
Fast Kernel SVM Training via Support
Vector Identification

Xue Mao1, Zhouyu Fu2, Ou Wu1, Weiming Hu1
1CAS Center for Excellence in Brain Science and Intelligence Technology,

NLPR, Institute of Automation, Chinese Academy of Sciences, China
2Didi Research, Beijing, China

{xue.mao, wuou, wmhu}@nlpr.ia.ac.cn, fuzhouyu@didichuxing.com

Abstract—Training kernel SVM on large datasets suffers from
high computational complexity and requires a large amount
of memory. However, a desirable property of SVM is that its
decision function is solely determined by the support vectors,
a subset of training examples with non-vanishing weights. This
motivates a novel efficient algorithm for training kernel SVM
via support vector identification. The efficient training algorithm
involves two steps. In the first step, we randomly sample the
training data without replacement several times, each time a
small subset of training data is sampled. Then a kernel SVM
is trained on each subset, and the resulting kernel SVM models
are used to identify the support vectors on the margin. In the
second step, an optimization problem is solved to estimate the
Lagrange multipliers corresponding to these support vectors.
After obtaining the support vectors and Lagrange multipliers,
we can approximate the decision function of kernel SVM. Due to
the cubic complexity of standard kernel SVM training algorithm,
training many kernel SVMs on small subsets of training data is
much more efficient than training a single kernel SVM on the
whole training data especially for large datasets. Therefore, our
algorithm has better scalability than kernel SVM. Besides, train-
ing SVMs on each subset can be done independently, and hence
our algorithm can be easily parallelized for further speedup.
Since our algorithm only identifies the support vectors on the
margin, it produces less number of support vectors as compared
to that produced by standard kernel SVM. This makes our
algorithm more efficient in prediction too. Experimental results
show that our method outperforms state-of-the-art methods and
achieves performance on par with the kernel SVM albeit with
much improved efficiency.

I. INTRODUCTION

The support vector machine (SVM) is widely used in ma-
chine learning community. Although linear SVM is extremely
efficient [1], [2], [3], [4], it cannot handle nonlinear data
with acceptable accuracy. On the other hand, while kernel
SVM [5] often produces satisfactory classification results, its
high time and space complexities limit its application to large
scale datasets. Specifically, standard kernel SVM training has
O(N3) time and O(N2) space complexities, where N is the
training set size [6]. To address this issue, methods to speed
up kernel SVMs have been proposed. Some methods provide a
low rank approximation to the kernel matrix, like the Nyström
method [7], [8], [9]. However, on very large data sets, the
resulting rank of the kernel matrix may still be too high to
be handled efficiently. Another approach to scale up kernel
methods is by reducing the number of support vectors [10]. As

shown in the experimental section, this approach often trades
off accuracy for lower complexity.

An advantage of the SVM is that the location of the decision
boundary is only determined by the support vectors, and hence
we only need to identify the support vectors and ignore other
non-support vectors. In this paper, we propose a fast kernel
SVM training algorithm via Support Vector Identification
(SVI). It generally involves two major steps: identifying the
support vectors on the margin and then solving the Lagrange
multipliers corresponding to these support vectors. In the first
step, we randomly sample the training data without replace-
ment several times, each time only a small subset of training
data is sampled. Then a kernel SVM is trained on each of these
subsets, and the resulting kernel SVM models are combined
to identify the support vectors on the margin. It should be
noted that our algorithm only identifies the support vectors
on the margin. This is because that the decision boundary is
largely defined by the location of these support vectors, and
it is only weakly influenced by the support vectors elsewhere.
Note also that we sample the data without replacement, which
means that the kernel SVMs trained on each of these subsets
are different and complementary to each other. An ensemble
of these diverse SVMs can help us identify the support vectors
more accurately. In the second step, an optimization problem
is solved to estimate the Lagrange multipliers corresponding
to the support vectors. After obtaining these support vectors
and Lagrange multipliers, we can approximate the decision
function of kernel SVM and make predictions for new data
points.

