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Abstract

Various methods have been proposed for fitting subdivision surfaces to different forms of shape data (e.g., dense
meshes or point clouds), but none of these methods effectively deals with shapes with sharp features, that is,
creases, darts and corners. We present an effective method for fitting a Loop subdivision surface to a dense triangle
mesh with sharp features. Our contribution is a new exact evaluation scheme for the Loop subdivision with all types
of sharp features, which enables us to compute a fitting Loop subdivision surface for shapes with sharp features
in an optimization framework. With an initial control mesh obtained from simplifying the input dense mesh using
QEM, our fitting algorithm employs an iterative method to solve a nonlinear least squares problem based on
the squared distances from the input mesh vertices to the fitting subdivision surface. This optimization framework
depends critically on the ability to express these distances as quadratic functions of control mesh vertices using our
exact evaluation scheme near sharp features. Experimentalresults are presented to demonstrate the effectiveness
of the method.

Categories and Subject Descriptors(according to ACM CCS): I.3.1 [Computer Graphics]: Surface Modeling

1. Introduction

Data reduction in computer graphics and CAD calls for fit-
ting smooth parametric or implicit surfaces to mesh surfaces
or 3D data points generated by laser range scanning systems.
Subdivision surfaces have been used in shape fitting due to
several favorable properties, such as smoothness, arbitrary
control mesh connectivity, and intuitive shape control. How-
ever, the research on subdivision surface fitting has so far fo-
cused mainly on accuracy and efficiency issues with general
smooth shapes [CWQ∗07,MK05], without adequate empha-
sis on preservation of sharp shape features, that is, creases,
darts, and corners. Normally, a dense set of control vertices
are used to approximate a region of high curvature. This is
clearly inefficient when it comes to faithful representation of
sharp features. Fitting subdivision surfaces with features is
first considered in [HDD∗94], but Hoppe et al.’s algorithm
uses piecewise linear approximation to represent a smooth
surface, making exact error evaluation impossible.

We present a new method for fitting a Loop subdivision
surface to a dense triangle mesh with sharp features. The
fitting surface we compute faithfully captures the sharp fea-
tures of the input shape without increasing the density of

control vertices near them. Our method follows the same
optimization framework of [MK05, WPL06] in shape fit-
ting that solves a nonlinear least squares problem defined in
terms of the squared distances from the input mesh vertices
to the fitting subdivision surface. A key requirement of this
optimization framework is to express the closest point (also
calledfoot point) of an input mesh vertex on the limit subdi-
vision surface as a linear combination of the control vertices
through the basis functions of the subdivision surface. While
this task is straightforward for B-spline surfaces, which are
well parameterized everywhere, it becomes a difficult prob-
lem when one has to deal with a subdivision surface in the
neighborhood of sharp features, because of the special sub-
division rules used for feature generation. This is called the
foot point finding problem.

Our contribution is an exact evaluation scheme of the
Loop subdivision surface for various types of control ver-
tex configurations near sharp features – an exact evaluation
scheme means a method that can be used to exactly compute
the point on the limit subdivision surface corresponding to
any parameter values(s, t). This allows the parametrization
of the fitting Loop subdivision surface near sharp features,
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therefore enables us to solve the foot point finding prob-
lem for Loop surfaces near sharp features. Based on this
result, we develop a subdivision surface fitting method that
faithfully reconstructs sharp features. Our work can be re-
garded as an extension of [MK05] to include shapes pos-
sessing sharp features.

2. Related work

Several algorithms for fitting subdivision surfaces to data
points have been presented in recent years [CWQ∗04,
CWQ∗07, MK05]. Following [PLH02], Cheng et al.
[CWQ∗04] presented a method for smooth subdivision sur-
faces using the second order approximation of the squared
distance from sampled points on the fitting surface to a target
shape defined by a noise-free point cloud. This method can-
not deal with data points with noise or sharp features prop-
erly.

