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Abstract—Nowadays, increasing amount of parts and sub-
assemblies are publicly available, which can be used directly
for product development instead of creating from scratch. In
this paper, we propose an interactive design framework for
efficient and smart assembly modeling, in order to improve
the design efficiency. Our approach is based on a probabilistic
reasoning. Given a collection of industrial assemblies, we
learn a probabilistic graphical model from the relationships
between the parts of assemblies. Then in the modeling stage,
this probabilistic model is used to suggest the most likely
used parts compatible with the current assembly. Finally, the
parts are assembled under certain geometric constraints. We
demonstrate the effectiveness of our framework through a
variety of assembly models produced by our prototype system.

Keywords-assembly modeling; shape synthesis; probabilistic
reasoning; Bayesian network;

I. INTRODUCTION

Assembly modeling is the process of assembling a set of

individual parts for a specific functional goal. The difficulty

of the assembly modeling lies in the design of individual

parts and setting their constraint information [1], [2]. Since

the industrial database stores large numbers of parts and sub-

assemblies, effective reuse of existing models has become a

key factor in accelerating the product development cycle and

reducing the design cost [3]. To retrieve the desired CAD

models from the database, existing methods mainly focus

on searching models with geometric, topological and visual

similarities [4]. In fact, in the product design stage, people

tend to be more concerned about the parts that are most

likely to be reused, yet they do not necessarily have visual,

topological or geometric similarities with the models in the

context of the current assembly.

To gain a global insight based on local observations,

the probabilistic models have been introduced to computer

graphics for various applications. E.g., the Bayesian network

has been used for surface reconstruction [5]–[7]. Many

recent work focus on analyzing and generating shape varia-

tions from the input shape collections using the machine

learning techniques [8]–[11]. Although these approaches

are powerful for general modeling purposes, they ignore

the aspect that the generated models should satisfy some

functional constraints, e.g., mechanical CAD models.

Considering the context of the current assembly and rela-

tionships existed in the assemblies, we propose an efficient

and intelligent assembly modeling method to facilitate the

assembly design process. Our method studies the existing

assembly database to learn how parts are assembled together,

uses this prior-knowledge to suggest relevant parts to design-

ers at each stage during the modeling process, and assembles

these parts together under certain geometric constraints.

We use the Bayesian network [12] to encode the semantic

and geometric information between parts in an assembly

database. When new parts are assembled, inference in the

Bayesian network is used to derive the most relevant parts

in the context of the current assembly. For example, when

a user begins a modeling task with designing a flange, the

system then recommends a pipe fitting or flange washer to

the user. The presented parts are dynamically updated as

the current subassembly is constructed. To evaluate the pre-

sented approach, we have developed a prototype system for

assembly modeling. The experimental results demonstrate

the effectiveness of our framework.

II. RELATED WORK

Our work is highly related to component based modeling

and data-driven modeling. We briefly review the most related

approaches in these two areas.

Component-based modeling. Funkhouser et al. [1] used a

database of segmented shapes to enable interactive assembly

of new shapes from retrieved components. Chaudhuri et

al. [8] described a data-driven technique for 3D modeling,

which computes and presents components that can be added

to the artist’s current shape. Kalogerakis et al. [9] presented

an approach to synthesizing shapes from complex domains,

by identifying new plausible combinations of components

from existing shapes. Jain et al. [10] described a method

that interpolates between two shapes by combining compo-

nents from these shapes. Chaudhuri et al. [11] developed

a probabilistic representation of shape structure that can be

used to suggest relevant components during an interactive as-

sembly based modeling session. Furthermore, they extended

their framework to semantic attributes based 3D model

creatation [13]. These methods mainly focus on the general

geometry models, the geometric relationships of which is
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Figure 1: Overview of our approach.

simple and straightforward. While our probabilistic model

is substantially different from that of [11] and is designed

to tackle CAD models. Unlike the general geometry models,

assemblies have more complex geometric constraints and as-

sembly relationships. Thus, the structure of our probabilistic

model is more complicated than that of [11].