Two factors may account for the improvement in training
speed brought by our method. First, we train kernel SVM on a
small subset of training data for several times in the first step,
which is much more efficient than training a single kernel
SVM on the whole training set and leads to substantial re-
duction in the training cost. Second, a quadratic programming
(QP) problem needs to be solved to obtain the Lagrange mul-
tipliers in the second step. The number of variables involved
is the number of support vectors, while in the QP problem of
standard kernel SVM training the number of variables is the
number of all the training data. For large datasets, the number
of the training data is usually orders of magnitude larger
than that of support vectors. Hence the proposed algorithm is

much more efficient than kernel SVM during training. Besides,
training SVMs on each small subsample can be done not only
efficiently but also independently, and hence our algorithm
can be easily parallelized for further speedup. Since only
the support vectors on the margin are used for prediction,
our algorithm is also more efficient than kernel SVM during
prediction. We have evaluated our SVI algorithm on both
synthetic and real data sets. Experimental results demonstrate
that SVI outperforms other competitive methods. It is also
comparable to kernel SVM in terms of classification accuracy,
while it is much more efficient than kernel SVM both in
training and testing.

The rest of the paper is outlined as follows: Section II will
introduce some related work about fast solvers for the kernel
SVM. The proposed SVI model will be described in detail in
Section III followed by some experimental results in Section
IV. The conclusions are given in Section V.

II. RELATED WORK

There are quite a lot of existing studies focusing on speeding
up the kernel SVM from different perspectives.

Some approaches employ the Nyström method [7], [8], [9],
[11] to provide a low rank approximation to the kernel matrix
by sampling a small subset of columns. However, on very large
data sets, the resulting rank of the kernel matrix may still
be too high to be handled efficiently. Besides, as a generic
technique for matrix factorization, the Nyström method is
not specifically designed for the classification task and does
not take into account label information in the factorization
process. Hence discriminative information may be lost with
the Nyström approximation, which further leads to sub-optimal
solution to the classifier model.

There is previous work that focuses on obtaining an ap-
proximate kernel SVM solution by reducing the number of
support vectors [12], [13], [14]. SpSVM [10] is one of the
representative methods. It greedily finds a set of kernel basis
functions (support vectors) to approximate the SVM primal
cost function. As shown in the experimental section, these
methods often trade off accuracy for lower complexity.

Locally linear classifiers have been also proposed, which
learn multiple linear classifiers to approximate the decision
boundary of kernel SVM. The first idea which has been
widely explored is using a divide-and-conquer strategy [15]
involving two steps: partitioning the data into clusters and
training a linear classifier for each cluster. CSVM [16] falls
into this category. CSVM adopts K-means to partition the data
into clusters and then trains a linear SVM for each cluster.
Meanwhile, CSVM requires the weight vector of each linear
SVM to align with a global weight vector, which can be treated
as a type of regularization. The second way is to employ a lazy
learning strategy: given a testing sample, a classifier is trained
in a subregion of the input space near the sample and then
used to classify the sample. SVM-KNN [17] and the adaptive
SVM nearest neighbor classifier [18] belong to this category.
Since the learning process is postponed until the testing phase,
these methods are inefficient during testing. There also exist

+

+

+

+

+

+

+
+

+
+

+

f (x)=1

f (x)=0

f (x)=-1

O

+

+

+

Fig. 1. Illustration of the support vectors and the margin. Data points with
circles around them are support vectors. The four red circled points are the
support vectors on the margin.

other locally linear classifiers based on local coding schemes
[19], [20], [21], such as LLSVM [22]. LLSVM approximates
a nonlinear classifier by a set of linear classifiers associated
with each anchor point in a dictionary. It is time-consuming
due to nearest neighbor search and the local coordinate coding.

