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ABSTRACT

Most existing methods of image classification ignore the role
of depth information hidden in 2-D images. However, the
depth information is important for visual perception, espe-
cially when the appearance information does not perform
well. In this paper, we propose to embed depth information
within multiple pooling into the classic platform of image
classification, namely bag-of-features. The proposed method
quantifies depth diversity by projecting objects to their near-
by depth planes, resulting pooling features in the 3-D space
indirectly. Experimental results on the MIT Indoor Scene
database demonstrate that our proposed depth-embedded
multiple pooling is effective to enhance the accuracy of im-
age classification, especially when the appearance features
alone are not so discriminative.

Index Terms— Image Classification, Depth Estimation,
Multiple Pooling

1. INTRODUCTION

In the field of image classification, a number of approaches
have been proposed to study the role of appearance informa-
tion. However, the importance of depth information is not
paid enough attention. Consider the illustration in Figure 1,
which shows a toy example of image matching between t-
wo groups of images, i.e., four real face photos (upper left)
and an picture of the Mount Rushmore (bottom left). The
appearance representations of these faces are similar. Their
depth information, however, is of big difference, according to
which it is easier to differentiate between these two groups
of images. Therefore, appearance-based image classification
methods are not so powerful to handle such problems. Moti-
vated by this observation, we aim to build a model to embed
depth information into appearance-based image classification
in this paper.

Very recently, Redondo et al. [1] propose to make use
of depth information for object recognition. In their method,
the depth of images is directly extracted by a RGB-D sensor,
which is used to recognize object categories in point clouds.
Our task in this paper is different from theirs. We focus on

Fig. 1. An illustration of image matching with both appear-
ance and depth information. Although the appearance infor-
mation provided by BoF is similar between two kinds of im-
ages, their depth responses are much dissimilar. So the result-
ing decision is that they are mismatched.

2-D image classification and extract depth information from a
single image. Obtaining depth information from a single im-
age is a challenging problem in computer vision, and several
related works have been proposed. Liu et al. [2] estimate the
depth of each pixel from a single monocular image by using
semantic segmentation and labels of scenes. Hoiem et al. [3]
construct the surface layout of scenes, by which they generate
a depth map with satisfying visual effect. Saxena et al. [4] ap-
ply Markov Random Field for depth estimation, and achieve
good performance on both quantitative and qualitative evalu-
ation.

In the real environment, an object’s depth generally
changes in a reasonable range in order to keep its appear-
ance representation unchanged. Inspired by this considera-
tion, we adopt the multiple pooling technique [5] to model
the depth information. Here, we choose multiple pooling as
the embedded method because it is effective and efficient,
even with a small size of codebook. We call this process
as depth-embedded multiple pooling (DMP), which can be
understood as, in an intuitive perspective, grouping features
into a number of levels with respect to their depth. With
depth information, two features with different levels can-
not be matched even if they are very similar in appearance
representation. In this way, it is easy to filter objects with
unreasonable depth information, e.g., a clear face picture
with the depth of more than 200 meters (see the picture of the



Mount Rushmore in Figure 1). The DMP is integrated into
the classic bag-of-features (BoF) model [6] for image classifi-
cation. Experimental analysis demonstrates that the proposed
method can largely enhance the classification accuracy.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our method in detail, including the frame-
work of the algorithm, the process of depth-embedded mul-
tiple pooling and an in-depth analysis. Experimental results
and analysis are provided in Section 3. Section 4 concludes
the whole paper and discusses future work.

2. OUR METHOD

2.1. Framework

Fig. 2. The framework of our method.

Figure 2 shows the framework of our method. The BoF
model is chosen as the platform of our method because it is
probably one of the most successful methods for image clas-
sification. Moreover, it is easy to embed depth information
into its pooling process. The BoF model includes three major
components.

• Feature Extraction. Local features, e.g., SIFT features
[7] in our method, are extracted from image patches,
which are sampled from each image via the feature de-
tector [8] or with a fixed grid [9].

• Feature Coding. A codebook is generated, usually ob-
tained by clustering over local features, and then local
features are encoded by this codebook. In our frame-
work, Locality-constrained Linear Coding (LLC) [10]
is chosen for feature coding. This coding method per-
forms very effectively and efficiently in many databases
for image classification [11], [12]. Other coding meth-
ods can be found in [13].