Data-driven modeling. There are numerous representa-

tions available for data-driven method, including rule bases,

decision trees and artificial neural networks. Fisher and

Hanrahan [14] described a method for context-based search

of 3D scenes. Afterwards, they proposed how to represent

scenes as graphs that encode models and their semantic

relationships [15], and presented a method for synthesizing

3D object arrangements from examples [16]. Merrell et

at. [17] presented a method for automatic generation of

building layouts for computer graphics applications. Given

a set of high-level requirements, an architectural program

is synthesized using a Bayesian network trained on real-

world data. Lin et al. [18] presented a probabilistic factor

graph model for automatically coloring 2D patterns. Jain et

al. [19] presented a method to assign materials to parts of

a 3D object by modelling the context-dependent correlation

from a database. Our work applies the data-driven method on

assembly modeling, and can present plausible parts to users

according to the context of the current sub-assemblies.

The above review shows that the research of general 3D

assembly modeling is pretty active. However, we found little

work addressing the CAD assembling problem based on

data-driven methods. Actually, in mechanical engineering,

CAD assembly modeling plays an important role, due to the

fact that almost all the products are assemblies rather than

single parts [20]. One remarkable difference between general

3D models and CAD assemblies is that in CAD assemblies,

the assembly relationships and geometric constraints are far

more complicated, for the purpose of assembling design

and assembly sequence planning [21]. In this paper, we

try to encode these complicated assembly relationships in

a graphical model for efficient assembly modeling.

III. OVERVIEW

Our framework consists of three main steps, as illustrated

in Figure 1. We first perform shape analysis on the existing

parts in the database. Next, a Bayesian network is trained on

an assembly database in offline learning stage. Finally, the

inference in the probabilistic model is used to present the

most relevant parts in the context of the current assembly,

and the new parts are assembled according to assembly

relationships and geometric parameters.

Shape analysis. The purpose of shape analysis is to identify

the assembly features and compute the geometric parameters

of parts. We follow the work of [22] to extract sharp edge

loops from CAD parts (Section IV).

Learning. The input of the learning process is an industrial

assemblies database. Each assembly is represented as a set of

parts (sub-assemblies) and assembly relationships between

them. These components are assembled conforming to some

assembly guidelines under certain geometric constraints. Our

approach involves several assembly relationships defined in

commonly used CAD systems, including coincident, coaxial,

tangent, coplanar and so on. We employ an assembly tree

based method to extract the assembly relationships.

Given the set of parts and their assembly relationships,

our method learns a probabilistic graphical model that en-

codes dependencies between parts as well as their geometric

constraint relationships (Section V).

Modeling. Finally, we perform the probabilistic inference

based on the Bayesian network trained in the learning stage.

When new part is added, our probabilistic model suggests

the most likely reused parts according to a ranking score.

The suggested parts are dynamically updated as the current

assembly changes (Section VI).

IV. SHAPE ANALYSIS

The purpose of shape analysis step is to recognize assem-

bly features of parts, i.e., detecting manufacturing informa-

tion from models. Examples of this manufacturing informa-

tion include features such as holes, slots, pockets and other

shapes that can be created on modern Computer Numerically
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Figure 2: Shape analysis of individual part. Left: input part;

middle: sharp edge loops [22]; right: further segmentation

by quadric based variational shape approximation [24].

Controlled (CNC) machining systems. Three major algo-

rithmic approaches for feature recognition are graph-based

algorithms, volumetric decomposition techniques, and hint-

based geometric reasoning [23].

In this paper, we analyze the geometric parameters (e.g.,

translational axis, distance and radius) of each part with the

mesh processing methods. The translational axis is used for

computation of transformation matrix, and radius is used for

filtration of mismatched parts in size. More specifically, we

follow the work of Mitra et al. [22] to segment each part

into patches by extracting sharp edge loops. For each loop,

a simple low degree algebraic surface is fitted to detect the

type of the patch [24], [25], and then the planar circular

loops can be detected. In general, the circular loops are

incident to assembly axes. In this way, we can obtain the

geometric parameters (including axes, position, and radius)

of parts to assemble. Figure 2 illustrates an example of shape

analysis of individual part.

For the models with complex structures that are difficult

to analyze, we manually specify their assembly features

and corresponding geometric parameters. Using the above

method, we obtain the assembly information of each part,

which will be used in the assembly synthesis stage later.

V. DATA-DRIVEN MODEL LEARNING

The assembly modeling is the process by which the

parts and sub-assemblies are assembled together according

to assembly relationships and under certain geometric con-

straints. The semantic and geometric relationships of assem-

bly play an important role during the modeling process.