Figure 1: Comparison between subdivision surfaces gen-
erated by a fitting method without using subdivision rules
for features (e.g., [MK05]) and our method proposed in this
paper. Close-up views of the subdivision surfaces and their
control meshes are shown on the right.

Marinov et al. [MK05] developed a subdivision surface
fitting method based onparameter correctionto achieve bet-
ter error measurement. For each given data point, the clos-
est point (orfoot point) on the limit subdivision surface is
found and this foot point needs to be expressed as a linear
function of the control mesh vertices via the basis functions.
An objective function, which is a function of the control
points, is then defined in a least squares sense as the sum-
mation of the squared distances between the data points and
their foot points. This objective function is minimized itera-
tively with repeated computation of the foot points to update
the control points. The method yields a final fitting subdi-
vision surface upon convergence. In curve or surface fitting,
computing the foot points amounts todata parametrization,
and updating the foot points of the data points due to the
change of the control points is calledparameter correction
[Hos88,WPL06].

Only smooth fitting surfaces are generated by the algo-
rithms above (i.e., [CWQ∗04,MK05]). Given an input model
with sharp features, these algorithms fail to accurately cap-
ture these features, since they do not use special subdivision
rules for sharp features. One possible but inefficient remedy
is local refinement that uses a set of dense control vertices
– this handles regions of high curvature very well but can-
not resolve the case of sharp features satisfactorily, as shown
in Fig. 1. Aiming to preserve the sharp features in the fit-
ting surface, Ma et al. [MMTP04] proposed an algorithm

using special subdivision rules for features. However, in this
method the fitting errors are only measured from a small
number of sampled points on the fitting surface to a fixed
subset of data points, which are quite different from true ge-
ometric errors, especially near sharp features. While thiscir-
cumvents the need to accurately compute the foot points of
all data points, it prevents the method from properly measur-
ing and reducing the fitting error around sharp features, thus
leading to poor fitting quality, as also discussed in [MK05].

Fitting subdivision surfaces to a general shape, includ-
ing sharp features, has been considered by Hoppe et al.
[HDD∗94]. Their algorithm uses a piecewise linear approxi-
mation of the subdivision surface for fitting error evaluation,
leaving much room for improvement in efficiency and accu-
racy. This issue has been resolved by Marinov and Kobbelt
[MK05] for fitting subdivision surface without sharp fea-
tures, based on Stam’s exact evaluation scheme [Sta99].

We present an algorithm for fitting a Loop subdivision sur-
face to a shape represented as a triangle mesh with sharp
features. It consists of two main phases:

1. Phase 1 (Initialization): An initial control meshM1 is
obtained by simplifying the input dense meshM0 us-
ing quadric error metric (QEM) based method [GH97].
Sharp features are detected and labeled on the control
meshM1. Then a feature-sensitive edge flip operation
is performed onM1 to reduce the number of its extraor-
dinary control points.

2. Phase 2 (Iterative optimization): Gradient-based opti-
mization is run iteratively by performing the following
two steps alternatively until convergence: (i) finding the
foot points of the data points (i.e., input mesh vertices)
to compute fitting errors; and (ii ) updating the control
mesh points to further reduce the fitting errors by solving
a linear system of equations. (The convergence analysis
of this type of iterative procedures is similar to that for
B-spline curve fitting [WPL06].)

Our contribution is a new evaluation scheme for the Loop
subdivision surface near sharp features, covering all config-
urations of mesh connectivity with respect to different types
of sharp features. The main idea is to enumerate all these
configurations and map them into the regular cases using
a series of geometric transformations, so that Stam’s exact
evaluation scheme for the smooth case can be applied. This
evaluation scheme is the key to enabling us to accurately
compute the foot points on a Loop surface near sharp fea-
tures, as required in Phase 2 of our method. Note that another
evaluation method for subdivision surfaces at sharp features
has also been presented by Zorin et al. [ZK02], which gen-
erates piecewise smooth surfaces different from what gener-
ated in the present paper using the scheme in [HDD∗94].

3. Generation of initial control mesh

The initial control mesh used in our algorithm is obtained by
simplifying the input triangle mesh in three steps: a)simpli-
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fication; b) feature detection; and (c)regularization of vertex
valence.

