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Abstract. Human action recognition is an area with increasing signifi-
cance and has attracted much research attention over these years. Fusing
multiple features is intuitively an appropriate way to better recognize
actions in videos, as single type of features is not able to capture the
visual characteristics sufficiently. However, most of the existing fusion
methods used for action recognition fail to measure the contributions of
different features and may not guarantee the performance improvement
over the individual features. In this paper, we propose a new Hierarchi-
cal Bayesian Multiple Kernel Learning (HB-MKL) model to effectively
fuse diverse types of features for action recognition. The model is able
to adaptively evaluate the optimal weights of the base kernels construct-
ed from different features to form a composite kernel. We evaluate the
effectiveness of our method with the complementary features capturing
both appearance and motion information from the videos on challenging
human action datasets, and the experimental results demonstrate the
potential of HB-MKL for action recognition.
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1 Introduction

Action recognition is an active research area in computer vision motivated by the
promise of applications in broad domains such as intelligent surveillance, human-
computer interaction and video retrieval. However, the task is still challenging
due to the variations in action performances, background clutter, illumination
changes, camera movements and occlusions.

The previous researches [1–7] in the literature have paid more attention to
designing descriptive features which are specific to action recognition and a large
number of features are available now for this task. It is an intuitive way to inte-
grate diverse types of informative features instead of a single one to improve the
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recognition performance. However, the existing action recognition algorithm-
s [8, 9] usually employ the simple combination of different features. The most
common method is the feature-level fusion which concatenates all the feature
vectors together into one single feature vector. A drawback of the method is
the high dimensionality of the final concatenated vector, since the efficiency of
the method drops exponentially as the dimensionality increases. Another feasi-
ble solution is the kernel-level fusion. For instance, the multi-channel approach
proposed in [10] simply takes the multiplication of the kernels. Nevertheless,
the method cannot guarantee the performance improvement over the individual
features. It is worth noting that both methods do not consider the relative im-
portance of the candidate features and this leads to a meaningless combination.
Therefore, it requires to formulate a combination method that is able to evalu-
ate the relative contributions of different feature representations and utilize such
information to gain enhanced classification performance.

In this paper, we propose a new Hierarchical Bayesian Multiple Kernel Learn-
ing (HB-MKL) framework to deal with feature fusion problem for action recog-
nition. We first formulate the multiple kernel learning problem as a decision
function based on a weighted linear combination of the base kernels, and then
develop a hierarchical Bayesian framework with three layers to solve this prob-
lem. Specifically, the bottom layer consists of the parameters in the decision
function. On the middle layer, the priors of Gaussian distribution family are
placed on the parameters of the decision function. Especially, the prior on the
kernel weight is set by a half-normal distribution, which has the advantage of
interpretability due to the only nonnegative restriction in nature. The top layer
is composed of the hyper-priors, invoked on the parameters of the priors at the
level below. Gamma distribution is employed to take the advantage of the conju-
gacy and non-informativeness. The non-informativeness ensures that the learnt
model parameters are intrinsic to the data. The model is established in a fully
conjugate manner, offering the probability of efficient inference. Therefore, we
derive a variational approximation for inference. After evaluating the optimal
weights of the base kernels using the framework above, we derive the composite
kernel. Finally, an SVM classifier is trained using the learnt optimal combined
kernel. We apply the above model to the feature fusion problem in the field of
action recognition, where no such attempts have been made before to the best of
our knowledge. We conduct a set of experiments for better illustration and com-
parison on several public action datasets. The experimental results demonstrate
the effectiveness of our method and provide some insight on the contributions
of different features for action recognition.

The main contributions of this work can be summarized as follows. First,
a new framework of hierarchical Bayesian multiple kernel learning is designed.
The half-normal distribution prior placed on the base kernel weights makes them
nonnegative without any other constraints, which exactly meets the actual re-
quirements and has good interpretability. Second, instead of conventional simple
fusion of multiple features used in action recognition, we propose to apply the
HB-MKL based feature fusion method to action recognition, which can learn the
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optimal combination of multiple features automatically. Third, we carry out a
set of experiments on three datasets, and the experimental results demonstrate
the efficiency of the proposed method. It is worth mentioning that the valuable
results of the feature weights learnt by our method give some insight on how
each feature contributes to recognizing an action.

2 Related Work

In this section, we give a brief overview of the related work on three aspects: dis-
criminative features for action recognition, feature fusion methods and multiple
kernel learning algorithms.