We use a probabilistic graphical model [12] to learn the

structured relationships among parts and geometric con-

straints between them. To train the probabilistic model, we

extract the assembly relationships and record other assembly

information of parts for hybrid modeling.

A. Extracting assembly relationships

Assembly relationships are spatial position relationships

that a part must satisfy with respect to other parts [26].

Nettig and Shah [27] gave a comprehensive study about the

algebraic constraints, logical constraints, and dimensional

constraints. Kim et al. [2] divided assembly relationships

into three categories, namely, distance, angle and alignment.

(a) coincident (b) coplanar (c) coaxial

Figure 3: Exemplar relationships of common assemblies.

Sometimes two or more relationships may occur in one pair

of parts at the same time.

These relationships have been used by Mitra et al. [22]

to illustrate the motion of the mechanic systems. In gen-

eral, coincident, perpendicular, tangent, concentric, parallel,

distance and angle are the seven most used assembly rela-

tionships used by most CAD systems [28]. The purpose of

assembly relationships in a design is to control and limit

the behavior of the parts in relation to other parts or sub-

assemblies as well as for assembly sequence planning.

Different from Chaudhuri’s work [11], in which only the

adjacency relationship is considered, we define the assembly

relationships as listed in Table I. By doing this, the modelling

tool will not only suggest the most relative parts, but also

their according spatial positions. To give an intuition, we

illustrate the according assembly relationships in Figure 3.

Besides the above geometric relationships, some logic

relationships also exist between pairs of parts. To extract

these relationships, we learn from the assembly library to

find pairs of parts appearing with high probabilities in the

assemblies. These logic relationships are encoded in our

Bayesian network later. Some pairs of the logic relationships

that appear in most of assemblies are illustrated in Figure 4.

Table I: Assembly relationship label.

Assembly relationship Relationship label
Coincident C
Coplanar P
Coaxial X

In our implementation, we employ an assembly tree based

method to extract the assembly relationships. In an assembly

tree, the whole assembly represents the root of the tree,

the sub-assemblies are intermediate nodes, and the parts

are leaves of the tree. From the structure of the assembly

tree, we can clearly distinguish relationships between the

assemblies, sub-assemblies and parts. Given the datasets

of assemblies, we traverse each assembly and construct

its corresponding assembly tree by inquiring the parts it

contained and their relationships. We assign part labels and

assembly type labels to parts and assembly relationships,

respectively, as illustrated in Table I and Table II.

To this end, an assembly constraint relationship can be

represented as Rij , in which R signifies assembly relation-

ship shown in Table I, and the numbers i, j indicate the types
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Table II: Label of some parts used in the paper

Type Label Type Label Type Label
flange 1 screw 5 clamp block 9
bolt 2 washer 6 chain 10
wheel 3 bearing 7 jaw 11
nut 4 bearing block 8 pipe fitting 12

 

(a) bolt and nut

 
(b) wheel and chain

 
(c) flange and pipefitting

 
(d) bearing and bearing block

Figure 4: Exemplar relationships of common assemblies.

Sometimes two or more relationships may occur in one pair

of parts at the same time.

of parts involved in the relationship. Hence, Rij denotes that,

in an assembly component, the types i and j are assembled

under relationship R. In the assembly process, each step of

assembly operation combines two assembly unit (parts or

components) together according to certain constraints.

Once the assembly relationships are extracted, we use

the graph structure to create semantic association between

individual parts. More precisely, we use a Bayesian network

to perform relationships modeling, in which the assembly

relationships are represented by edges and the parts are

represented by nodes.

B. Training Bayesian network

Bayesian network has several advantages: 1) it can easily

handle incomplete data sets; 2) it allows one to learn about

causal relationships; 3) Bayesian networks in conjunction

with Bayesian statistical techniques facilitate the combi-

nation of domain knowledge and data; and 4) Bayesian

methods in conjunction with Bayesian networks and other

types of models offers an efficient and principled approach

for avoiding the over fitting of data [29]. Thus, in this

paper, we use a Bayesian network to support the data-driven

assembly modeling. We first briefly introduce the Bayesian

network and then illustrate our modeling process.

A Bayesian network is a graphical model that encodes

probabilistic relationships among variables. A Bayesian net-

work for variables X = {X1, ..., Xn} consists of a network

structure S that encodes a set of conditional independence

assertions about variables in X , and a set of P of local

probability distributions associated with each variable. The

network structure S is a directed acyclic graph. The nodes

in S are in one-to-one correspondence with the variables X .