Simplification The input shape is represented by a dense
triangle meshM0, whose vertices will be calleddata points.
The meshM0 is first normalized by uniform scaling to fit
all of its data points in the cube[0,1]3. Then we use a QEM-
based method [GH97] with edge length aspect ratio control
to simplifyM0 to obtain a coarse meshM1.

Feature detection Sharp features on a surface can be cor-
ners or creases. An edge of a mesh can besmooth edgeor
crease edge, depending on whether it lies on a crease. All
boundary edges of an open mesh are classified as crease
edges. A mesh vertex is asmooth vertex, dart vertex, crease
vertex, or corner vertexif it is incident to exactly 0, 1 and 2,
or more than 2 crease edges, respectively.

For each edgee of the simplified meshM1, we use a
thresholdθc, the angle between the normals of the two faces
incident toe, to detect ife is a candidate crease edge. Al-
though QEM simplification tends to preserve sharp features,
there is certain loss of details. Therefore candidate crease
edges detected solely based on the coarse meshM1 need to
be validated. For this purpose, we also detect feature vertices
(i.e., dart vertices, crease vertices or corner vertices) on the
input meshM0 using a similar threshold approach, but with
an appropriate threshold valueθd that is larger thanθc. Then
a candidate crease edge on the coarse meshM1 will be vali-
dated as a true crease edge if allmuniformly sampled points
on the edge are close to some feature vertices on the dense
meshM0. We use the valuem = 5 in our implementation.
Note that once a mesh vertex ofM1 is labeled as a feature
vertex, its identity as a feature vertex will remain when its
position is updated by subsequent optimization.

Note that detecting feature edges and vertices is a well
studied topic in geometric processing. Here we have ap-
plied only the simplest intuitive approach to this problem
and found that it produced acceptable results to be used sub-
sequently in the fitting stage. In this sense, other possibly
superior sharp feature detection methods (e.g., [HG01]) can
also be used to provide the initial control mesh with labeled
sharp features. Our contribution lies only in the optimization
method that uses this initial control mesh as an input.

Feature-sensitive edge flipSince the Loop subdivision sur-
face has onlyC1 continuity at an irregular vertex (i.e., the
valence is not 6), we perform feature-sensitive edge flip fol-
lowing the method of [SG03] to reduce the number of irreg-
ular mesh vertices. Specifically, we define the irregularityof
a smooth edgee as

Irreg(e) = |val(v0)−opt(v0)|+ |val(v1)−opt(v1)|, (1)

wherev0 andv1 are the two endpoints of the edgee, val(v)
is the valence of the vertexv, opt(v) = 6 for a smooth vertex
andopt(v) = 4 for a crease vertex. To make the operation

preserve crease edges, we defineIrreg(e) = 0 for any crease
edgee. Then we perform edge flip [SG03] to reduce the ver-
tex irregularity of the meshM1 by minimizing the function

R(M) = ∑
e∈M

Irreg(e). (2)

4. Evaluation of subdivision surface near features

In our optimization method, we need to repeatedly compute
accurately the foot point of a data point (that is, a vertex of
the input meshM0) on the fitting subdivision surface and
express the foot point as a linear combination of the con-
trol points via the basis functions of the subdivision surface.
This calls for a method for exact evaluation of the subdivi-
sion surfaceP(s, t) for any given parameter values(s, t); in
other words, it is necessary to have the parametrization of
the subdivision surface, especially near sharp features.

4.1. Subdivision rules

A face of a triangle mesh is called asmooth faceif all of
its three vertices are non-feature vertices; otherwise, itis a
feature face, also called anon-smooth face. If all the three
vertices of a feature face have regular valences (i.e., 6 for
smooth or dart vertices, 4 for crease vertices, and 2 for corner
vertices), then it is aregular feature face; otherwise, it is an
irregular feature face. We will focus on subdivision rules
involving irregular feature faces.

