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Abstract

We propose a novel multi-view clustering method by
learning auto-regression problems under structural con-
straints and treating the regression coefficients as new fea-
ture representations for the cluster partition. In particular,
we take the data intrinsic correlation structure into account.
Correlated data under one view tend to be also related un-
der another view and are likely to fall into the same group.
Therefore we pair the data matrix from one view and the
regression coefficient from a different view together to meet
a trace Lasso constraint, which adaptively adjusts the spar-
sity of regression coefficients in order to promote consistent
data correlations across views. Then a joint low-rank con-
straint is further imposed to encourage similar regression
coefficients for the same samples under distinct views. Fi-
nally, we develop an effective algorithm to optimize the ob-
jective function. And experimental results demonstrate that
our method is useful and fairly competitive compared with
other state-of-the-art multi-view clustering methods.

1. Introduction
Multi-view clustering, whose goal is to discover the true

underlying cluster membership of the data points given their
feature representations under multiple views, has been ex-
tensively studied over the past few years. A view is often
loosely referred to as one kind of feature modality, which
provides a view-specific description of the data. Compared
with single-view clustering, multi-view clustering methods
try to benefit from the multiple sources of information avail-
able, in hope of finding a more reliable and consistent clus-
ter partition [20]. As the volume of multimedia data ac-
cumulated on the web becomes bigger and bigger, we can
easily get access to data that have multiple views. For ex-
ample, user-generated contents on the web usually involve
textual, visual or audio information at the same time. Infor-
mation from each view or modality serves as an additional
cue that reflects the characteristic of the same content.

Over the past few years a series of methods have been
proposed to obtain more precise clustering results by tak-

ing advantage of the potential complementary information
across multiple views or modalities. Concretely, one cate-
gory of the state-of-the-art methods is to directly unify the
multi-view information in the clustering process. For in-
stance, in [15] a co-training flavored spectral clustering al-
gorithm was proposed to encourage the clustering agree-
ment between views. Another one is [16] which attempt-
ed to regularize on the eigenvectors of view-specific graph
laplacians and achieve consistent clusters across views. An-
other line of research is to first learn a latent representation
for multi-view data and then perform clustering on such
representation to learn the partition. A notable one is [18]
which employed matrix factorization to discover a common
latent structure shared by all views and give rise to com-
patible clustering results. Besides, CCA based multi-view
clustering methods also fall into this category [8] [5]. Yet
another line of research is by fusing the clustering results
obtained from individual views toward a consensus [7] [13].

In this paper, inspired by the previous success of sub-
space clustering like Sparse Subspace Representation (SSC)
[11] and Low-Rank Representation (LRR) [17], we adop-
t the strategy of letting data points linearly represent each
other. The advantage of such auto-regression method is that
we can capture the data affinity by learning a global dis-
tributed feature representation (representational responses
over all the data points), while in the previous methods the
data affinity are captured through computing local pairwise
Euclidean distance in the similarity graph construction.

Moreover, the auto-regression strategy is also an effec-
tive way of capturing the group structure. Usually the re-
gression coefficient is encouraged to be sparse in a sense
that only data points of the same cluster should be used to
represent each other. Therefore the degree of such spar-
sity decides which candidate points are selected to form a
group and thus reflects the underlying cluster structure. But
when data are highly correlated, if the sparse constraint is
too strong, perhaps only one of correlated data points is s-
elected for the reconstruction. But our goal is to assign all
the correlated data points to the same cluster. Intuitively,
correlated data under one view tend to be also correlated un-
der another view and are likely to fall into the same group.
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Therefore we propose to pair the data matrix from one view
and the regression coefficient from a different view together
to meet a trace lasso constraint, which adaptively adjusts the
sparsity of regression coefficients in order to promote con-
sistent data correlations across views. For the same set of
samples, their regression coefficients under different views
are further enforced to follow a joint low-rank constraint,
anticipating that the same data should have similar distribut-
ed feature representations under any view. This will lead to
a more stable and consistent clustering result.

The contributions of this paper are summarized as fol-
lows:
• We propose a novel multi-view clustering method

which exploits the overall data correlation across views.
The resulting sparsity-adaptive regression coefficients can
better capture the underlying intra & inter cluster affinities
and thus improve the clustering performance.
• We develop an effective algorithm based on iterative

least squares to optimize the objective function. Experimen-
tal results on common benchmark databases validate the
usefulness of the proposed multi-view clustering method.

2. Proposed method
In this section, we first introduce some preliminaries

about trace Lasso to better understand our model. Then the
formulation and optimization of the proposed method will
be illustrated in great details.