We use Xi to denote both the variable and its corresponding

node, and π(i) to denote the parents of node Xi in S as well

as the variables corresponding to those parents. Thus, given

the structure S, the joint probability distribution for X is

given by

p(x) =

n∏
i=1

p(xi|π(i)). (1)

To train a Bayesian network, we manually encode a large

number of industrial assemblies from the database. For each

instance, we record the categories of parts, the number

of each kind of part and assembly relationships between

them. Similar to [11], we represent the attributes as random

variables, as illustrated in Table III.

Table III: The random variables used in the model.

Notation Range Interpretation
C = {Cl} {0} ∪ Z

+ part category

N = {Nl} {0} ∪ Z
+ number of each category

R = {Rll′} {0, 1} relationship between Cl and Cl′
W = {Wl} R+ weight of category

For each part category Cl, there is a variable Nl that

represents the number of parts from Cl; for category Cl′ ,

the variable Rl,l′ indicates the semantic and geometric

relationships between Cl and Cl′ . These random variables

help ensure that parts selected for a synthesized model have

compatible numbers of parts of each type. For each part

category l, we also introduce a latent variable Wl that aims

to represent the importance of Cl to the current assembly.

We assume that the weight of a part is decided by its

average size. In our approach, the average size of each part

is approximated by the diagonal length of its bounding box.

Table IV lists the weights of part categories used in our

experiment.

Table IV: The weights of some parts in our experiment.

Part Weight Part Weight Part Weight
clamp block 0.96 jaws 0.82 washer 0.08
flange 0.50 pipe 0.75 pipe fitting 0.16
bolt 0.12 nut 0.10 screw 0.14
chain 0.28 wheel 0.36 jaw 0.42

Thus, the Bayesian network represents a joint proba-

bility distribution P (X) over all random variables X =
{C,N,R,W}. This distribution is factorized as a product

of Conditional Probability Distributions (CPDs) as follows:

92



P (X) = P (Cl)
∏
l′∈�

Pl′ ,

Pl′ = [P (Nl|Cl)P (Rll′ |Cl, π(Rll′))P (Wl|Cl, π(Wl))].
(2)

Given a set of training data and a set of variables, our

method builds a Bayesian network on these variables. Since

the structure and parameters of the network should maximize

the posterior probability of the structure of the given data,

the algorithm attempts to maximize the Bayesian score

log p(D,Sh) = log p(D|Sh) + log p(Sh), (3)

where D is the training data and Sh is a model structure. The

prior p(Sh) is chosen to be uniform. The marginal likelihood

p(D|Sh) is approximated using the Bayesian information

criterion

logP (D|G) ≈ logP (D|G,Θ)− 1

2
v log(n). (4)

Here, v is the number of independent parameters in the

network, whereas n is the number of extracted assemblies

in the dataset. The first term represents the likelihood of Θ,

while the second term keeps the model as simple as possible.

We use the open-source Probabilistic Networks Li-

brary [30] to initialize the graphical model. Given the assem-

bly database, we first extract parts and their relationships.

There are plenty of special parts that may only appear in

a few assemblies, and it is neither reliable nor efficient to

encode all the parts in the graphical model. Hence in the

learning process, we only consider the relationships between

frequently used parts as listed in Table IV. Similar to Chaud-

huri’ work [11], we also learn the graph structure G and

parameters Θ of the Bayesian network by maximizing the

Bayesian Information Criterion score defined in Equation 4.

flange pipe

flange-
pipe

number of 
flange

number of 
pipe

bolt

number of 
bolt

flange-
bolt

Figure 5: Part of our Bayesian network.

Similar to Merrell et al. [17], we use a local heuristic

search that explores the space of network structures by

adding, removing and flipping edges. By doing this, we

retain the graph structure with the highest score, along with

the corresponding parameters for all the CPDs in the model.

Figure 5 visualizes a small part of our network generated

based on the assembly database.

VI. ASSEMBLY SYNTHESIS

Once the Bayesian network is trained and the geometric

parameters of parts are computed, we can synthesize the

assembly model with the help of the trained network. Given

the sub-assemblies, the trained network suggests the parts

that is most likely be reused according to context of the sub-

assembly. The suggested parts are assembled under certain

geometric constraints. In this process, we need to specify

the relative placement of parts by constraining the relative

locations of features on different parts [31].