Another work in this field is LDKL [23]. It generalizes
localized multiple kernel learning so as to learn a tree-based
primal feature embedding that encodes non-linearities, and
then combines this feature embedding with the SVM classifier.
LDKL is a fully supervised technique where the trees are built
by utilizing the label information.

In the experimental section, we will compare our algorithm
with some of the above-mentioned methods.

III. SVI MODEL

Kernel SVM can be prohibitively expensive when dealing
with large datasets, which limits its application to many real
problems. However, the decision function of kernel SVM is de-
termined only by the support vectors. Specifically, the decision
function can be formulated as f(x) =

∑s
i=1 αiyik(x,xi) + b,

where {(xi, yi)}si=1 are support vectors and {αi}si=1 are the
positive Lagrange multipliers corresponding to these support
vectors. b is the bias parameter. Fig. 1 gives an illustration of
the support vectors and the margin. Data points with circles
around them are support vectors, which can be divided into
three categories: the support vectors on the margin, inside the
margin and outside the margin. The support vectors on the
margin (illustrated by the four red circled points in Fig. 1) are
the points satisfying yif(xi) = 1, where yi is the true label
of xi and f(xi) is its decision value. The decision boundary
is largely defined by the location of these support vectors.
So we just identify these support vectors. Then we solve an
optimization problem to obtain the corresponding Lagrange
multipliers and the bias parameter. After that, the decision
function f(x) is obtained. In the following two subsections, we
will introduce how to identify the support vectors and estimate
the Lagrange multipliers respectively.

A. Identifying the Support Vectors on the Margin

Training kernel SVM on the entire training data is expen-
sive. This is because standard SVM training has O(N3) time
complexity, where N is the training set size. We randomly
sample the training data without replacement for M times. In
each time, only a small subset of training data is sampled,
resulting in M non-overlapped subsets, each containing n
samples. Then a kernel SVM is trained on each of these
subsets. Thus the time complexity of training these M SVMs
is MO(n3), which is much less than the training complexity
O(N3) on the entire training data, particularly when the whole
training set size N is very large. Then the obtained M SVM
models are used to predict the decision values of all the
training data. Namely, for each training sample xi, we use the
trained M SVM models to predict its decision value. Then
by averaging these M decision values, we get the averaged
decision value for each training sample. If the product of the
averaged decision value and the true label yi is approximately
equal to 1, the sample xi is identified as the support vector
on the margin. This can be formulated as:

yi
(1

M

M∑
m=1

fm(xi)
)
≈ 1 (1)

The reason why we only identify the support vectors on the
margin is that the decision hyperplane is largely defined by
the location of these support vectors, and it is only weakly
influenced by the support vectors elsewhere. It should be also
noted that we sample the training data without replacement,
resulting in M non-overlapped subsets. Thus the obtained
M SVM models are different and complementary to each
other. In Equation (1), it can be regarded as ensembling
M different classifiers to predict the decision value of the
sample xi. Ensemble diversity, that is, the difference among
the individual classifiers, is crucial to ensemble performance
[24]. By combining M different SVM models to predict the
decision value, we can identify the support vectors on the
margin more accurately.

B. Estimating the Lagrange Multipliers

After identifying the support vectors {(xi, yi)}si=1 on the
margin, we solve the following optimization problem to esti-
mate the Lagrange multipliers:

min
f

1

2
‖f‖2H + C

s∑
i=1

(yi − f(xi))
2 (2)

f(xi) =

s∑
j=1

βjk(xj ,xi) + b (3)

where the first term in Equation (2) is the regularization term
and the second term minimizes the approximation error to
enforce that f(xi) = yi. Note here βj = yjαj , and we
will drop the constraints on β to simplify the problem. ‖f‖2H
denotes the function norm in the reproducing kernel Hilbert

space (RKHS). Given the above form of f in Equation (3),
we have the following relation:

‖f‖2H =

s∑
i,j=1

βiβjk(xi,xj) (4)