Various classical video feature descriptors are proposed in previous work in-
cluding HOG, HOF [1], MBH [2] and some spatio-temporal extensions of image
descriptors, such as 3D-SIFT [3], HOG3D [4] and extended SURF [5]. More-
over, trajectory features are also popular descriptors. In [6], human actions are
represented using sparse SIFT-based trajectory. Wang et al. [7] introduce an
approach to combine dense sampling with feature tracking, and extract robust
features along the trajectories.

Realizing it is not enough to describe videos using homogeneous descriptor,
some researchers try to fuse heterogeneous descriptors to construct more dis-
criminative classifiers. However, most of the existing algorithms combine multi-
ple features in an easy way. Tian et al. [8] combine the histogram of MHI and
Haar wavelet transform of MHI at the feature-level. They use the straightforward
concatenation of the features as the combined feature representation, which is a
higher dimensional vector. Ullah et al. [9] use a multi-channel approach proposed
in [10] to integrate feature representations, which takes the multiplication of the
feature kernels in nature. The method can be regarded as a combination at the
kernel-level using fixed rules without additional parameters. However, the above
mentioned methods do not take into account the contribution of different fea-
tures and hence cannot make better use of the multiple features. In this paper,
we employ Multiple Kernel Learning (MKL) to informatively combine diverse
features for action recognition.

Many variants of MKL have been proposed in the previous work. In this
paper, we consider MKL with a weighted linear combination of the base kernels
under a Bayesian framework. The existing Bayesian MKL methods differ in the
prior assumptions on the kernel weights. Girolami et al. [11] present a Bayesian
model for regression and classification problems by employing a Dirichlet prior
on the kernel weighting coefficients. Damoulas et al. [12] use a similar model
with the same prior distribution assumptions and extend the model for multi-
class problem. Moreover, they apply the approach to protein fold recognition
and remote homology detection problems to prove the validity of the method.
Gönen [13] presents an efficient MKL algorithm by assuming the kernel weights
to be normally distributed. In this paper, we introduce a half-normal distribution
on the kernel weights. Compared with the normal distribution prior, the half-
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normal distribution ensures that the kernel weights are nonnegative and hence
it produces a more meaningful combination of kernels.

3 Hierarchical Bayesian Multiple Kernel Learning for
Action Recognition

In this section, we first introduce the heterogeneous and complementary fea-
tures used to sufficiently represent the actions in videos. Then we introduce the
detailed HB-MKL algorithm and its inference. Finally, we apply HB-MKL to
effectively fuse the obtained multiple features for action recognition.

3.1 Multiple Features for Action Representation

In this paper, we use the state-of-the-art improved dense trajectory features [14]
for action representation. We first extract the trajectories by densely sampling
feature points in each frame and tracking them in the video based on displace-
ment information from the optical flow field. Subsequently, we compute the
trajectory-aligned descriptors (i.e., Trajectory, HOF, HOG and MBH) within
a space-time volume along the trajectories.

It is worth noting that the extracted features are complementary in describing
action sequences by capturing both static appearance and dynamic motion infor-
mation. The trajectory descriptor is a concatenation of normalized displacement
vectors which describe the motion of the trajectories. HOF captures the motion
information based on the orientation of optical flow, whereas HOG calculates the
histograms of oriented gradients which measure the static appearance informa-
tion. MBH (motion boundary histogram) encodes relative motion information
by computing derivatives separately for the horizontal and vertical components
of the optical flow.

Once we obtain the features above, we encode them using both Bag of Fea-
tures (BOF) and Fisher Vector (FV) [15] approaches to achieve the final video
sequence representations. Using one of these two strategies, each video is repre-
sented by four kinds of features which characterize complementary information
of the video sequence.

3.2 Hierarchical Bayesian Multiple Kernel Learning

In order to formulate a better combination of the obtained multiple features, we
propose a HB-MKL model for feature fusion. First, we formulate the MKL for
multi-class classification problem as described below.

