
Figure 2. Flowchart of processing light-�eld iris images based on
the proposed ARF algorithm.

increasing attentions [2, 16, 13, 14, 17]. It was predicted
that most consumer photographic cameras will be light-�eld
cameras in 20 years [8].

Light-�eld camera can dramatically extend the DOF [2],
which bene�ts many texture-based applications. Raghaven-
draet al. [13] and Rajaet al. [14] captured a face database
and an iris database using the Lytro camera [11] respec-
tively. The extended DOF by the Lytro camera improves
performance of detection and recognition of iris and faces.
Zhanget al. [17] developed an iris imaging system with a
specially designed light-�eld camera and veri�ed its supe-
riority for resolving the trade-off between the aperture size
and the DOF. However, both [13] and [17] have to render
an image sequence refocused at the varying depth and then
select the optimal one from it due to no prior knowledge of
the depth of ROI.

The schemes used in the optical AF can not be directly
applied to the ARF, although they are similar problems. In
the literature of optics [4], the AF can be achieved by either
active or passive sensing. In active sensing, the infrared
light or ultrasound signal is actively emitted from the cam-
era to detect the ROI depth. The focal length is then set
from a lookup table depending on that depth. The most pop-
ular passive AF systems are based on contrast or sharpness
assessment, where the sharpness of the ROI is used to itera-
tively alter the focal length. The passive AF can be applied
directly to the ARF. But it is such a time-consuming scheme
as the naive ARF algorithm discussed above. Meanwhile,
the active sensing enlightens us that if the depth of ROI has
been estimated, the computational complexity of ARF can
be decreased toO (1).

Actually, both AF and ARF are ultimate problems of
depth estimation. Although light-�eld cameras offer a re-
markable ability for depth estimation without stereo match-
ing [1, 16, 2], the explicit depth estimation is not suitable
for ARF, since it is also a time consuming procedure. Fur-

Figure 3. The pointolitesS andS0 are focused at the optical image
plane and the virtual image plane respectively.

thermore, most depth estimation algorithms are based on
epipolar geometry [1, 16, 2] which cannot achieve a robust
estimation when the surface of the objects cannot be mod-
eled as the Lambert surface, e.g. the surface of human iris.
The defocus blur presents the cue of depth [6], which in-
spires us to reduce the computational complexity via mod-
eling the correlation between refocusing depth and defocus
blur.

The most related work is from Rajaet al. [14]. They
propose an ARF algorithm that selects the best focused im-
age corresponding to iris region from multiple focus im-
ages based on wavelet energy. Apparently, the scheme ac-
tually needs to search the complete depth range for the best-
focused iris, so it has no essential difference with the naive
ARF discussed above.

3. The ARF framework and algorithm

In refocusing rendering, the defocus blur is due to the ob-
jects in ROI away from current refocusing depth and it com-
monly can be modeled as the point spread function (PSF).
Then the refocusing blurred image can be modeled as Eq. 1

g [x] = ( h (� ) 
 p) [x ] + N [x] ; (1)

where
 denotes a convolution operator. Thep andg[x]
stand for the ROI of the all-in-focus image and the observed
blurry image, respectively.� denotes the depth.h (� ) is
the depth-varying PSF.N is additive noise. The ARF can
be abstracted as an inverse problem to estimate the optimal
refocusing depth� 0 from observationsg [x].

3.1. The ARF framework

Assuming that the R-PSFh (� ) is spatially invariant, and
it can be determined merely by its variance� h . Thus the
proposed framework �rstly calculates the samples'� h i via
a blur assessment:

� h i (� i ) = BM (g� i [x ]); i = 1 ; :::; n; (2)

whereBM is a blurriness measure insensitive top, � h i (� i )
denotes the observed value,n is determined by the number