Pluging Equation (4) into Equation (2), we can reformulate
the optimization problem in the following vectorized form:

min
β,b

Q(β, b) =
1

2
βTKβ + C‖y −Kβ − 1sb‖2 (5)

where K = [k(xi,xj)]
s
i,j=1 is an s× s Gram matrix of kernel

values calculated between support vectors and 1s is an s-
dimensional vector of ones. This is a quadratic programming
(QP) problem. The number of variables that need to be
optimized is the number of support vectors (except for the bias
b), while in the QP problem of standard kernel SVM training
the number of variables is the number of all the training
data. For large datasets, the number of the training data is
usually much larger than that of support vectors. Hence our
algorithm achieves much higher efficiency than kernel SVM
in the training phase.

We now solve the minimization problem in Equation (5).
Taking the partial derivative of Q with respect to b and setting
the derivative to 0, we have:

∂Q

∂b
= 2C1Ts (Kβ + 1sb− y) = 0 (6)

⇒ b =
1

s
1Ts (y −Kβ) (7)

Let ki denote the ith row vector of K and εi , yi − kiβ
denote the error term for the ith support vector. Then the bias
term b is basically the average error ε over all support vectors.

Taking the partial derivative of Q with respect to β and
setting the derivative to 0, we have:

∂Q

∂β
= Kβ + 2CKT (Kβ + 1sb− y) (8)

= Kβ + 2CKT
(
Kβ +

1

s
1s1

T
s (y −Kβ)− y

)
= 0

⇒ β = (
1

2C
I + K)−1ȳ (9)

where I is an s × s identity matrix. Let Π1 , I − 1
s1s1

T
s

denote a projection matrix, and then K , Π1K, ȳ , Π1y.
When applying Π1 to the matrix on the right-hand-side, the
average row vector is subtracted from each row of the matrix.
After obtaining β, the Lagrange multipliers {αi}si=1 can be
obtained by αi = yiβi.

A sketch of our SVI algorithm is presented in Algorithm 1.
It can be seen that it involves two major steps: identifying the
support vectors {(xi, yi)}si=1 on the margin and then solving
the corresponding Lagrange multipliers {αi}si=1 and the bias
parameter b. In the testing stage, prediction is made by the
sign of the decision function f(x) =

∑s
i=1 αiyik(x,xi) + b.

Obviously, the prediction cost scales linearly with the number
of support vectors. Since we only identify the support vectors
on the margin, our algorithm is more efficient than kernel SVM

−8 −6 −4 −2 0 2 4 6 8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) SVI
−8 −6 −4 −2 0 2 4 6 8

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) kernel SVM
Fig. 2. Learned classifiers on the synthetic Sine dataset. The red points and the green points are the support vectors of the positive class and the negative
class respectively.

Algorithm 1 SVI
Input: Training data {(xi, yi)}Ni=1 ⊂ Rd × {−1, 1}, the

number of sampling times M and the sampling rate θ
Output: The support vectors {(xi, yi)}si=1, the corresponding

Lagrange multipliers {αi}si=1 and the bias parameter b.
1: Randomly sample the training data with the sampling

rate θ without replacement for M times, resulting in M
subsets.

2: Train a kernel SVM on each of these subsets.
3: Combine the M SVMs to identify the support vectors
{(xi, yi)}si=1 on the margin via Equation (1).

4: Estimate the parameters β using Equation (9) and then
obtain the Lagrange multipliers {αi}si=1 by αi = yiβi.

5: Calculate the bias parameter b via Equation (7).

during testing at the expense of only a moderate sacrifice in
classification accuracy.