ConsiderN independent and identically distributed training instances {xi}Ni=1,
where each data instance has P feature representations xi = {xmi }Pm=1. In this
paper, we consider a combined kernel which fuses different kinds of feature ker-
nels in a linear way as follows:

Ke(xi,xj) =

P∑
m=1

emKm(xmi ,x
m
j ) , (1)
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Table 1. List of notations

Notations Dimensions Representations

{Km}Pm=1 N ×N Base kernel matrices
A N ×K Training instance weight matrix
λ N ×K Priors for training instance weight matrix
e P Kernel weight vector
ω P Priors for kernel weight vector
b K Bias vector
γ K Priors for bias vector
F K ×N Classification score matrix
Y K ×N Class label matrix

where Km is the base kernel calculating a similarity metric between videos with
respect to the m-th feature, em is the corresponding kernel weight indicating
the m-th base kernel’s contribution and significance, and Ke is the composite
kernel that finally measures the overall similarity between two videos. Based on
the obtained composite kernel Ke, the decision function for a test instance x∗
with respect to action class c can be written as:

f c(x∗) =

N∑
i=1

aicKe(xi,x∗) + bc, c = 1, · · · ,K , (2)

where K is the number of the action classes, aic denotes the weight assigned to
the i-th training instance for the c-th action class, and bc is the bias for the c-th
action class.

We then propose a hierarchical probabilistic model to solve the above multi-
class multiple kernel learning problem in a Bayesian manner. Specifically, we
impose that the kernel weight em is sampled from a half-normal distribution with
precision ωm, which ensures that the kernel weights are non-negative without
any other constraints. The training instance weight aic and the bias bc are placed
by two zero-mean Gaussian distributions with precisions λic and γc, respectively.
Thus according to the decision function, the classification score f ci is generated
from a Gaussian distribution with the mean eTaT

c km,i+bc and precision 1. Given
the classification score f ci , the corresponding class label yci is simply obtained by
setting a threshold ν.

Finally, three non-informative Gamma distributions with different shape and
scale parameters are placed on the precisions ωm, λic and γc of Gaussian distri-
butions respectively. On one hand, the parameters of Gamma distribution are
in general non-informative and thus the learnt kernel weights, training instance
weights, and biases are intrinsic to the data without prior knowledge assumption-
s. On the other hand, the above hierarchical probabilistic model is constructed
in the conjugate exponential family, and therefore inference can be implemented
via variational Bayesian or Gibbs-sampling analysis, with analytic update equa-
tions. The variables mentioned above correspond to one instance with respect
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Fig. 1. Graphical model of hierarchical Bayesian multiple kernel learning

to one action class. The vector or matrix forms of these variables corresponding
to all the training instances are listed in Table 1 for clarity. Actually, the super-
scripts and subscripts in the notations aic, λ

i
c, f

c
i , yci denote the row and column

indexes of their matrices, respectively.

With these parametric definitions, the probabilistic graphical model of our
HB-MKL framework for multi-class classification is illustrated in Fig. 1. Cor-
responding to the three layers in the graphical model, the proposed HB-MKL
is expressed in the following three groups of formulations in summary. On the
bottom layer, the classification score of the instance with respect to action class
c is expressed as:

f ci |bc, e ,ac, km,i ∼ N (f ci ; eTaT
c km,i + bc, 1)

yci |f ci ∼ δ(f ci yci > ν) , (3)

where N (·;µ,Σ) denotes a Gaussian distribution with the mean vector µ and
the covariance matrix Σ, and δ(·) represents the Kronecker delta function.

On the middle layer, the half-normal distribution and Gaussian distribution
are placed on the parameters of the decision function, which are expressed as:

em|ωm ∼ N+(em; 0, ω−1m )

aic|λic ∼ N (aic; 0, (λic)
−1)

bc|γc ∼ N (bc; 0, γ−1c ) , (4)

where N+(·; 0,Σ) denotes a half-normal distribution with the mean vector 0 and
the covariance matrix Σ.
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On the top layer, non-informative gamma hyper-priors are placed on ωm, λic
and γc as follows:

ωm ∼ G(ωm;αω, βω)

λic ∼ G(λic;αλ, βλ)

γc ∼ G(γc;αγ , βγ) , (5)

where G(·;α, β) denotes a Gamma distribution with the shape and scale param-
eters α and β.

