
SEMI-SUPERVISED SUBSPACE SEGMENTATION

Dong Wang, Qiyue Yin, Ran He, Liang Wang, Tieniu Tan

Center for Research on Intelligent Perception and Computing (CRIPAC)
National Laboratory of Pattern Recognition (NLPR)

Institute of Automation, Chinese Academy of Sciences, Beijing, China
{dwang, qyyin, rhe, wangliang, tnt}@nlpr.ia.ac.cn

ABSTRACT

Subspace segmentation methods usually rely on the raw ex-
plicit feature vectors in an unsupervised manner. In many
applications, it is cheap to obtain some pairwise link infor-
mation that tells whether two data points are in the same sub-
space or not. Though partially available, such link informa-
tion serves as some kind of high-level semantics, which can
be further used as a constraint to improve the segmentation
accuracy. By constructing a link matrix and using it as a regu-
larizer, we propose a semi-supervised subspace segmentation
model where the partially observed subspace membership pri-
or can be encoded. Specificly, under the common linear repre-
sentation assumption, we enforce the representational coeffi-
cient to be consistent with the link matrix. Thus the low-level
and high-level information about the data can be integrated to
produce more precise segmentation results. We then develop
an effective algorithm to optimize our model in an alternating
minimization way. Experimental results for both motion seg-
mentation and face clustering validate that incorporating such
link information is helpful to assist and bias the unsupervised
subspace segmentation methods.

Index Terms— subspace, clustering, semi-supervised, s-
parse, link matrix

1. INTRODUCTION

On many occasions, it is desirable to find a low dimension-
al representation for the original high dimensional data so
that the information redundancy and computational complex-
ity can be diminished. Very often, the data we collect come
from a union of different subspaces. Then we not only care
about the low dimensional representation, but meanwhile ex-
pect the data points to be assigned into their corresponding
subspaces as well. To this end, many subspace segmentation
(a.k.a subspace clustering) methods have been proposed.

In subspace segmentation, many models [1] follow a self-
expression assumption, which means a data point can be writ-
ten as a linear superposition of the other points. Among these
models, one notable one is Sparse Subspace Clustering (SS-
C) [2], which seeks a sparse representation of the target data

point using the other points. It also imposes the sparsity con-
straint on the reconstruction error. Low-Rank Representation
(LRR) [3] tends to discover the global structure in the da-
ta using the nuclear norm regularization. The Least Squares
Regression (LSR) [4] method for subspace clustering has the
property to group correlated data together through the Frobe-
nius norm penalty. All these models use spectral clustering
methods such as [5] to implement the final cluster segmenta-
tion after the representational coefficients are obtained. There
are also methods paying attention to other aspects like robust-
ness [6][7] and alignment [8] in subspace clustering. For a
more comprehensive review on subspace clustering, we refer
the readers to the survey paper by René Vidal [1].

For many subspace segmentation methods in a complete
unsupervised setting, the pre/post-processing steps are some-
how the tricks for them to achieve promising results. In many
cases, it is cheap and convenient to obtain some partial, if
not all, label information via crowdsourcing platforms. Thus
some semi-supervised clustering or constrained clustering
methods [9][10][11][12][13][14][15] have been proposed to
utilize such label information. By imposing additional con-
straints like “must-link” and “cannot link” [16], traditional
clustering methods are enabled to perform better. Inspired
by this line of research, we propose a Semi-Supervised Sub-
space Segmentation (S4) model with instance pairwise link
information embedded. So the dependence on the pre/post-
processing steps can be to some extent alleviated. It should be
noted that our focus in this paper is to test how helpful such
partial link information is for those unsupervised subspace
segmentation methods which adopt a self-expression assump-
tion, so we will not compare with the above semi-supervised
clustering methods which do not share the same assumption.

In the semi-supervised setting, we obtain a partially ob-
served pairwise link matrix which indicates the incomplete
membership information. Then in our model we enforce the
corresponding entries of the linear representation matrix to be
consistent with the observed entries of the link matrix. The
intuition is, at least those data points that are already known
to be in the same subspace as the target data point should be
used as part of the representation components. Although we
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only know some partial link information, they are high-level
semantics that are more precise and reliable than the raw ex-
plicit feature vectors. Incorporating such high-level semantic
information can improve the final subspace clustering results.