• Feature Pooling. This step aims to integrate all re-
sponses on each codeword into one value. Afterwards,
these values are being pooled in order to produce the
image representation. An in-depth analysis about fea-
ture pooling can be found in [14], [15].

To extract depth from a single image, we use Saxena et
al.’s method [16]1. As we analyze in Section 1, this method
performs well in both visual effect and quantitative evalua-
tion.

1The code is available from http://make3d.cs.cornell.edu.

In the step of depth-embedded multiple pooling, extracted
features are divided into a number of groups according to their
locations in the 3-D space. The coding responses of features
are then pooled with respect to the generated groups, which
will be detailed in Section 2.2.

2.2. Depth Multiple Pooling

Some notations are provided at the beginning of this section.
For each input image, the feature extraction step generates a
number of features {fi ∈ RM}i=1,2,··· ,N , where M is the di-
mension of each feature and N is the number of features. Let
{li ∈ R3}i=1,2,··· ,N denotes the spatial information of fea-
tures, where li = (xi, yi, di) represents the location of the ith

feature in the 3-D space. di is the depth information, (xi, yi)
is the image location of the specified feature.

The main idea of multiple pooling [5] is to group features
by the clusters generated in the feature space. As a result, fea-
tures in the same group are represented with the same bases
being shared. Therefore, the rule of multiple pooling is relat-
ed with the cluster in the feature space. We extend the origi-
nal multiple pooling from the feature space to the 3-D space
described by li = (xi, yi, di). And accordingly, the rule is
expressed as:

Ψ(f, l) =

{
1, l ∈ C.

0, otherwise.
(1)

where f is the feature and the corresponding location is l. C
is the groups of features. Ψ is the rule which tells us a feature
where it belongs. The reason considering depth in image clas-
sification can be explained. Suppose there are several kinds of
features in images, represented by different colors of points.
It is difficult to separate these features in the 2-dimensional
space. However, with depth information it might be easy to
differentiate between them by making use of their distribu-
tions in depth.

The key points of Equation 1 exist in that how to define the
groups of features, C, and how to decide whether l belongs to
C. To solve the first problem, depth is quantized to a series
of discrete values, which is conducted by clustering methods.
We describe our scheme to address the second issue as the
following form.

Ψ(fi, li) =

{
α, li ∈ C1.

1− α, li ∈ C2.
(2)

α =
τ(li, C2)

τ(li, C1) + τ(li, C2)
(3)

τ(li, C1) = |di − C1
d| (4)

where C1 and C2 are the nearest two groups from li. τ(·, ·)
measures the distance between the two elements. C1

d is the
depth of C1. Therefore, we choose the nearest two groups and



Fig. 3. Typical examples of the 2 categories from the Sun database. The first row is the samples of indoor volleyball and the
second is the beach volleyball. The histogram represents the corresponding depth distribution of the image. Notice the depth
shown here is limited to 100 meters.

assign them with soft weights. Considering Equation 2, it is
clear to find that our multiple pooling rule is operated in the
recovered 3-D space. A further analysis on depth-embedded
multiple pooling will be provided in the next subsection.

2.3. In-depth Analysis

In this section, we provide in-depth analysis to the depth-
embedded multiple pooling technique. Consider two different
images shown in Figure 4 captured from different distances,
e.g., 5 meters and 200 meters, respectively. Most existing
methods of object categorization only consider appearance-
based object matching, and thus it is difficult to differentiate
between these two images which have similar appearance rep-
resentations but belong to different categories. In our method,
depth is quantized to a number of levels, and objects from the
same (or nearby) levels can be matched. Our strategy actually
projects original images into several depth planes, which are
used to approximate the appearance representation in the real
3-D space. This process can be formulated as

[R2] −→ [R2,1,R2,2, · · · ,R2,i, · · · ,R2,K ] −→ [R3], (5)

where {R2,i}i=1,2,··· ,K is a series of quantized depth planes.

Fig. 4. An illustration of depth projection.

Due to depth quantification, this kind of 2.5-D represen-
tation is insensitive to small depth variations (usually induced
by object moving in a reasonable range) and also discrimi-
native to large depth difference (typically caused by different
objects).

3. EXPERIMENTAL RESULTS

To test the performance of the proposed method, an empirical
study is conducted in this section. The first part introduces

the datasets and the experimental setup, followed with exper-
imental results and analysis in the second part.

