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ABSTRACT
In this paper, we present a novel solution to multi-view cluster-
ing through a structured low-rank representation. When assuming
similar samples can be linearly reconstructed by each other, the
resulting representational matrix reflects the cluster structure and
should ideally be block diagonal. We first impose low-rank con-
straint on the representational matrix to encourage better grouping
effect. Then representational matrices under different views are
allowed to communicate with each other and share their mutual
cluster structure information. We develop an effective algorithm
inspired by iterative re-weighted least squares for solving our for-
mulation. During the optimization process, the intermediate repre-
sentational matrix from one view serves as a cluster structure con-
straint for that from another view. Such mutual structural constraint
fine-tunes the cluster structures from both views and makes them
more and more agreeable. Extensive empirical study manifests the
superiority and efficacy of the proposed method.

Categories and Subject Descriptors
H.3 [Information search and retrieval]: Clustering

General Terms
Algorithms, Design, Experimentation

Keywords
Multi-view clustering, multi-modal learning, structure regularizer

1. INTRODUCTION
Multi-view clustering concerns the problem of partitioning data

points into a series of subsets in an unsupervised way given their
feature representations under different views. Here in the context
of this paper, a view simply refers to one feature modality of the
data rather than the physical view angle such as front-view versus
side-view face images [23]. In many applications, the data points
being processed are collected from multiple sources and thus have
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different view-specific attributes. For instance, in image classifica-
tion an image can be either represented using the traditional hand-
crafted feature like SIFT or automatically learned feature obtained
from deep learning techniques [7]. Even though the information
from any view is somehow sufficient for the clustering task, taking
advantage of the complementary information across views is bene-
ficial and can better facilitate the clustering process in most cases.

In the literature, a spectrum of methods are proposed to seek
better clustering results by capturing the view complementarity.
Among them, one line of research is to directly unify the multi-
view information in the clustering process. For instance, in [15] a
co-training flavored spectral clustering algorithm was proposed to
encourage the clustering agreement between views. Another one
is [16] which attempted to regularize on the eigenvectors of view-
specific graph laplacians and achieve consistent clusters across views.
Another line of research is to first learn a latent representation for
multi-view data and then perform clustering on such representation
to learn the partition. A notable one is [19] which employed matrix
factorization to discover a common latent structure shared by all
views and give rise to compatible clustering results. Besides, CCA
based multi-view clustering methods also fall into this category [9]
[5]. Yet another line of research is by fusing the clustering results
obtained from individual views toward a consensus [8] [13].

Different from the aforementioned methods, we tackle the multi-
view clustering problem from the perspective of structured low-
rank representation. Similar to [24] [21], for each view we also as-
sume similar samples can be used to linearly reconstruct each oth-
er. The resulting representational matrix reflects the cluster struc-
ture which should be ideally block diagonal. As in [18] [17], low-
rankness is a nice property favored by many subspace clustering
algorithms due to its better grouping effect. So the key idea of our
method is on one hand to impose a low-rank constraint on such
representational matrix to let similar samples stay together. On the
other hand, since the ideal clustering result should be unanimous ir-
respective of views, the representational matrix derived from each
view is further asked to conform with one another as much as pos-
sible through a mutual structure constraint.

Concretely, when alternatively optimizing the objective with re-
spect to one of the representational matrices once at a time while
keeping the others fixed, our method actually solves a low-rank lin-
ear regression problem. And it happens to enforce that the to-be-
determined representational matrix for another view should refer to
that fixed intermediate grouping structure. Over time the comple-
mentary information among different views is communicated and
shared. The grouping structure for one view derived from the pre-
vious step helps rectify and fine-tune the to-be-decided grouping
structure for a different view in the current step.

In summary, the contributions of this paper are highlighted as



follows:
• We propose a novel multi-view clustering method based on

structured low-rank representation. Such a joint regularization frame-
work explicitly minimizes the grouping differences across views
and gives rise to better clustering performance.
• We develop an effective algorithm inspired by iterative re-

weighted least squares for solving our formulation. And extensive
experimental results on benchmark datasets validate the usefulness
of our method.

2. PROPOSED MODEL AND SOLUTION
In our model, under each view similar data points are used to lin-

early reconstruct each other. Given the data matrix Xv ∈ Rdv×n

and reconstruction coefficient matrix Zv ∈ Rn×n where v denotes
one of the two views A and B, dv is the feature dimension of view
v and n is the number of data points, our proposed method is for-
mulated as follows.

min
ZA,ZB

∑
v∈{A,B}

(
1

2
||Xv −XvZv||2F + λ||Zv||∗)+

β

2
||ZA−ZB ||2F

(1)
As in [24] [21], (1) is called a structured low-rank representation

since when fixing ZB , the cluster structure from view A is con-
trained to agree with a latent cluster structure from view B or vice
versa. The first term in this objective is the linear reconstruction
term and in particular we seek a lowest rank representation by im-
posing a trace norm regularizer on Zv . By virtue of the grouping
effect of such a low-rank constraint, the underlying intrinsic cluster
structure can be unveiled.