IV. EXPERIMENTS

A. Synthetic Dataset

The synthetic dataset contains points randomly sampled
from two Sine signals, as shown in Fig. 2. Each signal contains
1000 points and forms one class: the upper signal being the
positive class and the lower signal being the negative class. We
then apply our SVI model and RBF kernel SVM to this dataset.
The decision boundaries produced by these two methods are
displayed by red curves in Figures 2 (a) and (b) respectively.
It can be seen that the decision boundary produced by SVI is
quite similar to that of kernel SVM. The red points and the
green points are the support vectors of the positive class and
the negative class respectively. Obviously, SVI only identifies
the support vectors that almost lie on the margin while kernel
SVM also identifies the support vectors lying inside or outside
the margin. Therefore, SVI only uses a small fraction of
support vectors to produce a similar decision boundary to
kernel SVM. Since the prediction complexity is linear in the
number of support vectors, SVI is more efficient than kernel
SVM in prediction. Please enlarge and view these two figures
on the screen for better comparison.

B. Real Datasets

We use eight benchmark datasets: Banana, IJCNN, SKIN,
Magic04, CIFAR, USPS, MNIST and LETTER. The Banana,
USPS and MNIST datasets are used in [25] [26] [27]. The
IJCNN dataset is obtained from the LibSVM website [28].
The preprocessed binary CIFAR dataset is taken from [23].
The others are available at the UCI repository [29]. The first
five datasets are used for binary classification tasks, and the
other three are multi-class datasets. All the datasets have been
divided into training and testing sets except the Banana, SKIN,
and Magic04 datasets. For Banana and Magic04, we randomly
selected two thirds of examples for training and the rest for
testing. For SKIN, we used half for training and the rest for
testing. All the datasets are normalized to have zero mean and
unit variance in each dimension. Table I gives a brief summary
of these datasets.

TABLE I
SUMMARY OF THE REAL DATASETS IN OUR EXPERIMENTS

Datasets # training # test # features # classes
Banana 3,533 1,767 2 2
IJCNN 49,990 91,701 22 2
SKIN 122,529 122,528 3 2

Magic04 12,680 6,340 10 2
CIFAR 50,000 10,000 400 2
USPS 7,291 2,007 256 10

MNIST 60,000 10,000 784 10
LETTER 16,000 4,000 16 26

We compare our SVI model with six previously-mentioned
methods: Linear SVM, Kernel SVM, SpSVM, LLSVM,
CSVM and LDKL. We use LibLinear [2] and LibSVM [28] for
training linear SVM and Gaussian kernel SVM respectively.
The regularization parameter C is tuned by 5-fold cross
validation on the training set for both linear and kernel SVMs.
Cross validation is also used to tune the kernel width of the
Gaussian kernel for kernel SVM. For the proposed method
SVI, the number of sampling times M is set to five and
the sampling rate θ is set to 0.1. The parameters of all
the other methods are set as in their original papers, with
most parameters set by cross validation. For those methods

TABLE II
COMPARISON OF DIFFERENT CLASSIFIERS IN TERMS OF CLASSIFICATION ACCURACY (%)

Datasets Banana IJCNN SKIN Magic04 CIFAR USPS MNIST LETTER
Linear SVM 55.29 92.25 93.34 79.30 69.09 91.87 91.91 57.52
Kernel SVM 91.05 98.52 98.98 86.70 81.62 94.86 97.84 97.57

SpSVM 89.86±0.24 96.59±0.43 96.14±0.55 84.87±0.36 74.25±0.63 92.33±0.47 96.10±0.32 94.37±0.19
LLSVM 89.71±0.09 96.86±0.25 95.24±0.46 85.19±0.28 72.60±0.29 93.67±0.21 96.50±0.17 95.03±0.32
CSVM 89.64±0.17 97.25±0.48 97.41±0.29 85.01±0.51 73.37±0.21 92.85±0.18 95.75±0.24 94.58±0.13
LDKL 90.15±0.45 98.31±0.26 98.08±0.38 86.22±0.23 76.04±0.48 93.83±0.34 97.24±0.31 97.15±0.37

