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Abstract
Cross-modal learning tries to find various types
of heterogeneous data (e.g., image) from a given
query (e.g., text). Most cross-modal algorithms
heavily rely on semantic labels and benefit from
a semantic-preserving aggregation of pairs of het-
erogeneous data. However, the semantic labels
are not readily obtained in many real-world ap-
plications. This paper studies the aggregation of
these pairs unsupervisedly. Apart from lower pair-
wise correspondences that force the data from one
pair to be close to each other, we propose a novel
concept, referred as groupwise correspondences,
supposing that each paired heterogeneous data are
from an identical latent group. We incorporate this
groupwise correspondences into canonical correla-
tion analysis (CCA) model, and seek a latent com-
mon subspace where data are naturally clustered
into several latent groups. To simplify this noncon-
vex and nonsmooth problem, we introduce a non-
negative orthogonal variable to represent the soft
group membership, then two coupled computation-
ally efficient subproblems (a generalized ratio-trace
problem and a non-negative problem) are alterna-
tively minimized to guarantee the proposed algo-
rithm converges locally. Experimental results on
two benchmark datasets demonstrate that the pro-
posed unsupervised algorithm even achieves com-
parable performance to some state-of-the-art super-
vised cross-modal algorithms.

1 Introduction
With the rapid development of Internet, massive data in mul-
tiple modalities such as images, audios, videos and text de-
scriptions are emerging. For example, when visiting place
for sightseeing, people might want to send tweets or mes-
sages consisting of pictures, text descriptions and video clips.
These heterogeneous data are usually associated to depict the
same entity. How to efficiently analyze the data across differ-
ent modalities comes into prominence. Different from multi-
modal data analysis that tries to integrate multiple modalities

⇤Corresponding Author.

Figure 1: A simple demonstration of how CCA and the pro-
posed method SPGCM obtain correlated common subspaces
between modalities. 4 and � represent different semantic
samples, while hollow and solid symbols represent samples
in different modalities. Figures with a bold border denote
learned latent common subspaces by CCA and SPGCM re-
spectively. Arrows in the SPGCM subspaces serve as the
group centers via cosine similarity. Note that CCA is a spe-
cial case of SPGCM when K = n.

to improve the learning performance, cross-modal data analy-
sis aims to deal with massive data with incomplete modalities
especially during the testing phase. In this paper, we focus on
cross-modal learning that attempts to take one type of data as
a query to retrieve relevant data objects in another type.

Canonical Correlation Analysis (CCA) [Hardoon et al.,
2004] is a fundamental tool to describe the relationship be-
tween two different modalities. It maximizes pairwise cor-
respondences so that paired heterogeneous data are close to
each other in the learned subspace. Besides, most cross-
modal subspace learning methods exploit semantic labels to
learn better representations or to discover a superior common
subspace. Various supervised structure-preserving techniques
such as Linear Discriminant Analysis (LDA) and Marginal
Fisher Analysis (MFA) are utilized to improve learning per-
formance in [Sharma et al., 2012]. In spite of the bet-
ter retrieval performances achieved by supervised methods,
additional semantic labels are usually expensive and time-
consuming to obtain in real-world applications.

However, groupwise correspondences (shown in Fig. 1)
are often ignored in unsupervised learning, which suppose
that paired heterogeneous data are from the same latent
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group. In contrast to pairwise correspondences, groupwise
correspondences are higher correspondences, which try to
guarantee the paired heterogeneous data close to each other in
a semantic-like level. Furthermore, they can be seen as the re-
laxed pairwise correspondences in a semantic layer which can
allow more degrees of freedom to avoid overfitting brought
by the maximization of pairwise correspondences. Besides,
by introducing a latent variable that plays a similar role as the
semantic label variable in supervised methods, we develop a
novel method, called Simultaneous Pairwise and Groupwise
Correspondences Maximization (SPGCM) to discover an op-
timal common subspace for unsupervised cross-modal learn-
ing. The objective function consists of three components, i.e.,
pairwise correspondences and two clustering-like terms in
each modality. The clustering-like terms can be transformed
into CCA-like terms via cosine similarity metric, resulting
in a generalized CCA model. When the latent cluster indica-
tors are identical, groupwise correspondences are maximized.
The subspace projections of different modalities are learned
through discovering a latent common subspace and clustering
projected data simultaneously.