Apart from pursuing better clustering structure for any single
view, our model also favors a consistent cluster membership across
views. In multi-view clustering, it is usually anticipated that a data
point should be assigned to the same cluster irrespective of views.
To this end, the last term in our objective is designed to minimize
the difference of cluster structures from different views. When
treating the candidate samples used to reconstruct the target sample
as a dictionary, ZA and ZB are the view-specific representational
responses on the dictionary, which indicates the sample affinity and
cluster structure.
λ and β are the hyper-parameters that control the tradeoff be-

tween corresponding terms.
Note that our model can be easily generalized to more than three

views by summing the reconstruction and cluster difference terms
over all views. Given the space limit and for simplicity, in this
section we base our introduction on a two-view scenario.

When it comes to solving the proposed objective, it is not easy to
optimize (1) directly given the existence of a trace norm regulariz-
er. So we reformulate our objective by following a well established
variational formulation for trace norm [6] [14], in which the state-
ment below holds true for the representational matrix ZA (Similar
for ZB)

||ZA||∗ =
1

2
inf

SA>0
tr(ZT

AS
−1
A ZA) + tr(SA)

=
1

2
inf

SA>0

n∑
i=1

ZT
AiS

−1
A ZAi + tr(SA)

(2)

where the infimum is obtained for SA = (ZAZ
T
A)1/2. ZAi is the

i-th column of matrix ZA. Here SA can be seen as an intermediate
variable during the optimization procedure.

In the outer loop of our algorithm, we alternatively solve for one
of the representational matrix ZA or ZB while keeping the other

one fixed. In light of the results from (2), when we optimize the
objective with respect to ZA in a column-wise fashion, (1) can be
simplified into the following:

min
ZAi

inf
SA>0

n∑
i=1

||XAi −XAZAi||22 + λZT
AiS

−1
A ZAi

+β(ZT
AiZAi − 2ZT

AiZBi) + λtr(SA)

(3)

The above objective is jointly convex in (ZAi, SA). And we
solve it in the inner loop of our algorithm. In order to optimize this
objective function by alternating the minimization over (ZAi, SA),
we need to add a term λµAtr(S

−1
A ) which ensures SA is invertible

and thus the infimum can be attained [6] [14]. Here µA is a small
scaler. And SA is then given by:

SA = (ZAZ
T
A + µAI)

1/2 (4)

When SA is given, (3) becomes an iterative re-weighted least
squares problem whose solution is the following:

ZAi = (XT
AXA + βI + λS−1

A )−1(XT
AXAi + βZBi) (5)

Similarly, when we solve for ZB while fixing ZA, based on the
same optimization strategy SB is given by

SB = (ZBZ
T
B + µBI)

1/2 (6)

and then we obtain the solution for each column of the representa-
tional matrix ZB as follows:

ZBi = (XT
BXB + βI + λS−1

B )−1(XT
BXBi + βZAi) (7)

When optimizing our method following the procedure as shown
in Algorithm 1, empirically it can quickly converge after five to ten
iterations. And one of the advantages for solving the objective in a
column-wise fashion is that we can select a few nearest neighbors
to approximately reconstruct a target sample. This makes sense be-
cause Z should ideally be block diagonal which implies that candi-
date samples less similar to the target play insignificant roles in the
reconstruction. In such case we update Eqn.(4)-(7) only using s-
maller data matrices or representational matrices whose entries are
extracted from the nearest neighbor positions in the original large
matrices. This strategy alleviates the burden of high computation-
al cost due to the large number of samples in the databases. The
most time-consuming part is computing (4) and (6) which involves
Singular Value Decomposition (SVD) [12]. If we use k nearest
neighbors (k � n) for the linear reconstruction, we only need to
decomposite multiple much smaller k × k matrices rather than the
original large n × n matrix, which reduces the complexity from
O(n3) to O(nk2). Another advantage is that it is convenient to
develop a paralleled solution which may further speed up the algo-
rithm. Once ZA and ZB are obtained, we average them by letting
Z = (|ZA| + |ZB |)/2. Then a spectral clustering algorithm like
[20] is applied on Z to achieve the final clustering results.

3. EXPERIMENTAL RESULTS
In this section, we test our method on widely used benchmark

databases and compare with a series of baselines in order to validate
the usefulness of the proposed model.

3.1 Databases
UCI Handwritten Digit dataset [1] consists of features of hand-

written digits (0–9). The dataset is represented in terms of six fea-
tures and contains 2000 samples with 200 in each category. Similar



Algorithm 1 Multi-view clustering via structured low-rank repre-
sentation (MVCSL)
Input:

Data matricesXA andXB , parameters λ and β. Initial guesses
ZA, ZB , number of clusters c, number of nearest neighbors k
for reconstruction and µA = µB = 10−5

1: while not converged do
2: // Solve ZA with ZB fixed
3: for i = 1 : n do
4: Update SA using Equation (4);
5: Update ZAi using Equation (5) ;
6: end for
7: // Solve ZB with ZA fixed
8: for i = 1 : n do
9: Update SB using Equation (6);

10: Update ZBi using Equation (7);
11: end for
12: end while
Output: ZA, ZB and final clustering results

to [16], we select the 76 Fourier coefficients of the character shapes
and the 216 profile correlations as two views of the original dataset.