The Loop’s subdivision rule for a smooth face uses
a 1-4 splitting operator [Loo87], which updates every
existing vertex and adds a new vertex associated with
each edge, as illustrated in Fig.2. Here the weightβ =

1
n

[

5
6 −

(

3
8 + 1

4 cos2π
n

)2
]

, wheren is the vertex valence.

Figure 2: Loop subdivision masks: (left) for an updated po-
sition of a vertex; (right) for a newly vertex on an edge.

The masks for a Loop subdivision surface at corner ver-
tices and creases edges are given in [HDD∗94] and shown in
Fig. 3.

Figure 3: Loop subdivision marks for features: (left) for a
corner vertex; (middle) for a crease vertex; (right) for a
newly inserted vertex on a crease edge.
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4.2. Mirror vertices for regular feature faces

The evaluation technique for internal smooth faces is pre-
sented in [Sta99]. The method for computing the exact limit
position of a feature vertex is proposed in [Sch96] and used
in [MMTP04]. These techniques are applied in our method,
but we will skip the details due to the space limitation.

For an internal smooth face, Stam’s technique for exact
evaluation on a subdivision surface needs a mask of 12 ver-
tices, as shown in Fig.6. However, these rules cannot be
applied directly to the case where the face is incident to a
surface boundary or a sharp feature (that is, dart, corner or
crease), due to missing vertices or the special subdivision
rules for features. Our solution to this problem adopts a two-
step strategy: 1) Resolve the case ofregular feature faces
usingmirror vertices(see below); 2) resolve the case ofir-
regular feature facesby reducing it to the case of regular
feature faces.

The concept of mirror vertices is introduced in [Sch96]
for analyzing regular feature faces. The idea is as follows.
Referring to Fig.4, to provide the missing vertices required
for evaluating a regular face with one crease edge, the exist-
ing verticespk

2 and pk
3 are reflected in the crease edgepk

1pk
4

to obtain themirror verticesp̃k
6 and p̃k

5 which are expressed
as p̃k

6 = pk
0 + pk

1− pk
2, p̃k

5 = pk
0 + pk

4− pk
3.

In Fig. 4, pk+1
i s are new vertices in the next level of sub-

division generated by special rules for a regular feature face
in Fig. 4 (left) and rules for a smooth face in Fig.4 (right).
The region bounded by the dash lines is called themirror
region, and the region bounded by the solid lines is called
thenon-mirror region. It is shown in [Sch96] that the upper
half of the smooth subdivision surface generated by smooth
scheme using the complete mask in Fig.4 (right) is the same
as the limit surface that is generated using the subdivision
rules for features using the “half mask” in Fig.4 (left). This
observation allows us to perform exact evaluation on a regu-
lar feature face containing a crease edge.

Figure 4: (Left) the smallest invariant stencil for regular fea-
ture faces containing crease edges; (right) after adding mir-
ror vertices.

Extending this idea of using suitable reflections to obtain
mirror vertices to make up for the missing vertices, we can
also construct a complete mask for parameterizing a regular
corner face as shown in Fig.5. Here the mirror vertices are
given by p̃k

3 = pk
0 + pk

2− pk
1, p̃k

4 = 2pk
0− pk

1, p̃k
5 = 2pk

0− pk
2,

p̃k
6 = pk

0 + pk
1− pk

2.

By exhaustive enumeration it can be shown that, besides
the case of a regular smooth face shown in Fig.6, there are
in total four cases of regular feature faces and eight cases of
irregular feature faces. For reference, the basis functions for
evaluating a regular smooth face based on the mask in Fig.6
are listed in AppendixA. We will enumerate all the cases of
feature faces in the remaining subsections and explain how
these cases are handled.

Figure 5: (Left) the smallest invariant stencil for a regular
feature face containing a corner vertex; (right) after adding
mirror vertices.

Figure 6: The mask for evaluating a smooth internal face.

4.3. Exact evaluation for regular feature faces

In the following we will list the four cases of regular feature
faces and show how the mirror vertices can be generated to
provide the full mask for exact evaluation.