To summarize, the main contributions of this paper are
three-fold:

• To the best of our knowledge, it is the first time to ad-
dress the issue of higher groupwise correspondences for
unsupervised cross-modal learning, which can be poten-
tially robust in the real-world scenarios;

• The joint learning framework involves simultaneously
seeking a latent cluster indicator vector and a common
subspace, resulting in a difficult optimization problem.
We simplify this problem into two sub-problems, and
turn the subproblems on learning the subspace to a ratio-
trace problem, which can be efficiently minimized;

• Experimental results on two benchmark datasets demon-
strate that our method obtains comparable or even bet-
ter results with state-of-the-art supervised methods, and
suggest that both pairwise and groupwise correspon-
dences are important for cross-modal subspace learning.

2 Related Work
Since subspace based methods such as CCA [Hardoon et al.,
2004] play an important role in cross-modal learning, we first
give a brief review of CCA (a detailed introduction can be
found in [Hardoon et al., 2004]) and address some recent sub-
space learning methods later in this section.

Given two multivariate random variables x 2 Rd

x and
y 2 Rd

y with zero mean, let the two sets S
x

= {x1, ..., xn

}
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y
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tiplier methods, the problem above can be reduced to a gener-
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Here � = ⇢

2 and Fig. 1 simply shows how CCA works.
To further explore subspace information, Generalized Mul-

tiview Linear Discriminant Analysis (GMLDA) and Marginal
Fisher Analysis (GMMFA) are proposed to learn projections
from each modality to a common subspace through CCA con-
straints and semantic-preserving constraints simultaneously
[Sharma et al., 2012]. Besides, Learning Coupled Feature
Spaces (LCFS) [Wang et al., 2013] integrates feature selec-
tion into cross-modal learning for better feature representa-
tions. A deep analysis of pairwise correspondences (or pair-
wise constraints) for cross-modal learning is given in [He et
al., 2015].

It is worth noting that cluster CCA (CCCA) [Rasiwasia et
al., 2014] resorts to the concept of cluster. However, CCCA
heavily relies on external semantic labels to obtain semantic
clusters. Different from groupwise constraints, CCCA merely
extends narrow pairwise correspondences to generalized pair-
wise correspondences, where correspondences between het-
erogeneous data with identical labels are considered as well.
On the other hand, [Gong et al., 2014] tries to directly apply
generalized CCA model with more than two views to super-
vised cross-modal problems, but the mutual promotion be-
tween clustering and CCA constraint is ignored.

Additionally, multi-view clustering methods [Cai et al.,
2013] try to learn the latent cluster indicator shared by multi-
ple views, however, most of them ignore the pairwise corre-
spondences. Although [Chaudhuri et al., 2009] exploits CCA
into multiview clustering, it just tries to transform the raw
features before clustering. In our proposed method, the latent
clustering indicator vectors can be seen as the third view that
can help align both modalities with this latent variable. This
problem can be further simplified with some user-defined dis-
tance metrics to learn the latent indicator vectors and projec-
tions from two modalities to the latent common space.

3 Our Methodology
In this section, we first present the details of our proposed
SPGCM and then describe its optimization algorithm as well
as the algorithmic analysis.

3.1 Notation and Problem Definition
Assume that there are n observations from two views (modal-
ities), denoted {x

i

, y

i

}n
i=1, where x

i

is the i-th row of the first
view X 2 Rn⇥d

x , similarly, y
i

is the i-th row of the second
view Y 2 Rn⇥d

y , and d

x

and d

y

are the dimensionalities
of each modality respectively. Without loss of generality, all
data are assumed to be zero-centered, i.e.,

P
n

i=1 xi

= 0 andP
n

i=1 yi = 0. Moreover, I
a

2 Ra⇥a denotes the identity
matrix, and k · k

F

denotes the Frobenius norm of a matrix.
Cross-modal subspace learning methods aim to learn a

low-dimensional common subspace Rc and two projection
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⇥c denote two projection matrices for
each modality respectively. Furthermore, we assume that
both modalities are observed for all data points in the training
set. All experiments are conducted on two image-text datasets
for cross-modal retrieval problem. Cross-modal learning in
this paper mainly includes two retrieval tasks: 1) using text
query to search for related images, and 2) using image query
to retrieve related texts.