Movies617 dataset [3] consists of 617 movies with 17 labels
extracted from IMDb. The two views are the 1878 keywords and
the 1398 actors with a keyword used for at least 2 movies and an
actor appeared in at least 3 movies.

Animal dataset [2] consists of 30475 images of 50 animals with
six pre-extracted features for each image. Three kinds of features,
namely PyramidHOG (PHOG), colorSIFT and SURF, are chosen
as three views. We select the first ten categories with each including
randomly chosen 50 samples as a subset for evaluation.

Pascal VOC 2007 dataset [4] consists of 20 categories with a
total of 9,963 images. We use the Color feature and Bow feature
as two-view visual representation. Furthermore, those images with
multiple categories are removed, thus leaving 5,649 images for e-
valuation.

NUS WIDE dataset [11] consists of 269,648 images of 81 cat-
egories collected from Flickr. In our experiments, We select 500
images from each of the five classes with the most number of im-
ages for evaluation. Six types of low level features are given and
we use color correlogram and wavelet texture as two-view repre-
sentations for multi-view clustering.

3.2 Experimental settings
We extensively compare our method with many representative

baselines including 1) S_Spectral: Use spectral clustering in [20]
to cluster each view’s data and select the best clustering result. 2)
S_LowRank: Use only single-view low-rank representation to con-
struct the affinity matrix and then apply spectral clustering in [20]
to cluster the dataset. We also report the best clustering results. 3)
Combined: Concatenate features from two views and apply low-
rank representation without the mutual structural constraint on the
combined feature to perform clustering. 4) PairwiseSC, Centroid-
SC: [16] Two objectives for co-regularizing the eigenvectors of all
views’ Laplacian matrices. 5) Co_Training: [15] Alternately mod-
ify one view’s graph structure using the other view’s information.
6) Multi_NMF: [19] A multi-view non-negative matrix factoriza-
tion method to group the multi-view data. Note that this method
is not applicable on NUS dataset since it requires all non-negative
input features. 7) Multi_SS: [22] A structure sparsity based multi-
view clustering and feature learning framework. The parameters in
these methods are carefully selected in order to achieve their best

results.
Whenever K-means is involved, it is run 20 times with random

initialization. To speedup the optimization process, during the lin-
ear reconstruction we select 100 nearest neighbors of a sample
point for its reconstruction. To measure the clustering results, we
use accuracy (ACC) and normalized mutual information (NMI).
Readers can refer to [10] for more details about such measures.
Both mean and standard deviation are reported.

3.3 Experimental results and analysis
It can be seen from Table 1 and 2 that our proposed method

(MVCSL) consistently outperforms other baselines using both mea-
sures. First of all, comparing with single-view methods like ei-
ther S_Spectral or S_LowRank, our method always has an up-
per hand, which evidences the necessity of utilizing the comple-
mentary information among different views and exploring intrinsic
group structure. Second, a naive concatenation of features from
multiple views as the baseline Combined does is somehow inef-
fective. However our method explicitly asks the view-specific clus-
ter structure, which is manifested in the representational matrices
arising from the data reconstruction, to agree with each other as
much as possible. Therefore the additional complementary infor-
mation across views is shared and thus more accurate clustering
results can be obtained. Besides, our method also beats other base-
lines by a considerable margin. The baseline Multi_SS puts the
data from all views together and explores its global structure. It
enforces the sparsity between views while somehow neglecting the
intrinsic structure for any individual view. But this is where our
low-rank constraint imposed on each view stands out. Our method
takes into account both the intra-view partition and inter-view as-
sociation, which proves that such structured low-rank framework is
quite helpful in the multi-view clustering problem.

As mentioned previously, our method can be extended to sce-
narios involving three or more views, The superior results of our
method on the three-view Animal dataset proves full well that the
proposed method is also workable beyond two views.

When selecting the parameters λ and β, we empirically grid-
search in the interval [0.001, 10]. And their influences on the clus-
tering performance are shown in Figure 1 and 2. By pairing proper
λ and β, it is not difficult to get satisfactory results. Given the s-
pace limit, only results on the Movies617 dataset are reported and
similar trends can be observed on the other datasets as well.

4. CONCLUSION
We have proposed a novel multi-view clustering method through

a structured low-rank representation. On one hand, with the help of
better grouping effect of a low-rank regularizer, similar data points
are assigned together with higher accuracy. On the other hand, a
mutual structure constraint is imposed to achieve consistent cluster
memberships across views. The view-specific representational ma-
trices resulting from the data reconstruction alternatively serve as
the structural reference for one another. The experimental results
demonstrate the effectiveness of our proposed method.
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