Finally, our contributions in this paper are summarized as
follows:

• The proposed method is one of the early solutions to ex-
tend the subspace segmentation problem to a semi-supervised
setting under the self-expression assumption. Concretely, by
enforcing proper constraints, we propose a flexible model that
takes advantage of the partially available link information.

• We develop an effective optimizing algorithm to solve
the proposed model. And experiments on the benchmark
datasets show that incorporating such link information is
useful to aid and calibrate the unsupervised subspace seg-
mentation methods.

2. PROPOSED MODEL

2.1. Notations

In this paper, the transpose of a matrix X is XT . Xi means
the i-th column of X . Xij is the (i,j) entry of X . For two
matrices X and Y of corresponding dimensions, ⟨X,Y ⟩ is
the trace of XTY . || · ||F and || · ||1 are used to represent the
Frobenius norm and l1 norm respectively. And we use “⊙” to
represent the element-wise product of two matrices with the
same size. ∀a ∈ R, (a)+ returns itself if it is non-negative and
returns zero otherwise. diag(X) is a diagonal matrix whose
non-zero entries are the diagonal of X .

2.2. Formulation

Inspired by SSC [2], we also assume that any data point can
be expressed as a sparse linear representation of all the points
excluding itself. Suppose d is the dimension of the original
data space and N is the number of data points. Given the
data matrix X ∈ Rd×N , the representation coefficient Z ∈
RN×N and the reconstruction error E ∈ Rd×N , we are going
to optimize the following objective:

min
Z,E

||Z||1 + λ||E||1 + α
∑
i,j∈O

(Zij −Aij)
2

s.t X = XZ + E, diag(Z) = 0

(1)

λ and α are the tradeoff parameters. E is also required to
be sparse so that the model can be to some extent insensitive
to outliers. After solving for Z, we can manage to obtain the
final clustering results.

The purpose of the third term in (1) is to enforce the rep-
resentation coefficient Z to be consistent with the partially
available label information.

Here A is a partially observed “link matrix” that has bina-
ry entries indicating which candidate data points can be used

to represent a target point. We say points i and j have a link
if they share the same label or come from the same subspace.
Otherwise there is non-link between them. And O is the set
of observed links. Concretely, for Aij being 1, it tells that
point i can be used to represent point j or vice versa. For Aij

being 0, points i and j cannot be used to express each other.
For Aij being “?”, it means that whether points i and j can be
used to express each other is unknown beforehand. See Fig.1
for a clear illustration.
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Fig. 1. Illustration of the link matrix.

It should be noted that A is binary, but the elements of Z
may not be all binary. However, this can be solved by normal-
izing Z to lie in [0,1]. The more Zij approaches 1, the more
possible it becomes for i and j to represent each other. On
the contrary, if Zij approximates to 0, it becomes less possi-
ble for i and j to represent each other. Forcing Z to conform
with A will lead to a more accurate Z and thus a more precise
cluster segmentation.

Actually A can be seen as being generated by entry-wise
multiplying the true underlying link matrix L with a binary
indicator (or mask) matrix R. In Fig.1, the shaded entries
of R indicate their corresponding entries in L will become
unavailable. And the white ones mean their corresponding
entries in L will be shown to us.

Rij =

{
1 ifAij is observed
0 ifAij is unobserved

(2)

Therefore, R reflects how much label information we
have and decides which corresponding entries of A and Z
should be consistent with. Then the original formulation (1)
can be rewritten as follows:

min
Z,E

||Z||1 + λ||E||1 + α||Z ⊙R− L⊙R||2F

s.t X = XZ + E, diag(Z) = 0
(3)

3. SOLUTION TO THE PROPOSED MODEL

In reality, we do not know the true underlying link matrix L,
otherwise clustering results can be directly obtained. And Li

cannot be substituted into the computation if it has “?” being
its entries. However we can generate a pseudo or artificial ful-
ly observed link matrix L̂ by filling in the unobserved entries
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of A with arbitrary values. Such operation will not influence
the final solution since these added values will be ruled out
by R during optimization. But the advantage here is that Z
becomes easier to be computed once per column rather than
once per element. Without loss of generality, we can obtain L̂
by setting those unobserved entries in A to be all zero.