3.2 Model Formulation
On one hand, we force paired heterogeneous data depict-
ing the same content from different modalities to be close to
each other [He et al., 2015], referred as pairwise correspon-
dences, when multiple canonical directions can be learned
jointly through the formulation below, addressed in the gener-
alized CCA model [Hardoon et al., 2004; Gong et al., 2014]:
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Here W
x,j

means the i-th column in W

x

, i.e., the i-th canoni-
cal direction for X while W

y,j

means the j-th column in W

y

,
and c is the dimension of the latent common subspace.

On the other hand, we also expect the cluster indicator
vector of data samples in each modality to correspond with
each other, referred as groupwise correspondences. Bene-
fiting from multi-view clustering [Cai et al., 2013; Liu et al.,
2013], one collective indicator matrix variable G 2 Rn⇥K is
introduced to our model instead of several indicator matrices,
where K indicates the number of groups. Under the frame-
work of vector quantization, we further adopt the cosine sim-
ilarity h(x, y) =

x

T

y

kxk2kyk2
, where x, y are two column vec-

tors. Hence several principal directions (group centers) can
be discovered in the common subspace. The detailed loss of
groupwise correspondences is defined as:
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(3)

where b
j

2 Rc is the j-th row in B 2 RK⇥c, representing the
corresponding cluster center in the low-dimensional common
subspace.

Then the overall objective function, integrating both the
pairwise correspondences loss L

o

in Eq. 2 and the groupwise
correspondences loss L

g

in Eq. 3, takes the following form,
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where ↵ =

1�✓

✓

is a positive tradeoff parameter. When ↵ !
1, i.e., ✓ ! 0, the objective function is equivalent to CCA.

3.3 Reformulation and Relaxation
Note that, the cosine similarity adopted in groupwise corre-
spondences is consistent with the objective function of CCA.

Hence we can take the indicator matrix as the latent third
view, which facilitates to seek the optimal principal directions
(i.e., the cluster centers under the cosine similarity metric).
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Here 1 2 RK indicates a vector with all elements being 1, B
j

is the j-th column of B, representing the j-th uncorrelated
dimension in the latent common subspace.

Denote F = [f1, . . . , fn]
T

= G(G

T

G)

� 1
2 as the scaled

indicator matrix, namely, f
i

is the optimal scaled cluster indi-
cator of low-dimensional variables g

i

[Qian and Zhai, 2013;
Tang et al., 2013]. Let D = (G

T

G)

1
2
B 2 RK⇥c, we can

attain GB = F (G

T

G)

1
2
B = FD. Because (G

T

G)

1
2 is a

diagonal matrix whose diagonal elements correspond to the
size of each cluster, and rows in D can be seen as weighted
cluster centers with the correlation distance unchanged. Im-
posing an orthogonal constraint on F and combining Eq. 5,
we can rewrite Eq. 4 as:
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where D

i

is the i-th column in D. As shown in [Yu et al.,
2011], Eq. 6 can be further simplified as:
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is the weighted

covariance matrix while N is a block diagonal covariance ma-
trix, which is unrelated with F according to the orthogonality
on F (i.e., C

ff

= F

T

F = I

K

).
However, it is still challenging to obtain the optimal F

with two hard constraints. Inspired by [Liu et al., 2014;
Han and Kim, 2015], we introduce an auxiliary variable with
an additional constraint of E = F . This reformulation step
aims to detach the non-negative constraint from F and as-
sign the constraint to E. Then the final objective function for
SPGCM is developed as follows:

max
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(9)
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where � is another positive tradeoff parameter to control the
degree of equivalence between E and F .