SVI 90.62±0.37 98.36±0.32 98.25±0.46 86.51±0.16 76.29±0.27 93.53±0.39 97.61±0.28 97.24±0.30

TABLE III
COMPARISON OF DIFFERENT CLASSIFIERS IN TERMS OF TRAINING TIME (IN SECONDS)

Methods Banana IJCNN SKIN Magic04 CIFAR USPS MNIST LETTER
Linear SVM 0.0079 2.5636 0.1390 0.0364 2.4807 3.1580 99.6904 0.4587
Kernel SVM 1.54 68.94 7.71 20.62 16713.40 18.56 695.84 24.35

SpSVM 1.368±0.056 29.56±0.188 2.842±0.060 12.61±0.390 453.9±3.856 13.11±0.077 395.4±4.681 10.60±0.379
LLSVM 7.641±0.329 24.92±0.145 21.33±0.052 9.318±0.299 165.0±1.801 24.33±0.836 2429±10.17 122.8±1.440
CSVM 0.693±0.054 18.80±0.889 9.344±0.035 4.274±0.044 416.8±6.508 38.62±1.175 826.3±5.572 6.979±0.015
LDKL 0.892±0.003 15.11±0.395 3.978±0.021 9.539±0.256 272.1±10.29 16.07±0.153 476.1±3.994 10.42±0.186

SVI 0.086±0.015 9.074±0.202 0.954±0.079 4.703±0.019 256.9±5.003 5.832±0.297 153.6±2.889 3.647±0.026

TABLE IV
COMPARISON OF DIFFERENT CLASSIFIERS IN TERMS OF TESTING TIME (IN SECONDS)

Methods Banana IJCNN SKIN Magic04 CIFAR USPS MNIST LETTER
Linear SVM 0.0029 0.1475 0.0212 0.0043 0.1631 0.0315 0.3339 0.0076
Kernel SVM 0.74 357.06 68.58 10.82 594.08 43.17 867.59 13.49

SpSVM 0.183±0.015 39.05±0.127 5.882±0.293 1.558±0.026 69.01±1.484 9.563±0.194 77.32±1.093 4.566±0.027
LLSVM 0.035±0.009 0.851±0.023 0.647±0.048 0.090±0.020 2.909±0.142 0.482±0.016 6.415±0.090 0.117±0.011
CSVM 0.069±0.017 4.327±0.295 1.581±0.033 0.402±0.041 21.77±0.098 3.658±0.018 60.81±0.551 1.641±0.013
LDKL 0.010±0.004 0.391±0.032 0.275±0.027 0.026±0.004 0.900±0.029 0.098±0.008 1.731±0.080 0.082±0.004

SVI 0.064±0.009 4.452±0.151 1.759±0.054 0.574±0.003 32.11±0.160 2.415±0.031 20.32±0.775 1.053±0.009

involving K-means clustering or other random factors, we take
the average results and the standard deviation over 10 random
repetitions. The comparison results in terms of classification
accuracy are presented in Table II. The results with respect to
training time and testing time are given in Tables III and IV
respectively.

Unsurprisingly, linear SVM does not perform well on all
the datasets as it can not handle nonlinear data. Kernel SVM
achieves the best performance overall. Nevertheless, kernel
SVM is expensive especially for large datasets as shown in
Table III and Table IV. The proposed SVI achieves comparable
performance to kernel SVM, but it is much more efficient
in both training and prediction. This is because that during
training SVI only needs to train kernel SVM on a small
subset of training data for several times, which is much more
efficient than training kernel SVM on the whole training data.
Since we only identify the support vectors on the margin,