3.1. Datasets and Setup

We choose two typical categories from the Sun database [17],
the indoor volleyball and beach volleyball, which have similar
appearance features, e.g., features of both the volleyball and
the net. It is difficult to distinguish one from another exactly
only by the appearance representation. This experiment can
be used to verify the effectiveness of using depth information
in image classification, which gives both satisfying visual ef-
fect and quantitatively accurate results. Representative sam-
ples are shown in Figure 3. Expanding this dataset to a larger
one, we choose the Indoor Scene Recognition database [18]
for our experimental analysis. This database contains 67 in-
door categories consisting of 15620 images, with at least 100
images per category. The reason why we choose this database
is that the depth of the indoor scene can be estimated with a
relatively high accuracy, because of which we can concentrate
more on the effect of depth information.

Following previous work [18], for each category, we use
80 images for training and 20 images for testing. To quantify
depth, K−means clustering is used over features’ depth val-
ues, and the parameter K is determined by cross validation.
The baseline is the BoF algorithm with multiple pooling. In
all cases the performance is denoted by the average accuracy.

3.2. Results

The experimental result on the 2 categories of the Sun
database is summarized in Figure 5. The accuracy of our
method is higher than that of the baseline both on average
and for each category. As shown in Figure 3, the depth
distribution of these categories is different, i.e., the indoor
mainly centers on a limited depth while the outdoor has a
long tail. With the depth information, it helps to distinguish
between these two categories which have similar appearance
representations.

We notice that there are some previously published meth-
ods that have given the accuracy the Indoor Scene Recogni-
tion database as listed in Table 1. Generally speaking, our
proposed depth-embedded multiple pooling is comparable to
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Fig. 5. Classification accuracy of the 2 categories dataset from the Sun database (%).
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Fig. 6. The differences of performance on the Indoor Scene Recognition database of our method and the baseline for each
category. The horizontal axis indicates the 67 categories, and the vertical one represents the values of the accuracy by our
method minus the corresponding one of the baseline. Positive values are the major part for each subgraph which implies that
our method outperforms the baseline on most of categories for each codebook size.

these methods. Further more, Figure 6 and Table 1 summarize
quantitative results of the Indoor Scene Recognition database,
from which the following conclusions can be obtained.

1. Our method is overall effective to enhance the classifi-
cation accuracy. The average accuracy of the proposed
method outperforms the baseline algorithm by at most
7.4% (when codesize = 64). This result demonstrates
that depth information is indeed beneficial for image
classification.

2. The enhancement is more obvious when a small num-
ber of codewords are used. This is probably caused by
two reasons. Firstly, the baseline algorithm performs
poor with a small number of codewords. In this case,
it is easier to be improved. Secondly, as the codebook
size increases, the dimensionality of the final represen-
tation expands accordingly, and the over-fitting risk be-
comes larger.

3. We note that in some classes, our method performs
very well. For example, in the class of poolinside, our
algorithm achieves 22% enhancement even when the
codebook size is 1,024. However, for some cases, our
method does not achieve satisfying performance. We
suppose that, in most of these unsatisfying cases, the
appearance is enough discriminative.

4. CONCLUSION AND FUTURE WORK

We have proposed depth-embedded multiple pooling to em-
bed depth information into the BoF platform. Meanwhile, we
have explained the underlying mechanism of the proposed
method from depth projection and the approximation to 3-D
space. The experimental results support that adding depth in-
formation can enhance the classification accuracy, especially

Table 1. Accuracy on the Indoor Scene Recognition database
from some previous works and our experiment(%).

Method Accuracy
Quattoni et al., CVPR 2009. [18] 26.5
Zhu et al., NIPS 2010. [19] 28.0
Li et al., NIPS 2010. [20] 37.6
Wu et al., PAMI 2011. [21] 36.9
Pandey et al., ICCV 2011. [22] 30.4
Pandey et al., ICCV 2011. [22] 43.1
Parizi et al., CVPR 2012. [23] 37.9

#Codes = 16 Baseline 11.9
Our Method 17.8

#Codes = 64 Baseline 19.0
Our Method 26.4

#Codes = 256 Baseline 29.7
Our Method 34.4

#Codes = 1024 Baseline 38.1
Our Method 41.0

when the appearance information performs relatively poor.
Future work will mainly focus on investigating more rea-
sonable rules for grouping features through depth-embedded
multiple pooling.
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