Inspired by [17], we introduce an auxiliary variable C so
that the objective function becomes separable and easy to op-
timize. Replacing L with L̂, (3) can be further refomulated as
follows:

min
C,Z,E

||C||1 + λ||E||1 + α||Z ⊙R− L̂⊙R||2F

s.t X = XZ + E, Z = C − diag(C)
(4)

The above objective will share the same solution with (3)
if the convergence condition is to let C and Z become as close
as possible during optimization.

Suppose matrix P and Q are two Lagrange multipliers,
then we have the following augmented Lagrangian function :

L = ||C||1 + λ||E||1 + α||Z ⊙R− L̂⊙R||2F
+ < P,X −XZ − E > + < Q,Z − (C − diag(C)) >

+
µ

2
(||X −XZ − E||2F + ||Z − (C − diag(C))||2F )

(5)
According to the Alternating Direction Method of Mul-

tipliers (ADMM) [18], we can alternatively solve one of the
variables C, Z, E and meanwhile keep the other two fixed.

• Solve for C with Z and E fixed.

Ck+1 = Ĉ − diag(Ĉ) (6)

Ĉ = T 1
µ
(Zk +Qk/µ) (7)

where Ĉ is the solution without considering diag(C). Here
Tη(·) is the soft-threshoding operator for every matrix entry
and is defined as: Tη(v) = (|v| − η)+sgn(v).

• Solve for E with C and Z fixed:

Ek+1 = Tλ
µ
(X −XZk + P k/µ) (8)

• Solve for Z with C and E fixed: To drop “⊙”, we solve
for Z once per column. By optimizing (5) w.r.t Z, we have:

min
Zi

α||S(i)Zi − S(i)L̂i||22

+PT
i (Xi −XZi − Ei) +QT

i [Zi − (C − diag(C))i]

+
µ

2
(||Xi −XZi − Ei||22 + ||Zi − (C − diag(C))i||22)

(9)
where S(i) is a diagonal matrix with the i-th column of R as
its diagonal entries. This leads to a closed form solution:

Zk+1
i = (2αST

(i)S(i) + µXTX + µI)\[2αST
(i)S(i)L̂i +XTP k

i

−Qk
i + µ(Ck+1 − diag(Ck+1))i + µXTXi − µXTEk+1

i )]
(10)

• Update the Lagrange multipliers with C, Z and E fixed.

P k+1 = P k + µ(X −XZk+1 − Ek+1)

Qk+1 = Qk + µ(Zk+1 − Ck+1)
(11)

The above steps are repeated until ||Ck − Zk||∞, ||Zk −
Zk−1||∞, ||Ek − Ek−1||∞ and ||X −XZk − Ek||∞ are all
below the converging tolerance ε = 10−4.

After we get the representation matrix Z and construct
the affinity matrix W = |Z| + |Z|T , the spectral clustering
method of [5] is used to obtain the final clustering results.
The whole procedure of our method can be summarized in
Algorithm 1.

Algorithm 1 Semi-Supervised Subspace Segmentation (S4)

Input: X , A, k=0, Set C0=Z0=E0=P 0=Q0=0, µ = 1
Output: W = |Z|+ |Z|T

while “not converged” do
Fix Z and E, update C using (7) and (6)
Fix Z and C, update E using (8)
Fix C and E, update Z using (10)
Fix C, Z and E, update P and Q using (11)
µ = min(1030, 1.1µ)
k = k + 1

end while

4. EXPERIMENTS

In this section, we test the usefulness of our method for
motion segmentation and face clustering. In particular, we
are going to compare with Spectral Curvature Clustering
(SCC)[19], LRR [20], LSR [4], Low-Rank Subspace Cluster-
ing (LRSC) [21] and SSC [17]. As explained in introduction,
we are not going to compare with the aforementioned semi-
supervised clustering methods since we only concentrate
on verifying how helpful the link information is for unsu-
pervised subspace segmentation methods which follow a
self-expression assumption rather than compare all the semi-
supervised clustering methods.

4.1. Settings

For the methods whose source codes are available, we re-
produce their results using the same settings therein. Both
two versions of LSR, LSR1 and LSR2, are tested in the ex-
periments. For LRR, we report the results with and without
(LRR-H) post-processing on the coefficient matrix. We test
all the models directly on the original data without prepro-
cessing steps like PCA.