2.1. Preliminaries for trace Lasso

Trace Lasso is developed to adapt to the intrinsic data
correlation [12]. It performs in between l1 norm or l2 nor-
m, depending on how correlated the original data are. It is
defined as follows:

Ω(w) = ||XDiag(w)||∗ (1)

Specifically, when the data matrix is column-wise nor-
malized to have unit norm, XDiag(w) can be further ex-
panded as follows:

XDiag(w)|| =
n∑

i=1

|wi| (sign(wi)xi)e
T
i (2)

Consider the extreme case where the data points are all
uncorrelated and orthogonal to each other (i.e. (X)TX = I
). The above equation gives the singular value decomposi-
tion of XDiag(w). Then, trace Lasso is equal to l1 norm:

||XDiag(w)||∗ = ||Diag(w)||∗ =

n∑
i=1

|wi| = ||w||1 (3)

On the contrary, when the data are highly correlated and
suppose they are the same (i.e. X = x11T , (X)TX =

11T ), trace Lasso is then reduced to l2 norm.

||XDiag(w)||∗ = ||x1wT ||∗ = ||x1||2||w||2 = ||w||2 (4)

Under other circumstances, trace Lasso behaves in be-
tween l1 norm and l2 norm.

||w||2 6 ||XDiag(w)||∗ 6 ||w||1 (5)

By coupling the data matrix and the coefficient together,
trace Lasso becomes adaptive to the data correlation. One
nice property about trace Lasso is that it interpolates be-
tween l1 and l2 regularizers, which hardly makes the result-
ing coefficient either too sparse or too dense. Thus correlat-
ed data are likely to be grouped together.

2.2. Formulation of the proposed method

In our model, under each view similar data points are
used to linearly reconstruct each other. Given the data ma-
trix XI ∈ RdI×n and regression coefficient matrix ZI ∈
Rn×n where I denotes one of the two views A and B, dI is
the feature dimension of view I and n is the number of data
points, ZA

i (or ZB
i ) is the i-th column of matrix ZA (or

ZB). Then our proposed method is formulated as follows:

min
ZA,ZB

∑
I∈{A,B}

||XI −XIZI ||2F + β

n∑
i=1

(||XBDiag(ZA
i )||∗

+||XADiag(ZB
i )||∗) + γ||(ZA, ZB)||∗

(6)
For the ease of exposition, here we give the formula-

tion of our method in a two-view scenario. However, our
method can be easily generalized to the scenarios involving
more than three views. The optimization procedure can be
derived by following the same alternative iteration strategy.

In our formulation, unlike CCA-based methods trying to
map data X onto the latent subspace or MF based methods
trying to decompose X and obtain latent features, we aim
to learn new feature representations Z that can not only re-
construct the data itself, but also reflect the underlying data
correlation across views. If we think of all the data points
as a codebook, then the resulting Z is the global distributed
feature responses on this codebook. For any regression tar-
get, candidate points which are similar to the target tend to
have larger response entries in Z and be selected to play a
more significant role in the regression.

In order to obtain a consistent cluster partition, corre-
lated data points under one view are also expected to stay
correlated under other views. Therefore in our formulation
we use trace Lasso to enforce that the distributed feature
representation derived from view A can adapt to the data
correlation under view B, and vice versa. Such cross regu-
larization makes the new feature representation ZA (or ZB)
adapt to the data correlation of both its own view and oth-
er views. So the complementary information among views



is exchanged on the new feature representation level. Fi-
nally in the last term of our formulation, ZA and ZB are
concatenated to form a larger matrix and are further subject
to a joint low-rank constraint, which means corresponding
columns of ZA and ZB are asked to be similar. The intu-
ition is that no matter under which view, the same group
of candidates should be selected to play equally important
roles in reconstructing the target.
β and γ are the hyper-parameters that control the trade-

off between corresponding terms. Once ZA and ZB are ob-
tained, we average them by letting Z = (|ZA| + |ZB |)/2.
Then a spectral clustering algorithm like [19] is applied on
Z to complete the final clustering procedure.