We follow the work of [32] to transform the well-

constrained mating conditions between a base and a mating

part into a transformation matrix, which determines the

relative orientation and location of the mating part with

respect to the base part. In the proposed procedure, users

have to first specify the base part, and then the system

will compute a transformation matrix, which is determined

by a rotation matrix TR and a translation matrix TL that

define the relative orientation and location of the mating

part respectively.

There are three major types of mating conditions: dis-

tance, angle, and alignment. The assembly relationships con-

sidered in this paper are alignment constraints: coincident,

coplanar, and coaxial. More detailed description of these

conditions are described below. In the equations below, N b,

Nm, Nmr and Nma indicate the base part, the mating part,

the mating part after rotation, and the mating part after

assembling, respectively.

Coincident. The coincident relationship requires the two

faces to touch each other, which is accomplished by con-

straining the two normal vectors to be opposite to each other,

as shown in Figure 6(a).

Nb Nm

 

(a)

Nb Nm

 

(b)

Nb

Nm

 

(c)

Figure 6: (a) Coincident condition, (b) coplanar condition,

and (c) coaxial condition.

The face is specified by its unit normal vector N and one

point P on the face. Thus, the coincident relationship can

be expressed as:

N b =

⎡
⎣ N b

x

N b
y

N b
z

⎤
⎦ = −

⎡
⎣ Nma

x

Nma
y

Nma
z

⎤
⎦ = −Nma, (5)

93



and ⎡
⎣ N b

x

N b
y

N b
z

⎤
⎦ =

⎡
⎣ P b

x − Pma
x

P b
y − Pma

y

P b
z − Pma

z

⎤
⎦ = 0. (6)

Equations 5 and 6 determine the relative rotation and

translation of the mating part with respect to the base part.

Coplanar. The coplanar relationship requires two planar

faces to lie in the same plane, as illustrated in Figure 6(b).

As the coincident condition, the face is specified by its

unit normal vector N and one point P on the face. Thus,

the coincident relationship can be expressed as:

N b =

⎡
⎣ N b

x

N b
y

N b
z

⎤
⎦ = −

⎡
⎣ Nma

x

Nma
y

Nma
z

⎤
⎦ = Nma, (7)

and ⎡
⎣ N b

x

N b
y

N b
z

⎤
⎦ =

⎡
⎣ P b

x − Pma
x

P b
y − Pma

y

P b
z − Pma

z

⎤
⎦ = 0. (8)

Equations 7 and 8 determine the relative rotation and

translation of the mating part with respect to the base part.

Coaxial. The coaxial relationship holds between two cylin-

drical faces, which requires the centre axes of shaft and hole

part to be coincide, as shown in Figure 6(c). The axis is

defined by a unit directional vector and a point on it.

The hole axis is specified by a point Pb and a unit

directional vector Nb, and the shaft is specified by a point

Pm and a unit direction vector Nm. Thus, the coaxial

relationship can be written as:

N b =

{
Nma, aligned coaxial conditions;

−Nma, opposite-aligned coaxial conditions.
(9)

and
Pma
x − P b

x

N b
x

=
Pma
y − P b

y

N b
y

=
Pma
z − P b

z

N b
z

. (10)

Equations 9 and 10 determine the relative rotation and

translation of the mating part with respect to the base part.

We need to compute the relative orientation and location

of the mating part with respect to the base part, which is rep-

resented by the transformation matrix. We follow the work of

[32] to derive the rotation matrix TR and translation matrix

TL from the rotational and translational relationships, and

the transformation matrix T can be expressed as T = TLTR.

Note that two parts may have more than one relationship.

For instance, the relationship between an axle and a wheel

can be coaxial as well as coplanar. When an axle is set as

a base part, then a wheel with more than one suggested

positions may be recommended by our system. Users can

either select the combination of these two relationships, or

select one of them, or even discard all of them and specify

a new one.

In some cases, there may be more that one possible

positions for assembling with respect to the recommended

results. To provide a flexible solution for user’s assembling

process, we rank the possible positions according to the

compatibility scores, and set the default position as the

one with the highest compatibility score. Users can also

manually select their preferred suggested positions or even

specify new positions.

