swarm size of G, the
position of each particle denoted by x�(t), � = 1, 2, . . . ,G
and the movement denoted by the velocity vector v�(t), the
update rule of the PSO algorithm is expressed as

x�(t) = x�(t − 1) + ν�(t),

ν�(t) = ων�(t − 1) + φ1ρ
T
1 (p� − x�(t − 1))

+ φ2ρ
T
2 (pg − x�(t − 1)), (17)

where the inertia factor ω = 0.7, the correction factors
ρ1 = ρ2 = [1, 1]T , φ1 and φ2 are randomly initialized
in [0, 1], p� denotes the best position of particles, and pg
denotes the global best position. After both the ADHDP and

Fig. 12 Real-time expense comparison between ADHDP and PSO
algorithms

Table 1 Total expense comparison

Original PSO ADHDP

Total expense (cents) 262.78 220.10 209.07

Savings (%) 16.24 20.44

PSOalgorithms are implemented for 50 iterations in the same
computer hardware conditions, the comparison of real-time
expense between ADHDP and PSO in 5 working days is
shown in Fig. 12, and the comparison of total expense within
the same period is shown in Table 1, which demonstrates
the superiority of the ADHDP algorithm concerned in this
paper.

5 Conclusion and future work

Based on a practical office building with rooms classified
into office rooms, computer rooms, storage rooms and meet-
ing rooms (Shi et al. 2015), an optimization method based on
action-dependent heuristic dynamic programming (ADHDP)
is developed to improve the electricity consumption in each
category of rooms through optimal battery management.
Finally, the total expense on electricity from the power grid
can be saved. The developedmethod is elaborated, and neural
networks are employed to implement the method. Practical
effect of the developed method is presented with a case study
on an office building. In the case study, the total expenses on
electricity from the power grid in three selected rooms, i.e.,
an office room, a computer room and a storage room, are
saved by 20.44, 21.39 and 22.68%, respectively.

However, energy losses during charging/discharging of
batteries and the lifetime of batteries are not considered in
this paper, but the two issues may reduce the expense saved
by the developed optimization algorithm to a certain extent.
In future work, we will investigate how to reduce the energy
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losses by adding thermal insulation materials outside bat-
teries, controlling the charging/discharging power, limiting
the maximum and minimum storage energies, adjusting the
electrolyte density inside batteries, avoiding pollutants out-
side batteries, etc., which will also extend the lifetime of
batteries.

On the other hand, renewable sources including solar and
wind energies may be introduced into the management sys-
tem to further improve the electricity consumption of rooms
in office buildings and reduce expense on electricity from
the power grid. Moreover, with more data obtained, we may
extend our study to optimizing electricity consumption of the
entire building besides the rooms.
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