3.4 Optimization Algorithm
The optimization problem in Eq. 9 can be minimized by iter-
atively updating the following steps until convergence or the
pre-set maximum number of iterations is reached.
1) Fix F and E, solve the generalized ratio-trace maximiza-

tion problem below through generalized eigenvalue de-
composition:

M

f

W = Diag(�)NW, (10)

where � are the corresponding eigenvalues.
2) Fix W and F , the subproblem only relates to E, taking the

form:
min

E�0
kE � Fk2

F

. (11)
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, 0). (12)

3) Fix W and E, denoting S = W

T

NW 2 Rc⇥c, S is an
irrelevant matrix to F , and J = XW

x

+ YW

y

2 Rn⇥c,
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Algorithm 1 Simultaneous Pairwise and Groupwise Corre-
spondences Maximization (SPGCM)
Input: Training data X 2 Rn⇥d

x , Y 2 Rn⇥d

y , dimension of
common space c, group number K, parameters ↵, �.
Output: Projection functions W

x

2 Rd

x

⇥c, W
y

2 Rd

y

⇥c

and canonical correlations �.
Initialization: G(0)

, F

(0) using K-means, t = 1, and T = 10.
repeat

1. Calculate M

f

using Eq. 8;

2. Update W

(t) and E

(t) via Eq. 10 and Eq. 12 respec-
tively;

3. Decompose JS

�1
D

T

+ ⌘E by SVD and update F

(t)

by Eq. 19;
4. t = t + 1;

until F (t) converges or t � T.

Proposition 1. Suppose we have two matrices P 2 Rn⇥m

and Q 2 Rk⇥m. The two optimization problems shown below
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where U 2 Rn⇥n and V 2 Rk⇥k are respectively the left
and right eigenvectors of PQ

T obtained by Singular Value
Decomposition (SVD).
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By using von Neumann’s trace inequality [Horn and Johnson,
2012] and Z

T

Z = I

k

, we have tr(U⌃V

T

Z

T

)  P
k

i=1 �i

where �

i

is the i-th largest singular value of PQ

T . Then for
any column orthogonal matrix Z,

tr(U⌃V

T

Z

?T

) = tr(⌃I

T

n,k

) =

P
k

i=1 �i

� tr(U⌃V

T

Z

T

), (18)

which completes the proof.

The solution of F is obtained by Proposition 1 with PQ

T

=
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where U 2 Rn⇥k and V 2 Rk⇥k are respectively the left and
right eigenvector bases of PQ

T obtained by SVD.

3.5 Algorithmic Analysis
In our algorithm, W , F and E are alternately optimized for
several iterations. Since the objective function is bounded
and maximized in each update, the sequences generated by
our algorithm will be converging, i.e.,

˜
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(t)
, F

(t)
, E

(t)
)  ˜
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where W

(t), F (t) and E

(t) are the optimal variables in each
iteration. We summarize our overall optimization algorithm
for SPGCM in Algorithm 1.

The asymptotic complexity of our SPGCM method is
O �

td

3
�
+ O �

n

2
K

�
, where t is the iteration number and

d = d

x

+ d

y

+ c, and c denotes the dimension of the
learned latent common space. The computation of the co-
variance matrix is O �

nd

2
+ tcnd

�
and eigenvalue decompo-

sition and matrix inverse occupy O �
td

3
+ tK

3
+ td

3
�
. The

computation of E and F is O �
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2
K + tnc

2
�
. Generally,

c  K ⌧ d, then the total complexity is O �
td

3
�
+O �

n

2
K

�
.

Since our algorithm usually converges in a few iterations, the
time complexity tends to be small.

4 Experiments
4.1 Datasets and Setting
Experiments are conducted on the Wiki [Rasiwasia et al.,
2010] and Pascal VOC [Hwang and Grauman, 2012] datasets.
We further design two different protocols for each dataset to
evaluate our proposed SPGCM. Notably, the following re-
trieval performances are evaluated where the gallery consists
of testing images (or texts) for a text (or image) query.

The Wiki dataset consists of 2,866 documents containing
image-text pairs annotated with 10 semantic labels and each
image is closely related to the content of the article. Each text
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Figure 2: Performance compared with different unsupervised subspace methods on the Wiki Protocol-I dataset in (a-b) and on
the Wiki Protocol-II dataset in (c-d), based on precision scope curves.
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Figure 3: Performance compared with different unsupervised subspace methods on the VOC Protocol-I dataset in (a-b) and on
the VOC Protocol-II dataset in (c-d), based on precision scope curves.

is represented by 10-dimensional LDA topic features while
the image is denoted with a 128-dimensional SIFT feature.
In [Costa Pereira et al., 2014], the authors randomly split the
whole set into 2,173/ 693 (training/ testing) sets respectively,
which is adopted in the following experiments as Protocol I.
However, taking the unbalanced distribution into considera-
tion in [Wang et al., 2013], we split it into 1,300/ 1,566 (130
pairs per class training/ testing) as Protocol II.