2.3. Solution to the proposed method

In terms of solving the proposed objective, it is not easy
to optimize (6) directly given the existence of a trace norm
regularizer. So we rewrite our objective by following a well
established variational formulation for trace norm [6] [14],
in which the statement below holds true for a matrix M :

||M ||∗ =
1

2
inf
S>0

tr(MTS−1M) + tr(S) (7)

where the infimum is obtained for S = (MMT )1/2.
In the outer loop of our algorithm, we alternatively solve

for one of the representational matrixZA orZB while keep-
ing the other one fixed. In light of the results from (7), when
we optimize the objective with respect to ZA in a column-
wise fashion, (6) can be simplified into the following

min
ZA

n∑
i=1

||XA
i −XAZA

i ||22+β||XBDiag(ZA
i )||∗+γ||(ZA, ZB)||∗

(8)
Suppose Ω1 = ||XBDiag(ZA

i )||∗ and apply (7) to (8), we
have the following:

Ω1 =
1

2
inf
S1>0

(ZA
i )TDiag(diag[(XB)TS−11 XB ])ZA

i +tr(S1)

(9)
Here S1 = (XB [Diag(ZA

i )]2(XB)T + µ1I)1/2 can be
seen as an intermediate variable during the optimization.

Suppose Ω2 = ||XADiag(ZB
i )||∗ and apply (7) to (6)

which this time minimizes with respect to ZB . We have

Ω2 =
1

2
inf
S2>0

(ZB
i )TDiag(diag[(XA)TS−12 XA])ZB

i +tr(S2)

(10)
Similarly, S2 = (XA[Diag(ZB

i )]2(XA)T + µ2I)1/2 is an-
other intermediate variable during the optimization.

To simplify the joint low-rank constraint, we rewrite this
term based on (7) and obtain:

||(ZA, ZB)||∗ =
1

2
inf
S3>0

tr(

[
(ZA)T

(ZB)T

]
S−13 [ZA, ZB ])+tr(S3)

(11)
After some further expansion and simplification, the above
equation boils down to:

||(ZA, ZB)||∗ =
1

2
inf
S3>0

n∑
i=1

[(ZA
i )

T
S−13 ZA

i +(ZB
i )TS−13 ZB

i ]+tr(S3)

(12)
Here S3 = [ZA(ZA)T + ZB(ZB)T + µ3I]1/2 is another
auxiliary variable during the alternative optimization pro-
cess:

For the ease of illustration, we define DB =
Diag(diag[(XB)TS−11 XB ]). Finally, putting all the pieces
together, when we optimize (6) with respect to the i-th col-
umn of ZA, we get the following re-weighted least squares
problem:

min
ZA

i

n∑
i=1

||XA
i −XAZA

i ||22+β(ZA
i )TDBZA

i +γ(ZA
i )TS−13 ZA

i

(13)
It is not difficult to derive the solution to the above problem:

ZA
i = [(XA)TXA + βDB + γS−13 ]−1(XA)TXA

i (14)

Lisewise, when optimizing the objective with respect to
ZB
i , let DA = Diag(diag[(XA)TS−12 XA]) and we have

the following:

ZB
i = [(XB)TXB + βDA + γS−13 ]−1(XB)TXB

i (15)

3. Experimental results
In this section, we evaluate our method on widely used

benchmark databases and compare with a series of baselines
in order to validate the usefulness of the proposed model.

3.1. Databases

Movies617 dataset [3] consists of 617 movies with 17
labels extracted from IMDb. The two views are the 1878
keywords and the 1398 actors with a keyword used for at
least 2 movies and an actor appeared in at least 3 movies.

Animal dataset [2] consists of 30475 images of 50 ani-
mals with six pre-extracted features for each image. Three
kinds of features, namely PyramidHOG (PHOG), color-
SIFT and SURF, are chosen as three views. We select the
first ten categories with each including randomly chosen 50
samples as a subset for evaluation.

UCI Handwritten Digit dataset [1] consists of features
of handwritten digits (0–9). The dataset is represented in



terms of six features and contains 2000 samples with 200
in each category. Similar to [16], we select the 76 Fouri-
er coefficients of the character shapes and the 216 profile
correlations as two views of the original dataset.

Pascal VOC 2007 dataset [4] consists of 20 categories
with a total of 9,963 images. We use the Color feature and
Bow feature as two-view visual representation. Further-
more, those images with multiple categories are removed,
thus leaving 5,649 images for evaluation.

NUS WIDE dataset [10] consists of 269,648 images of
81 categories collected from Flickr. We select 500 images
from each of the five classes with the most number of im-
ages for evaluation. Six types of low level features are given
and we use color correlogram and wavelet texture as two-
view representations for multi-view clustering.

