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ABSTRACT

Pedestrian recognition is a challenging problem in non-
overlapping multi-camera object tracking. In this paper, we
present a novel approach for matching pedestrians across non-
overlapping multiple cameras without the need of a training
phase or spatio-temporal cues across cameras. To deal with
viewpoint changes, we introduce the concept of directional
angles estimated using the spatio-temporal continuity in the
single camera tracking. To deal with pose changes, a stochas-
tic matching strategy is performed, where the similarity of
two blobs belonging to different viewpoints is calculated by
a novel similarity measurement algorithm. The experiments
are performed on different multi-view datasets. Experimental
results demonstrate the effectiveness and robustness of the
proposed method.

Index Terms— Pedestrian recognition, Directional cues,
Stochastic matching, Non-overlapping camera views

1. INTRODUCTION

Object tracking is a problem of great interest for video
surveillance. It is a challenging problem, especially when
the number of cameras increases and the fields of cameras
are non-overlapping. In the non-overlapping multi-camera
object tracking, the space between adjacent cameras is not
continuous, thus, pedestrian recognition is a critical process
to keep objects continuously tracked across cameras. To solve
this problem, many techniques with varying complexity have
been proposed over the last few years.

Two kinds of cues are usually employed: spatio-temporal
cues across cameras and appearance cues of objects. To
get the spatio-temporal cues across cameras, K. Chen et al.
[1] learns transition probability distributions. However, the
transition probability distribution across cameras is not re-
liable, for it usually has worse performance when objects
move inconstantly, stop or return while passing through the
non-overlapping fields, which is common in real scenes.

For the appearance cues, methods generally use one or
multiple kinds of features to represent the appearance of
an object [3, 4]. However, the appearance is influenced by

Fig. 1. Some examples from the VIPeR dataset [2]. Each column is
the same pedestrian from different viewpoints.

many factors, such as the illumination, camera properties,
viewpoints, poses, and deformable properties of clothing, as
shown in Figure 1. The differences in illumination can be
compensated by using brightness transfer functions [5]. To
match two objects with unknown viewpoint and pose, some
approaches learn a similarity function [6] or a distance metric
[7] based on a training procedure. However, their meth-
ods need to collect enough training samples, making them
inconvenient to be used in real tracking systems.

In this paper, we propose a direction-based stochastic
matching (DSM) method to solve the problem of pedestrian
recognition in non-overlapping multi-camera object tracking.
Differently from previous methods, the proposed method
does not require a training phase, or spatio-temporal cues
across cameras. Instead, it uses the spatio-temporal cues in
single camera tracking, which is much more reliable.

2. PROPOSED METHOD

The DSM method depends on directional cues to deal with
changes in viewpoint and a stochastic matching strategy to
compensate for small variances in pose. We assume that each
object is seen from an arbitrary horizontal or nearly horizontal
viewpoint. The assumption is satisfied in the general video
surveillance scenes.

The flowchart of the proposed method is shown in Figure
2. Firstly, the directional angle of each object is estimated
from its blob sequence. Then, the matching blobs are seg-
mented into several patches according to the directional an-
gles. Color-based features are extracted from each patch, and
a similarity measurement is also proposed to measure the sim-
ilarity of two patches. Finally, a stochastic matching strategy
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which is robust to small pose changes is applied to measure
the similarity of two blobs. The details of our method are
described in the following sections.

Stochastic Matching

Fig. 2. The flowchart of the DSM method

2.1. Directional Cues

Instead of computing various viewpoints of cameras, we in-
troduce the concept of directional angles to describe view-
points. Under the assumption that each object is seen from an
arbitrary horizontal or nearly horizontal viewpoint, the direc-
tional angle θ is defined according to the object’s orientation,
ranging from 0 to 2π. The definition is shown in Figure 3.
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Fig. 3. The definition of the directional angle

We use the spatio-temporal cues in single camera tracking
to estimate the directional angle of each object. Without loss
of generality, we assume that each object moves towards its
orientation. In the view of a single camera, it is easy to get
a short sequence {P0, P1, . . ., PM−1} of the pedestrian based
on the spatio-temporal continuity, where M is the length of
the sequence. The directional angle θ of the pedestrian is
equal to the angle between the vector pointing to 0 and the
vector

−−−−−→
P0PM−1 from the earliest location P0 to the latest lo-

cation PM−1. Figure 4 shows an example of estimating the
directional angle.