Once there is a completely different assembly inserted,

our modelling tool can not recommend high-probability parts

since there is no existing instance in the training database. In

this special case, we return the recommended parts according

to their appearing frequency in assemblies. Then users have

to select from the database manually or design a new part

from scratch. This is the fail case of our modelling tool.

In summary, in the assembly synthesis stage, given the

base part and the recommended part, we first filter out

the parts with unmatched size, which is computed in the

shape analysis process, and then, according to the assembly

relationships, we compute the rotation and transformation

matrices as described above. Finally, we put the parts in the

right position with the right orientation in accordance with

the transformation and rotation matrices.

VII. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we demonstrate the practical effect of our

probabilistic modeling and assembly synthesis method. The

assembly database used in our experiments contains 65 real

industrial assembly models, which store the information of

categories of parts and their assembly relationships. Table V

lists the profile of the dataset used in our experiment. The

information are collected to carry out the training procedure.

Given the fact that some parts appear in very few assembly

models, we only encode the parts with a higher frequency

of appearance.

Table V: The profile of dataset used in the experiment.

Name Count Name Count
total assembly models 65 categories of parts 76
total parts in assemblies 750 shared parts 42
average parts per assembly 11.54

A. Recommendation performance

In the modeling stage, the probabilistic graphical model is

used to measure the compatibility of each part to the current

shape. For each kind of part l, we measure the probability

of the following formula:(∨
l′∈�′

(Rli,l′ = 1)

)
∧ (Nli > nli), (11)

where l′ is the type to be measured, Rl,l′ is the relationship

between types l and l′, Nli is the maximum number of part

l′ that belongs to Rl,l′ , and nli is the number of part li that
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Figure 7: Recommendation result of individual part. (a)

Recommendation result of bolt as base part. (b) Recommen-

dation result of pipe fitting as base part. (c) Recommendation

result of key as base part. The top side are three base parts,

and the bottom side are the represented parts, respectively.

appear in the current model. The probability of Equation 11

can be computed by P (Xq|Xe = e), in which Xq ∈ X
are random variables, and Xe ∈ X are observed variables.

Thus, the compatibility score of part i can be defined as

comp(i) =
∑
q∈Q

P (Xq = q|Xe = e). (12)

In each step, the system first computes the compatibility

score of each kind of part and recommends parts according

to their scores.

In our assembly modeling interface, the recommendation

module shows the relevant parts compatible with the base

part. Figure 7 shows three examples of recommended results

for individual part.

B. Synthesis results

Figure 8: Assembly results created by our modeling tool.

The individual parts are shown in different colors.

To evaluate whether our system suggests plausible parts,

we have conducted an user study. Six designers who pos-

sessed similar proficiency in assembling parts were recruited

to assemble the real industry assemblies, as shown in Fig-

ure 8. Each of the designers was taught the names and

shapes of parts that their tasks required. Then they used the

TiGEMS 6.0 as well as our prototype system to assembly the

parts. When modeling, our prototype system recommended

parts in real time according to the current assembling context

in TiGEMS 6.0. The designers could either accept the

recommended parts, or deny the recommended parts and

retrieve the required parts from the database using existing

text or shape based methods.

Figure 9: Percentage of parts designers chose from the

recommendation list that provided by our prototype system.

Figure 9 presents the average percentage of parts that the

designers chose from our recommendation lists. The figure

shows that our probability modeling system can recommend

most of the right parts for assembling, which improves parts

reusability significantly, and thus can improve the efficiency

of assembly design. Note that when the assemblies get more

complicated, the recommendation effect becomes worse.

This results from the facet our assembly library is limited.

If there is no existing instance in the training database that

are similar to the current assembling context, then designers

have to search parts from the database manually.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes an efficient and intelligent assembly

modeling framework to improve design efficiency of CAD

assemblies. We successfully employ the data-driven method

in CAD assembly modeling. Given a repository of assembly

models, an assembly tree based method is used to extract the

assembly relationships between parts. Then, a probabilistic

graphical model is learned for relationship modeling. More

specifically, our approach learns a Bayesian network that

encodes the assembly relationships among parts in the

preprocessing stage. In the modeling stage, inference in

the Bayesian network is used to suggest relevant parts to

designers. Experiments verified its effectiveness.

One limitation of our work is that the assembly synthesis

method can only handle parts with uncomplicated assembly

relationships and less geometric constraints. To synthesize

more complex models, we shall study more powerful algo-

rithm to solve assembly synthesis problem.
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