3.3 Variational Inference

In order to perform efficient processing, we derive variational approximation
methodology for inference. The variational method [16], offers a lower bound on
the model evidence using an ensemble of factored posteriors to approximate
the joint parameter posterior distribution. By defining the sets of priors as
Ξ = {γ,λ,ω} , hyper-priors as ζ = {αγ , βγ , αλ, βλ, αω, βω}, and the remain-
ing variables as Θ = {A, b, e ,F}, the factorable ensemble approximation of the
required posterior can be written as

p(Θ,Ξ|ζ, {Km}Pm=1,Y) ≈ q(Θ,Ξ) = q(λ)q(A)q(ω)q(e)q(γ)q(b)q(F) , (6)

and each factor in the ensemble can be defined as:

q(λ) =
N∏
i=1

K∏
c=1
G(λic;α(λic), β(λic))

q(A) =
K∏
c=1
N (ac;µ(ac), Σ(ac))

q(ω) =
P∏

m=1
G(ωm;α(ωm), β(ωm))

q(e) = N+(e ;µ(e), Σ(e))

q(γ) =
K∏
c=1
G(γc;α(γc), β(γc))

q(b) = N (b;µ(b), Σ(b))

q(F) =
K∏
c=1

N∏
i=1

T N (f ci ;µ(f ci ), Σ(f ci ), ρ(f ci )) .

We can bound the model evidence using Jensen’s inequality:

log p(Y|ζ, {Km}Pm=1) ≥
Eq(Θ,Ξ)[log p(Y,Θ,Ξ|ζ, {Km}Pm=1)]− Eq(Θ,Ξ)[log q(Θ,Ξ)] ,

(7)

and optimize it with respect to the distribution in the following form

q(τ) ∝ exp(Eq({Θ,Ξ}\τ)[log p(Y,Θ,Ξ|ζ, {Km}Pm=1)]) . (8)
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3.4 HB-MKL Based Feature Fusion for Action Recognition

In order to utilize the proposed method for action recognition, we first extrac-
t and encode the features described above to get the final video descriptors.
When adopting BOF representations, we use RBF-χ2 kernel [1] to separately
calculate the base kernels corresponding to different features. As for FV repre-
sentations, we compute the base kernels using linear kernel function. After that,
we apply the proposed HB-MKL to construct a composite kernel by learning the
optimum linear combination of the multiple kernels. Finally, we train a standard
SVM classifier with the combined kernel. For all the experiments, the multi-class
classification is made using the one-vs-all strategy.

4 Experiments

We evaluate our method on three popular human action datasets: KTH, UCF
sports, and HMDB51 datasets.

The KTH dataset [17] contains six action classes. The actions are performed
several times by 25 subjects under 4 different scenarios. The backgrounds are
relatively homogeneous and static in most sequences. We follow the experimental
settings in [17] where the videos are divided into a training set (16 subjects) and
a test set (9 subjects). For evaluation, the average accuracy over all classes is
reported.

The UCF sports dataset [18] includes 150 sequences of 10 classes of human
actions. The videos are extracted from sports broadcasts which are recorded in
unconstrained environments with camera motion and different viewpoints. We
apply a leave-one-out cross validation scheme and the evaluation is measured
using the average accuracy over all classes.

The HMDB51 dataset [19] contains a total of 6766 video clips collected
from various sources, ranging from digitized movies to YouTube. The videos in
the dataset vary in video quality, camera motion, viewpoints and occlusions. In
our experiments, we adopt the original experimental setup as in [19] with three
train/test splits. The average accuracy over the three splits is reported as the
performance measurement.

4.1 Baseline Feature Fusion Methods

To evaluate the performance improvement achieved using HB-MKL, we perform
experiments with two baseline feature fusion methods for comparison: concate-
nation and multi-channel methods. The concatenation method directly concate-
nates all the feature representations together to form a combined representation.
The multi-channel method combines different descriptors as follows [10]:

K(xi,xj) = exp(−
∑
m

1

Am
D(xmi ,x

m
j )) , (9)

where D(xmi ,x
m
j ) is the χ2 distances defined on histogram representations be-

tween videos xi and xj with respect to channel m. Am is the normalization
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Table 2. Performance comparisons of five single feature based approaches as well as
three fusion approaches using baseline and HB-MKL

Approaches KTH(%) UCF(%) HMDB51(%)

Trajectory 92.13 82.67 33.27
HOF 94.44 85.33 40.37
HOG 87.96 84.00 28.93
MBHx 93.98 82.67 35.80
MBHy 94.44 82.67 42.16

Concatenation 93.98 78.67 39.65
Multi-channel 94.44 77.33 41.33
HB-MKL 95.37 90.00 52.07

factor computed as the average value of χ2 distances between all the training
instances for the m-th channel.

4.2 Comparison of Experimental Results

In order to qualify the effectiveness of our approach, we evaluate the classification
accuracies achieved by each of the features alone, as well as feature combination
via HB-MKL. The results of these approaches using BOF encoding are shown
in Table 2. It is clear that feature fusion using HB-MKL outperforms their uses
separately on all the datasets. By combining all the features using HB-MKL, we
obtain 95.37% on KTH which is around 1% better than the best single feature,
whereas on UCF sports it is around 5%. The improvement is even higher on
HMDB51, i.e., around 10%. The results demonstrate that the integration of
diverse features using HB-MKL enhances the performance compared with single
feature based approach.