The Pascal-VOC 2007 dataset consists of 5,011/4,952
(training/ testing) image-tag pairs, which can be categorized
into 20 classes. The images containing only one object are se-
lected in the following experiments as [Sharma et al., 2012;
Wang et al., 2013], resulting in 2,808 training and 2,841 test-
ing data. For the features, 399-dimensional word frequency
features are adopted for the texts while 512-dimensional Gist
features are used for the images. We adopt dimension-
reduced features (about 90% energy preserved) via Principal
Component Analysis (PCA) for cross-modal retrieval as Pro-
tocol II with original features kept as Protocol I.

4.2 Baselines and Evaluation
SPGCM is compared with four unsupervised algorithms
(i.e., CCA [Hardoon et al., 2004], Partial Least Squares
(PLS) [Sharma and Jacobs, 2011], Bilinear Model (BLM)
and U-CCA3V [Gong et al., 2014]) and six supervised al-
gorithms (i.e., CCCA [Rasiwasia et al., 2014], GMMFA,
GMLDA [Sharma et al., 2012], LCFS [Wang et al., 2013],
Semantic Correlation Matching (SCM) [Costa Pereira et al.,
2014], and CCA3V [Gong et al., 2014] and Joint Feature Se-
lection and Subspace Learning (JFSSL) [Wang et al., 2015]).
Especially, U-CCA3V is the unsupervised version of CCA3V,
when topic indicator matrix is treated as semantic labels.

The mean average precision (MAP) is used to evaluate the
performance of all algorithms. Higher MAP indicates bet-
ter retrieval performance. Moreover, precision-scope curve
[Rasiwasia et al., 2007] is adopted for evaluation as well,
in which the scope is specified by the number of top-ranked
items for users, obviously .

Cosine similarity metric is adopted to calculate the simi-
larities on the latent common subspace. For the projection
functions, we adopt similar strategies as [Gong et al., 2014],
i.e., x̂ = xW

x

diag(�) 2 R1⇥c. For our proposed SPGCM,
we use empirical value � as 0.01, and ↵ as 0.01. Regarding
the group size K, we directly fix it as the number of differ-
ent groudtruth labels, i.e., K = 10 for the Wiki dataset, and
K = 20 for the VOC dataset. The subspace dimension c is
validated for the best performance for all methods, we fur-
ther investigate its influence in Section 4.4. Besides, for the
initialization of F , we simply utilize the cluster indicator ob-
tained by spherical K-means clustering on the text modality.

4.3 Experiment Results
Regardless of protocol I or II shown in Table. 1, SPGCM sig-
nicantly outperforms all unsupervised methods in the MAP
scores of both image and text queries. Besides, SPGCM is in-
ferior only to SCM and CCA-3V among supervised methods
about 5% and 4% under protocol I and 1.5% and 1% under
protocol II for average MAP. Even compared with JFSSL,
the gap is acceptable. As shown in Fig. 2, SPGCM obtains
the best performance over other four unsupervised methods
on both image query and text query retrieval. Moreover, all
methods obviously benefit from the more balanced training
set due to the overall improved performances in protocol II
to protocol I.
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Dataset Wiki Pascal VOC
MAP(%100) Protocol I Protocol II Protocol I Protocol II

Query Image Text Avg Image Text Avg Image Text Avg Image Text Avg
CCA 24.25 19.52 21.88 25.12 19.86 22.49 - - - 24.58 20.76 22.67
PLS 21.82 17.57 19.70 24.38 19.43 21.90 25.26 21.25 23.26 25.60 21.23 23.42
BLM 23.53 17.99 20.76 25.65 20.29 22.97 31.78 23.29 27.54 31.74 23.19 27.47

UCCA3V 26.23 20.72 23.47 27.00 21.26 24.13 27.03 21.38 24.21 34.03 25.83 29.93
SPGCM 26.95 21.12 24.04 28.47 22.29 25.38 35.12 27.70 31.41 35.67 26.96 31.32
GMLDA 25.50 19.87 22.68 26.46 20.17 23.32 30.80 23.99 27.39 36.32 28.05 32.19
GMMFA 26.03 21.29 23.66 27.42 21.66 24.54 26.20 19.69 22.95 34.38 26.78 30.58