3.2. Experimental settings

We extensively compare our method with many repre-
sentative baselines including 1) S Spectral: Use spectral
clustering in [19] to cluster each view’s data and select the
best clustering result. 2) S LowRank: Use only single-view
low-rank representation to construct the affinity matrix and
then apply spectral clustering in [19] to cluster the dataset.
We also report the best clustering results. 3) Combined:
Concatenate features from two views and apply low-rank
representation on the combined feature to perform cluster-
ing. 4) PairwiseSC: [16] co-regularize the eigenvectors of
all views’ Laplacian matrices. 5) Co Training: [15] Al-
ternately modify one view’s graph structure using the other
view’s information. 6) Multi NMF: [18] A multi-view non-
negative matrix factorization method to group the multi-
view data. Note that this method is not applicable on NUS
dataset since it requires all non-negative input features. 7)
Multi SS: [21] A structure sparsity based multi-view clus-
tering and feature learning framework. The parameters in
these methods are carefully selected in order to achieve their
best results. Once K-means is used, it is run 20 times with
random initialization. To measure the clustering results,
we use accuracy (ACC) and normalized mutual information
(NMI). Readers can refer to [9] for more details about such
measures. Both mean and standard deviation are reported.

3.3. Experimental results and analysis

The experimental results in terms of both NMI and ac-
curacy are listed in Table 1 and 2 respectively. In terms of
NMI, our method performs better than all the other com-
pared baselines. First of all, simple baselines S Spectral
and S LowRank fail to give good results as they only rely
on one source of information for the data partition. Then the
third baseline, which applies low-rank representation on a
simple concatenation of features from multiple views, tend-
s to improve clustering performance to some extent, but is
still less competitive than our method. One possible reason

is that feature vectors from different views may appear to
be heterogenous, which could make correlated data under
different views less correlated after feature concatenation.
While our method solves auto-regression problems using
homogeneous feature vectors under each view and cross-
regularizes the regression coefficients to adapt to the intrin-
sic data correlation across views. Such data correlation in-
formation is circulated among different views through the
resulting regression coefficients, which makes better use
of the data affinity and finds precise clusters. Multi SS
solves the problem of integrating heterogeneous feature set-
s by learning feature weights via structured sparsity norms.
It encourages sparsity between views, but is less adaptive
to data correlation within each view and thus less flexible
than our method. For PairwiseSC, Co Training and
Multi NMF , they capture the data affinity by either con-
structing similarity graphs or learning latent representation-
s via matrix decomposition. They are different from our
method which treats all data points as a global basis and
learns distributed feature representations under the auto-
regression framework. Our method beats them possibly be-
cause the regression coefficients in our formulation reflect
the intra & inter cluster structures more precisely via the
adaptive ability of trace Lasso.

4. Conclusion
In the multi-view setting, data can have various feature

modalities at the same time, which may not guarantee cor-
related data under one view still stay correlated under a dif-
ferent view. To mitigate such uncertainty, we have proposed
a trace Lasso regularized framework that adapts to the data
correlation from all views. Our method flexibly adjusts the
sparsity of the regression coefficients and makes sure that
correlated data should fall into the same cluster. The result-
ing regression coefficient serves as a new distributed feature
representation over the basis of all data points. An addition-
al joint low-rank constraint is imposed to let the same sam-
ples have similar distributed feature representations across
views. Experimental results on a series of datasets have
demonstrated the usefulness of our proposed method.

References
[1] http://archive.ics.uci.edu/ml/datasets/

Multiple+Features. 3
[2] http://attributes.kyb.tuebingen.mpg.de/.

3
[3] http://membres-lig.imag.fr/grimal/data.

html. 3
[4] http://pascallin.ecs.soton.ac.uk/

challenges/VOC/voc2007/. 4
[5] U. Ahsan and I. Essa. Clustering social event images using

kernel canonical correlation analysis. In CVPR Workshops,
pages 814–819, 2014. 1

http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://attributes.kyb.tuebingen.mpg.de/
http://membres-lig.imag.fr/grimal/data.html
http://membres-lig.imag.fr/grimal/data.html
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/


ACC(%) Digits Movies617 VOC Animal NUS
S Spectral 66.37(4.44) 25.70(1.13) 15.64(0.43) 27.21(1.50) 33.85(0.18)
S LowRank 66.53(5.31) 30.02(1.05) 17.09(0.41) 31.71(1.88) 34.74(0.02)
Combined 71.83(6.19) 32.93(1.53) 13.98(0.37) 32.51(1.00) 30.28(0.14)
PairwiseSC 80.82(6.30) 27.89(1.64) 11.93(0.14) 31.65(1.59) 33.07(0.14)
Co Training 80.22(6.84) 30.74(1.28) 14.84(0.33) 30.35(1.48) 35.15(1.03)
Multi NMF 69.24(6.28) 26.99(1.19) 12.57(0.23) 30.56(1.02) N/A
Multi SS 72.45(4.10) 29.60(1.10) 12.47(0.26) 32.11(1.86) 32.39(0.05)
AMCTL 82.34(5.89) 34.03(1.45) 18.57(0.52) 34.46(1.69) 36.09(1.12)

Table 1: Clustering results in terms of accuracy on five benchmark databases.