Figure 7: (Left) Case 1: a regular feature face having one
crease edge; (right) Case 2: a regular feature face having
one crease vertex.

Case 1:(See Fig.7 (left)): The triangular face has a crease
edge and two smooth edges. The mirror vertices are given by
p̃k

10 = pk
1+ pk

2− pk
3, p̃k

11 = pk
2+ pk

4− pk
5, andp̃k

12 = pk
4+ pk

7−

pk
8.

Case 2:(See Fig.7 (right)): The triangular face has three
smooth edges and one crease vertex. The mirror vertices are
given by p̃k

11 = pk
5 + pk

8− pk
4, p̃k

12 = pk
8 + pk

10− pk
7.

Case 3:(See Fig.8 (left)): The triangular face has two
crease edges, two crease vertices and one corner vertex. The
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mirror vertices are given by ˜pk
7 = pk

1 + pk
2− pk

3, p̃k
8 = pk

2 +

pk
4− pk

5, p̃k
9 = 2pk

4− pk
5, p̃k

10 = 2pk
4− pk

2, p̃k
11 = pk

4+ pk
5− pk

2,
p̃k

12 = pk
5 + pk

6− pk
3.

Case 4:(See Fig.8 (right)): The triangular face has three
smooth edges and two crease vertices. The mirror vertices
are given by ˜pk

9 = pk
3 + pk

6− pk
4, p̃k

10 = pk
6 + pk

8− pk
7, p̃k

11 =

pk
7+ pk

8− pk
6, p̃k

12 = pk
5+ pk

7− pk
4. Note that the corner vertex

(i.e. pk
8)in this mask can be replaced by a crease vertex and

the computation of the mirror vertices remains the same.

Figure 8: (Left) Case 3: a regular feature face having one
corner vertex; (right) Case 4: a regular feature face having
two crease vertices but no crease edge.

4.4. Exact evaluation of irregular feature faces

There are in total eight cases of irregular feature faces, which
are faces that contain at least one irregular feature vertex, due
to its incidence to either a crease edge or a dart/crease/corner
vertex. We will only explain in detail one of these cases and
list the other seven cases in the AppendixB.

Consider a face that has one crease edge, two smooth
edges, one irregular crease vertex, one regular crease ver-
tex and one smooth regular vertex, as shown in Fig.9. Here
the face△p1p2p3 is the patch which we are going to param-
eterize. Since the irregular crease vertex has valenceN 6= 4,
there are in totalJ = N+5 vertices in the mask of this case.
We store the initialJ control vertices in aJ×3 matrix

CT
0 = (p0,1, ..., p0,J). (3)

After a step of subdivision, a new set ofM = N+10 control
vertices are generated. The newly generated vertices provide
us enough vertices to evaluate three-quarters of the triangu-
lar patch, as done in [Sta99]. The new set of control vertices
are defined by

{

CT
1 = (p1,1, ..., p1,J),

C̄T
1 = (p1,1, ..., p1,J, p1,J+1, ..., p1,M).

(4)

This step of subdivision can be represented in a matrix form:
C1 = AC0 andC̄1 = ĀC0. If we repeat the subdivision step,
we generate an infinite sequence of control vertices

C̄k = ĀCk−1 = ĀAk−1C0, k ≥ 1. (5)

For eachk≥ 1, the subset of vertices from̄C form the control
vertices of a regular (feature) triangular patch. Note thatthis
step is different from Stam’s technique, because we select a
different number of vertices from̄C for different triangular

patches – in this case, the subset contains 9 vertices for patch
1, 10 vertices for patch 2, and 12 vertices for patch 3.

Let us denote the subsets of control vertices by matrices
Bk,i with i = 1,2,3. Then it follows that

Bk,i = PiC̄k, i = 1,2,3. (6)

The matrix size is 9×M for the pickup matrixP1, 10×M
for P2, and 12×M for P3. Each sub triangular patch is then
defined as

sk,i(v,w) = BT
k,ibh(v,w) = C̄T

k PT
i bh(v,w), (7)

wherebh is given in AppendixA. Hereh = II when i = 1,
h = III when i = 2 andh = I if i = 3, since different basis
functions are given for different types of faces.