In addition, we also compare our method with the baseline combination meth-
ods in Table 2. It can be seen that there is a significant performance gain of
our combination method over the baselines. Moreover, we notice that the com-
binations using baselines can not guarantee the improvement with respect to
every single features. In contrast, our method consistently outperforms all single
features on all the datasets. The advantage of our feature fusion method over
baselines can be attributed to the ability of learning the relative importance of
each feature.

We also do a performance comparison using different feature encoding strate-
gies. Table 3 lists the results using both BOF and FV for feature encoding. We
notice that the improvement of FV over BOF on the KTH dataset is slightly,
whereas it reaches 4.6% on HMDB51. Unexpectedly, the performance of FV is
inferior to BOF on UCF sports. Based on this evaluation, we choose the best
performed FV encoding for KTH and HMDB51, and BOF encoding for UCF
sports in the rest of the experiments.

We also compare our method with the most recent results reported in the
literature on the three datasets in Table 4. On KTH, our method yields better
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Table 3. Comparison of feature encoding strategies using BOF and FV

BOF FV

KTH(%) 95.37 95.83
UCF(%) 90.00 88.00
HMDB51(%) 52.07 56.67

Table 4. Performance comparisons of our method with the state-of-the-art results

KTH UCF sports HMDB51

Sun et al. [23] 93.1% Sun et al. [23] 86.6% Yang et al. [24] 53.9%
Zhang et al. [21] 94.8% Zhang et al. [21] 87.5% Wu et al. [22] 56.4%
Veeriahet et al. [25] 94.0% Lan et al. [26] 83.6% Shao et al. [27] 49.8%
Wang et al. [28] 94.5% Wang et al. [28] 86.7% Liu et al. [29] 51.4%
Sheng et al. [20] 95.0% Sheng et al. [20] 87.3% Liu et al. [30] 48.4%

Our method 95.8% Our method 90.0% Our method 56.7%

performance than [20]. The work of [20] uses direction-dependent feature pairs
to represent actions, and achieves a recognition rate of 95.0%. Zhang et al. [21]
report 87.5% on UCF sports by using a simplex-based orientation decomposition
descriptor to describe 3D visual features. We further improve their results by
2.5%. On HMDB51, Wu et al. [22] report 56.4% with a VLAD-based video
encoding for human action recognition. We achieve 56.7% which is slightly better
than theirs. It can be seen that the proposed method achieves a comparable
performance to the state-of-the-art approaches.

4.3 Analysis of Feature Weights Learnt by HB-MKL

Table 5 shows the feature weights learnt by HB-MKL in the range [0, 1]. From
the table, we can see how each feature contributes to the final decision. It is
clearly to see that on KTH, among all the feature representations, HOF plays
the dominant role, while HOG tends to have the lowest weight. This reveals that
motion-based features of a video are the most informative features for action
recognition on KTH. This may be because the variation in appearances between
frames is very small on KTH.

As for UCF sports and HMDB51, it can be seen that HOG ranks first, fol-
lowed by motion-based features. This is probably because both of the datasets
contain lots of camera motion which reduces the reliability of motion-based fea-
tures. Moreover, the UCF sports dataset often involves specific environment
and equipment, and hence the appearance-based feature is more important for
it. Therefore, it demonstrates that the proposed HB-MKL is able to learn the
optimal feature weights from data adaptively.
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Table 5. The feature representation weights learnt by HB-MKL

KTH UCF HMDB51

Trajectory 0.19 0.23 0.20
HOF 0.23 0.22 0.21
HOG 0.12 0.25 0.24
MBHx 0.23 0.16 0.17
MBHy 0.23 0.14 0.18

5 Conclusion

In this paper, we have presented an efficient feature fusion framework based on
hierarchical Bayesian multiple kernel learning for action recognition. The method
is able to integrate different features in an informative way by evaluating the
relative importance of every feature and finally learns the optimum kernel com-
bination of the multiple feature kernels. We have carried out a set of experiments
on three human action datasets to evaluate the effectiveness of our approach,
and the results have demonstrated that the proposed approach generally outper-
forms the state-of-the-art methods in terms of classification accuracy for action
recognition.
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