0.001
0.01

0.05
0.1

0.5
1

5
10

0.001
0.01

0.05
0.1

0.5
1

5
10

0

10

20

30

40

λ

Clustering ACC on Movies dataset

β

A
c
c
u
r
a
c
y
 
%

Figure 1: Accuracy vs. parameters λ
and β on the Movies617 database

NMI(%) Digits Movies617 VOC Animal NUS
S Spectral 62.30(1.85) 25.47(0.85) 9.34(0.19) 15.70(0.65) 6.64(0.15)
S LowRank 69.79(1.81) 30.15(0.80) 7.05(0.18) 18.42(1.10) 7.68(0.01)
Combined 70.92(2.03) 32.11(0.89) 9.33(0.30) 20.09(0.58) 5.14(0.27)
PairwiseSC 75.84(2.37) 28.04(0.73) 6.07(0.12) 19.90(1.51) 6.87(0.01)
Co Training 75.90(2.27) 30.74(1.28) 9.88(0.21) 18.98(0.73) 8.51(0.16)
Multi NMF 65.05(2.30) 27.45(0.55) 6.40(0.19) 18.77(0.71) N/A
Multi SS 74.55(2.49) 30.09(1.32) 6.76(0.11) 21.25(1.76) 5.63(0.02)
AMCTL 79.18(2.71) 33.21(1.01) 9.90(0.25) 23.02(0.92) 8.70(0.18)

Table 2: Clustering results in terms of NMI on five benchmark databases.

0.001
0.01

0.05
0.1

0.5
1

5
10

0.001
0.01

0.05
0.1

0.5
1

5
10

0

10

20

30

40

λ

Clustering NMI on Movies dataset

β

N
M
I
 
%

Figure 2: NMI vs. parameters λ and β
on the Movies617 database

[6] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature
learning. In NIPS, 2007. 3

[7] E. Bruno and S. Marchand-Maillet. Multiview clustering: A
late fusion approach using latent models. In ACM CRDIR,
pages 736–737, 2009. 1

[8] K. Chaudhuri, S. M. Kakade, K. Livescu, and K. Sridha-
ran. Multi-view clustering via canonical correlation analysis.
ICML, pages 129–136, 2009. 1

[9] W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang. Par-
allel spectral clustering in distributed systems. IEEE TPAMI,
33(3):568–586, 2011. 4

[10] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng.
Nus-wide: A real-world web image database from national
university of singapore. In ACM CIVR, 2009. 4

[11] E. Elhamifar and R. Vidal. Sparse subspace clustering: Al-
gorithm, theory, and applications. IEEE TPAMI, 35(1):2765–
2781, 2013. 1

[12] E. Grave, G. R. Obozinski, and F. R. Bach. Trace lasso: a
trace norm regularization for correlated designs. In NIPS,
pages 2187–2195, 2011. 2

[13] D. Greene and P. Cunningham. A matrix factorization ap-
proach for integrating multiple data views. In ECML-KDD,
pages 423–438, 2009. 1

[14] Y. Guo. Convex subspace representation learning from
multi-view data. In AAAI, 2013. 3

[15] A. Kumar and H. D. Iii. A co-training approach for multi-
view spectral clustering. ICML, pages 393–400, 2011. 1,
4

[16] A. Kumar, P. Rai, and H. D. Iii. Co-regularized multiview
spectral clustering. NIPS, pages 1413–1421, 2011. 1, 4

[17] G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by
low-rank representation. In ICML, pages 663–670, 2010. 1

[18] J. Liu, C. Wang, J. Gao, and J. Han. Multi-view clustering
via joint nonnegative matrix factorization. SDM, pages 252–
260, 2013. 1, 4

[19] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE TPAMI, 22(8):888–905, 2000. 3, 4

[20] S. Sun. A survey of multi-view machine learning. Neural
Computing and Applications, 23(7-8):2031–2038, 2013. 1

[21] H. Wang, F. Nie, and H. Huang. Multi-view clustering and
feature learning via structured sparsity. ICML, pages 352–
360, 2013. 4