4.2. Motion Segmentation

For motion segmentation, the Hopkins 155 dataset [22] is
chosen for evaluation. It includes 120 two-motion and 35
three-motion video sequences. One motion corresponds to

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20142856



Table 1. Clustering errors (%) on Hopkins 155 dataset.

Model
2 motions 3 motions All motions

mean median mean median mean median
SCC 2.24 0.00 6.69 0.40 3.25 0.00
LRR 3.30 0.34 7.39 2.80 4.22 0.53

LRR-H 1.33 0.00 2.51 0.00 1.60 0.00
LSR1 1.80 0.11 4.14 1.60 2.33 0.31
LSR2 2.08 0.10 4.85 1.83 2.72 0.31
LRSC 2.46 0.00 6.03 2.20 3.27 0.00
SSC 1.52 0.00 4.40 0.56 2.18 0.00
S4 0.61 0.00 2.09 0.64 0.94 0.00

a single subspace. We report results in terms of both mean
and median error rates over a corresponding number of video
sequences. See Section 7.1 in [17] for more details.

In this experiment, we unveil the subspace membership
for a random 30% subset of the data points and therefore con-
struct R as described in Sections 2 and 3. This also amounts to
having a link matrix A with 9 percent of its entries being ob-
served. The subspace segmentation results of different model-
s are shown in Table 1. As can be seen, our proposed method
S4 performs the best for the 2-motion case. For 3-motion,
S4 is also superior to other models in terms of mean and is
comparable in terms of median. With an average clustering
error of 0.94%, the overall performance of S4 on all motions
beats all the other compared methods. Such empirical results
prove that encoding the partially available link information is
helpful to the subspace segmentation task.

4.3. Face Clustering

For face clustering, we choose the Extended Yale B [23]
dataset. This dataset consists of frontal facial images of 38
subjects with varying lighting conditions. And the first 10
subjects are used to evaluate the compared models. In this
experiment, we resize each face image to 48×42 pixels and
stack its column into a 2016D vector.

Similarly, we disclose the subspace membership for a ran-
dom 20% selection of the data points and construct R as men-
tioned before. To observe the effect of the number of subjects
in face clustering, we assess all the models on the first 5, 8
and 10 subjects respectively. As shown in Table 2, when the
number of subjects increases, the clustering errors of different
models all increase to various degrees. In the case of 8 and 10
subjects, S4 consistently outperforms the other methods. For
5 subjects, S4 and SSC both produce a perfect clustering.

To check the performance change as the amount of avail-
able label information increases, we test our model on the first
10 subjects when 0%, 10%, 20% and 30% membership infor-
mation are given respectively. As shown in Table 3, when
more such high level semantic information is fed to our mod-
el, it performs better and better.

Table 2. Clustering errors (%) on Extended Yale B dataset.
Methods 5 subjects 8 subjects 10 subjects

SCC 60.56 65.63 73.59
LRR 14.69 21.09 33.75

LRR-H 1.88 2.34 8.91
LSR1 13.75 36.91 37.81
LSR2 5.31 17.38 34.38
LRSC 3.75 8.79 10.47
SSC 0.00 4.88 9.38
S4 0.00 0.98 1.41

Table 3. Error rate change of S4 under different amount of
link information

Link information (%) 0 10 20 30
Error rate (%) 9.38 2.03 1.41 0.63

4.4. Discussion

About the fairness of model comparison: We are aware that
all the baseline models are unsupervised without using any
supervised information. However, even though we use such
partial link information to somehow correct the representa-
tional matrix in the optimizing process, we still simply rely
on the solved Z to realize an unsupervised clustering in the
end without using the label information to classify the data
directly. Therefore the fairness is guaranteed. Using a smal-
l amount of link information to complement the raw feature
based unsupervised subspace segmentation is where our mod-
el differs and stands out.

5. CONCLUSION

Under the linear representation assumption, we have inter-
preted the mutual representational relation between any two
data points in the subspace as the existence of a pairwise link.
In terms of selecting proper representation components for a
given target point, we have enforced the representational co-
efficient to be consistent with the partially observed link ma-
trix. Therefore the resulting model is able to prefer points
that are known to be in the same subspace while denying
points known to come from other subspaces. Experimental
results have proved that incorporating link information can
aid the unsupervised subspace segmentation results without
using any link information at all. One possible future work is
to extend other methods in the subspace segmentation family
such as LRR to the semi-supervised setting.
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