the support vectors produced are less than that produced
by standard kernel SVM, which makes our algorithm more
efficient than kernel SVM during prediction. SpSVM is a
kind of approximate solver for the kernel SVM by reducing
the number of basis functions. It starts with an empty set of
basis functions and greedily chooses new basis functions to
improve the primal objective function. To achieve a satisfac-
tory classification performance, it requires quite a lot of basis
functions. Thus it needs to make a tradeoff between accuracy
and computation time. Even though LLSVM performs well on
some datasets, it is slow due to the nearest neighbor search
and the local coordinate coding. LLSVM is sometimes slower
than kernel SVM [16]. CSVM groups the data into several
clusters using K-means and then trains a linear SVM in each
cluster. Meanwhile, CSVM requires the weight vector of each
linear SVM to align with a global reference weight vector,
which may not hold in some applications. Additionally, its

performance is directly determined by the initial K-means
clustering results. If the initial K-means clustering is poor,
the performance of CSVM will likewise be poor. Therefore,
CSVM is not robust. LDKL achieves quite good performance
overall, but SVI still gains a margin of advantage over LDKL
on seven out of eight datasets. The reason lies in the fact
that LDKL learns a tree-based primal feature embedding to
partition the feature space, which may lead to non-smooth
partition over the feature space and abrupt change across
region boundaries. Moreover, LDKL is intended to reduce
prediction costs, and its training speed is not fast enough
[30]. In general, the proposed algorithm SVI achieves a better
balance between accuracy and time complexity.

V. CONCLUSION

In this paper, we have proposed the SVI model, which
identifies the support vectors on the margin and estimates
the Lagrange multipliers. Then the decision function of ker-
nel SVM is approximated by these support vectors and the
corresponding Lagrange multipliers. Since SVI only needs to
train kernel SVM on a small subset of training data for several
times, it is much more efficient during training. Furthermore,
SVM on each subset can be trained separately, which makes
our algorithm easily parallelized for further speedup. SVI is
also more efficient than kernel SVM during prediction due to
using only the support vectors on the margin for prediction.
Experimental results on benchmark datasets demonstrate that
SVI outperforms state-of-the-art methods. It also achieves
much higher efficiency than kernel SVM with comparable
classification performance.

ACKNOWLEDGEMENT

This work is partly supported by the 973 basic research
program of China (Grant No. 2014CB349303), the Natural
Science Foundation of China (Grant No. 61472421), the
Project Supported by CAS Center for Excellence in Brain
Science and Intelligence Technology, and the Project Sup-
ported by Guangdong Natural Science Foundation (Grant No.
S2012020011081).

REFERENCES

[1] T. Joachims, “Training linear SVMs in linear time,” in Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’06, 2006, pp. 217–226.

[2] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“Liblinear: A library for large linear classification,” The Journal of
Machine Learning Research, vol. 9, pp. 1871–1874, 2008.

[3] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan,
“A dual coordinate descent method for large-scale linear SVM,” in
Proceedings of the 25th International Conference on Machine Learning,
ser. ICML ’08, 2008, pp. 408–415.

[4] E. Hazan, T. Koren, and N. Srebro, “Beating SGD: Learning SVMs in
sublinear time,” in Advances in Neural Information Processing Systems,
ser. NIPS ’11, 2011, pp. 1233–1241.

[5] B. Schölkopf and A. J. Smola, Learning with kernels: Support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

[6] I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core vector machines: Fast
SVM training on very large data sets,” in Journal of Machine Learning
Research, 2005, pp. 363–392.

[7] M. Li, J. T. Kwok, and B.-L. Lu, “Making large-scale Nyström approx-
imation possible,” in Proceedings of the 27th International Conference
on Machine Learning, ser. ICML ’10, 2010, pp. 631C–638.

[8] C. Williams and M. Seeger, “Using the Nyström method to speed
up kernel machines,” in Advances in Neural Information Processing
Systems, ser. NIPS ’01, 2001, pp. 682–688.

[9] T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou, “Nyström method
vs random fourier features: A theoretical and empirical comparison,”
in Advances in Neural Information Processing Systems, ser. NIPS ’12,
2012, pp. 476–484.