2.2. Blob Segmentation Using Directional Cues

Given two blobs, a reference blob blobr and a candidate blob
blobc, both of them are divided into three regions using the
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Fig. 4. An example of estimating the directional angle. (a) A se-
quence of a pedestrian shown in an image; (b) The directional angle
θ. The small dots represent the locations of the pedestrian in succes-
sive M frames.

method proposed in [8], corresponding to the head, the upper
body and the lower body respectively. Due to different view-
points, some visible regions in one blob become invisible in
the other blob. The regions visible in both blobs are called
valid regions. Using directional cues helps to find valid re-
gions in both blobs. Generally, the appearance of the upper
body is greatly influenced by viewpoint changes, while the
appearance of the lower body is indistinctively varied with
the viewpoint. Thus, we only deal with the valid region in the
upper body instead of the whole upper body in the subsequent
processes. The width of the whole upper body is defined as
a unit, thus the width range of the valid region is a subset of
{x|0≤x≤1}.

The blob with smaller directional angle in blobr and blobc
is denoted by blob1, and the other is blob2. The corresponding
directional angle is θ1 and θ2 respectively. Thus, there are
two conditions according to the difference between these two
angles: 0≤θ2 − θ1 < π and π≤θ2 − θ1 < 2π.

Under the condition 0≤θ2 − θ1 < π, the width range of
the valid region in the upper body is empirically calculated as
follows:

ω = 0.75πcos(|θ2 − θ1|+ π) + 1.25π

φ = 0.125cos(|θ2 − θ1|+ π) + 0.125

X1 = {x|y = sin(ω(x+ φ))≥0, 0≤x≤1}
X2 = {x|y = sin(ω(1− x+ φ))≥0, 0≤x≤1}

(1)

When π≤θ2 − θ1 < 2π, let θ′1 = 2θ1 − θ2 + 2π and
θ′2 = θ1. The width range of the valid region in the upper
body is empirically calculated as follows:

ω = 0.75πcos(|θ′2 − θ′1|+ π) + 1.25π

φ = 0.125cos(|θ′2 − θ′1|+ π) + 0.125

X1 = {x|y = sin(ω(1− x+ φ))≥0, 0≤x≤1}
X2 = {x|y = sin(ω(x+ φ))≥0, 0≤x≤1}

(2)

where ω and φ controls the period and offset of the y(x) curve
respectively. X1 and X2 is the width range of the valid region
of blob1 and blob2 respectively, equal to the intersection of
{x|y≥0} and {0≤x≤1}. Figure 5 shows some examples of
the width range of the valid region given different θ2 − θ1.
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Fig. 5. Examples of the width range of valid regions. The value of
θ2−θ1 is 0, π

4
, π
2

, and π respectively from (a) to (d). The horizontal
axis and vertical axis represents x and y respectively. In (a) and (b),
the width ranges of valid regions for both blobs are {0≤x≤1} ac-
cording to Eq. 1, thus, the whole upper bodies for both blobs should
be compared, corresponding to the fact that the observed regions of
upper bodies are overlapped when the corresponding direction an-
gles are close.

Once the width ranges of valid regions are determined,
both blobs can be further divided into Np patches, including
Np − 1 patches in the valid region of the upper body, and
one patch of the lower body. There is a one-to-one correspon-
dence between patches in blob1 and patches in blob2. Figure
6 shows an example of blob segmentation.

(a) blob1 (b) blob2 (c) θ2 − θ1 = π
2

Fig. 6. An example of blob segmentation. blob1 and blob2 is seg-
mented into 5 patches in (a) and (b) respectively, according to the
width ranges in (c).

2.3. Feature Extraction

Once the blobs are segmented into patches, a kind of color-
based feature is extracted from each patch. In YCbCr color
space, for each patch, all pixels are clustered into a fixed num-
ber of bins by using K-means. Each bin has two properties:
the color and the frequency, denoted by bini

b = {Ci
b, P

i
b},

where i is the index for the patch and b is the index for the

bin. The value of P i
b is between 0 to 1, satisfying

Nb∑
b=1

P i
b = 1.

Bins in each patch are sorted in descending frequency.
We propose a novel similarity measurement method to

measure the similarity between two patches. The simi-
larity measurement is summarized in Algorithm 1, where
Dist(∗, ∗) is measured by the Normalized Euclidean Dis-
tance.

2.4. Stochastic Matching

The center pixel of Patchi
c in blobc is denoted by (xi

c, y
i
c).

And the scale of the size of Patchi
c is denoted by sic. Let

xi
c, yic, and sic follow the normal distributions, with the mean

of [xi
c, y

i
c, 1]

T and the user-defined standard deviation. Then,

transit each Patchi
c randomly to Ns patches, denoted by

Patchij
c , where j is the index of transited patch.