LCFS 26.63 20.89 23.76 27.64 21.35 24.50 33.36 24.85 29.10 - - -
CCCA 23.52 18.56 21.04 24.76 19.62 22.19 25.09 20.54 22.82 30.84 2440 27.62
SCM 27.75 22.89 25.32 28.72 22.77 25.74 - - - 33.48 27.71 30.59

CCA3V 27.96 22.03 24.99 28.70 22.55 25.62 30.73 24.24 27.48 36.65 29.40 33.03
JFSSL - - - 30.63 22.75 26.69 36.07 28.01 32.04 - - -

Table 1: MAP comparisons on the Wiki and Pascal VOC datasets. CCA, PLS, BLM, UCCA-3V and our SPGCM are unsuper-
vised with the rest being supervised methods. Besides, the MAP scores of JFSSL are reported in [Wang et al., 2015].

Regarding the VOC dataset, methods like CCA and
SCM cannot cope with features whose covariance matrix
is degenerate-rank while LCFS tries to do feature selection
which is not suitable for dimension-reduced features. So we
conduct two experiments on the VOC dataset with the source
features dimension-reduced or unchangeable. The perfor-
mances shown in Table. 1 indicate that our SPGCM is only in-
ferior to the supervised JFSSL, and outperforms LCFS about
8% and GMLDA about 13% under protocol I. While for pro-
tocol I, SPGCM is just 5% lower than CCA-3V in average
precision. SPGCM obtains the best performance over other
four unsupervised methods on both image query retrieval and
text query, as illustrated in Fig. 2. From the MAP scores ob-
tained by two protocols, we can discover that unsupervised
methods are more robust to the feature transformation which
can be avoided due to the trivial preprocessing.

4.4 Discussion
To investigate the cross-modal learning performance with
deep and discriminative features, we further extract the 4,096-
dimensional CNN image features by Caffe [Jia et al., 2014]
and 5,000-dimensional TF-IDF [Salton and Buckley, 1988]
text features for Wiki, named as the deep-Wiki dataset. Here
PCA is adopted to reduce the dimensions of original high-
dimensional features beforehand. Furthermore, we conduct
two experiments to study the impacts of subspace dimension
c and group number K, shown in Fig. 4 and Fig. 5. Obvi-
ously, our SPGCM achieves consistently better performances
over other best-performing unsupervised subspace methods.
Besides, SPGCM is more robust than CCA w.r.t subspace di-
mension. From Fig. 5, the prior group number K is quite
important, however, when the group number varies near the
number of actual semantic labels (i.e., 10), SPGCM outper-
forms well and steadily. Note that the highest MAP scores
(i.e., 42.4% and 38.1%) obtained by SPGCM is comparable
with that (42.8% and 39.6%) in [Wang et al., 2015]. More-
over, when the group number K grows much larger, the per-
formance indeed degenerates to CCA as explained in Fig. 1.
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Figure 4: MAP scores versus subspace dimension c of differ-
ent unsupervised subspace methods on the deep-Wiki dataset.

group number
4 5 6 7 8 9 10 11 12 13 14 15 50 100 200 201

m
ea

n 
av

er
ag

e 
pr

ec
isi

on

0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44

image query
text query

// // //

Figure 5: MAP scores versus cluster number K of SPGCM
on the deep-Wiki dataset, horizontal dotted lines denote the
best MAP scores among the rest unsupervised methods.

5 Conclusion
This paper has proposed an unsupervised method named
SPGCM that takes both groupwise and pairwise correspon-
dences into consideration to learn the latent common sub-
space. An iterative optimization procedure has been further
proposed to minimize the problem with non-negative and
orthogonal constraints. Experimental results illustrate that
our SPGCM steadily outperforms other unsupervised cross-
modal subspace learning methods. When the data distribu-
tion is balanced or data are depicted in deep discriminative
features, the improved retrieval performance is highly com-
petitive with the state-of-the-art supervised methods.
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[Yu et al., 2011] Shi Yu, Léon-Charles Tranchevent, Bart
De Moor, and Yves Moreau. Kernel-based data fusion
for machine learning. Springer, 2011.

1745