[10] S. S. Keerthi, O. Chapelle, and D. DeCoste, “Building support vector
machines with reduced classifier complexity,” The Journal of Machine
Learning Research, vol. 7, pp. 1493–1515, 2006.

[11] A. Vedaldi and A. Zisserman, “Sparse kernel approximations for efficient
classification and detection,” in IEEE Conference on Computer Vision
and Pattern Recognition, ser. CVPR ’12, 2012, pp. 2320–2327.

[12] M. Cossalter, R. Yan, and L. Zheng, “Adaptive kernel approximation
for large-scale non-linear SVM prediction,” in Proceedings of the 28th
International Conference on Machine Learning, ser. ICML ’11, 2011,
pp. 409–416.

[13] T. Joachims and C.-N. J. Yu, “Sparse kernel SVMs via cutting-plane
training,” Machine Learning, vol. 76, no. 2-3, pp. 179–193, 2009.

[14] I. W. Tsang, A. Kocsor, and J. T. Kwok, “Simpler core vector machines
with enclosing balls,” in Proceedings of the 24th International Confer-
ence on Machine Learning, ser. ICML ’07, 2007, pp. 911–918.

[15] J. Zhu, N. Chen, and E. P. Xing, “Infinite SVM: a Dirichlet process
mixture of large-margin kernel machines,” in Proceedings of the 28th
International Conference on Machine Learning, ser. ICML ’11, 2011,
pp. 617–624.

[16] Q. Gu and J. Han, “Clustered support vector machines,” in Proceedings
of the 16th International Conference on Artificial Intelligence and
Statistics, ser. AISTATS ’13, 2013, pp. 307–315.

[17] H. Zhang, A. C. Berg, M. Maire, and J. Malik, “SVM-KNN: Discrim-
inative nearest neighbor classification for visual category recognition,”
in IEEE Conference on Computer Vision and Pattern Recognition, ser.
CVPR ’06, 2006, pp. 2126–2136.

[18] E. Blanzieri and F. Melgani, “An adaptive SVM nearest neighbor clas-
sifier for remotely sensed imagery,” in IEEE International Conference
on Geoscience and Remote Sensing Symposium, 2006, pp. 3931–3934.

[19] J. C. van Gemert, J.-M. Geusebroek, C. J. Veenman, and A. W.
Smeulders, “Kernel codebooks for scene categorization,” in European
Conference on Computer Vision, ser. ECCV ’08. Springer, 2008, pp.
696–709.

[20] K. Yu, T. Zhang, and Y. Gong, “Nonlinear learning using local coor-
dinate coding,” in Advances in Neural Information Processing Systems,
ser. NIPS ’09, 2009, pp. 2223–2231.

[21] L. Liu, L. Wang, and X. Liu, “In defense of soft-assignment coding,”
in IEEE International Conference on Computer Vision, ser. ICCV ’11,
2011, pp. 2486–2493.

[22] L. Ladicky and P. Torr, “Locally linear support vector machines,” in
Proceedings of the 28th International Conference on Machine Learning,
ser. ICML ’11, June 2011, pp. 985–992.

[23] C. Jose, P. Goyal, P. Aggrwal, and M. Varma, “Local deep kernel
learning for efficient non-linear SVM prediction,” in Proceedings of the
30th International Conference on Machine Learning, ser. ICML ’13,
2013, pp. 486–494.

[24] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC
Press, 2012.

[25] G. Rätsch, T. Onoda, and K.-R. Müller, “Soft margins for adaboost,”
Machine Learning, vol. 42, no. 3, pp. 287–320, 2001.

[26] J. J. Hull, “A database for handwritten text recognition research,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 16,
no. 5, pp. 550–554, 1994.

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[28] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[29] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

[30] C.-J. Hsieh, S. Si, and I. S. Dhillon, “A divide-and-conquer solver for
kernel support vector machines,” in Proceedings of the 31st International
Conference on Machine Learning, ser. ICML ’14, 2014.