The similarity between blobr and blobc is measured as:

Sim(blobr, blobc) =
1

Np

Np∑

i=1

max
j

(Sim(Patchi
r, Patchij

c ))

(3)
where Sim(Patchi

r, Patchij
c ) is computed as Algorithm 1.

Algorithm 1 The Similarity Measurement
1: Extract F i

r and F i
c from Patchi

r and Patchi
c respectively.

F i
r = {{Ci

rb
, P i

rb
}}, and F i

c = {{Ci
cb
, P i

cb
}},

where rb, cb = 1, 2, . . .Nb

2: Initialize Sim(Patchi
r, Patchi

c) = 0
3: for Each bini

rb
with non-zero P i

rb
in F i

r do
4: find bini

c∗b
with non-zero P i

c∗b
in F i

c , satisfying:
c∗b = argmin

cb
Dist(Ci

rb
, Ci

cb
)

5: Sim(Patchi
r, Patchi

c)+ =
min(P i

rb
, P i

c∗b
)×(1−Dist(Ci

rb
, Ci

c∗b
))

6: P i
rb
←P i

rb
−min(P i

rb
, P i

c∗b
); update the frequency P i

rb

P i
c∗b
←P i

c∗b
−min(P i

rb
, P i

c∗b
); update the frequency P i

c∗b
7: end for

3. EXPERIMENTAL RESULTS

3.1. Pedestrian Recognition

The experiment is based on the VIPeR dataset [2]. All the
pedestrians in this dataset have been labeled with angles
which agree with the definition of the directional angle in
Section 2.1. Some examples are shown in Figure 1.

Fig. 7. CMC curves of different methods

The DSM method is compared with three different meth-
ods: ELF 200 [6], DSM without using directional cues, and a
major color spectrum histogram (MCSH) which is similar to
the work in [3]. The proposed DSM method uses Nb of 3 and
Ns of 20. The number of patches Np is 3 to 9, depending on
the area of the valid region. For MCSH, the threshold of color
distance is set to 0.06. For the DSM without using directional
cues, the whole body of each pedestrian is segmented into
several patches. In order to fairly compare with ELF 200,
we show the average of the results on different random sets
of 316 pedestrians for each of the other three methods. The
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results are presented using cumulative matching characteris-
tic (CMC) curves, shown in Figure 7. It indicates that the
proposed DSM method performs best among these methods,
and the rank 1 matching rate is nearly 20%. Furthermore,
the DSM method outperforms the one that does not using di-
rectional cues, demonstrating the effectiveness of directional
cues. Figure 8 shows some examples of the matching results
using the DSM method.

(a) (b)

Fig. 8. Examples of the matching results. (a) Reference image; (b)
Top 10 results (sorted left to right). The correct matches are circled
by red dashed lines.

3.2. Pedestrian Tracking

The experimental setup consists of two non-overlapping cam-
eras: one is outdoor, the other is indoor. The layout is shown
in Figure 9. Both illumination and viewpoint are greatly dif-
ferent in the two views.

(a) (b)

Fig. 9. (a) The layout of the multi-camera system; (b) Views from
Camera 1 and Camera 2.

In this experiment, the length of the sequence used to es-
timate the direction angle is set to 10. The video contains 37
pedestrians and 14 transfers. An object is correctly tracked if
it retains a unique label through the whole video. The track-
ing accuracy rate is about 78.4% ( 2937 ). Some examples of
tracking results are shown in Figure 10. Both cameras over-
look pedestrians from a distance, thus pedestrians are seen
nearly horizontally. The proposed method can be applied to
this condition, demonstrating its robustness.

4. CONCLUSIONS

In this paper, we have presented a novel solution to view-
point invariant pedestrian recognition in non-overlapping

(a) Frame 180 (b) Frame 762

(c) Frame 1124 (d) Frame 2017

Fig. 10. Examples of tracking results. Person 1 and Person 6 enter
Camera 1 and Camera 2 successively. Note that all the persons retain
unique labels.

multi-camera tracking. Without the need of a training phase
or spatio-temporal cues across cameras, the proposed DSM
method uses directional cues to deal with viewpoint changes,
and a stochastic matching strategy to compensate for small
changes in pose. Experimental results show that directional
cues are efficient and robust when matching two objects with
large changes in viewpoint. The tracking performance of the
proposed method can be improved by incorporating color
transfer functions and spatio-temporal cues across cameras.
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