Whenk≥ 1 andi = 1,2,3, the subdomains are defined as
used in Stam’s technique:

Bk,i = PiC̄k, i = 1,2,3. (8)

With the modified pickup matrix and basis functions, we can
find a parametrizations(v,w) for all (v,w)∈ Ω. The parame-
ter domain is partitioned into an infinite set of tilesΩk

i , with
k≥ 1 andi = 1,2,3. The subdomains are defined by:






Ωk
1 = {(v,w)|v∈ [2−k,2−k+1],w∈ [0,2−k+1− v]};

Ωk
2 = {(v,w)|v∈ [0,2−k],w∈ [0,v]};

Ωk
3 = {(v,w)|v∈ [0,2−k],w∈ [2−k,2−k+1− v]}.

(9)
The surface patch is then defined as

s(v,w)|Ωk
i
= sk,i(tk,i(v,w)) = CT

0 (PiĀAk−1)Tbh(tk,i(v,w)),
(10)

where






tk,1(v,w) = (2kv−1,2kw),

tk,2(v,w) = (1−2kv,1−2kw),

tk,3(v,w) = (2kv,2kw−1).

(11)

The parametrization of the triangular face with one crease
edge is defined by Eq.(10).

The parametrization for the seven other types of irregu-
lar feature faces is similar to the case discussed above, so
we skip the derivation here. The masks for those seven types
of feature faces are listed in AppendixB. If two irregular
crease/dart/corner vertices are connected directly, we virtu-
ally subdivide the control mesh once and then evaluate on the
underlying control mesh. This is similar to the case of two
directly connected irregular smooth vertices, as addressed
in [MK05,CWQ∗04].

5. Optimization of control mesh

Let xi , i = 1,2,3, ...,n, denote input data points, i.e., the ver-
tices of the dense input meshM0. We use the squared dis-
tance of eachxi to the limit subdivision surface to define the
objective function

Fdist =
n

∑
i=1

‖xi −D(si , ti)‖
2
2 (12)

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell Publishing Ltd.



R. Ling, W. Wang & D. Yan / Fitting Sharp Features with Loop Subdivision Surfaces

Figure 9: Top left: An irregular feature face defined by
J = N+5 control vertices. Top right: after one step of Loop
subdivision. M= N + 10 vertices in the new mesh. Bot-
tom: three regular meshes corresponding to the three shaded
patches. The labeling system of the control vertices defines
the picking matrices.

where(si , ti) is the parameter values assigned toxi such that
D(si , ti) is the foot point ofxi on the subdivision surface
D(s, t).

We compute the foot points using the same Newton iter-
ation scheme as used in [MK05], with necessary modifica-
tions when the foot point is found to be located in a crease
edge. Here the exact evaluation rules discussed in the preced-
ing sections are used within this Newton iteration to compute
the exact surface point corresponding to updated parameter
values, converging to the true foot point.

Following [LKE00], we use the energy termFs to con-
trol the smoothness of the control mesh and discourage self-
intersection.

Fs =
m

∑
i=1

V(pi)
TV(pi), (13)

where{pi}, i = 1,2, ..,m, are the smooth or dart vertices of
the control mesh andV(·) is a discrete version of Lapla-
cian. The crease and corner vertices are not included in this
smoothness term, for otherwise crease edges and corners
would be smoothed out.

Let {xf t,i} denote the set of feature vertices on the dense
input meshM0. To ensure that the sharp features are well
fitted, we incorporate one more energy term defined as

Ff t =
l

∑
i=0

‖pf t,i − sf t,i‖
2
2 (14)

where{pf t,i}, i = 1,2, ..., l , are the uniformly sampled posi-
tions on the crease edges of the control mesh andxf t,i is the
nearest point corresponding topf t,i in {xf t,i}.

The next energy term is used for smoothing along creases,

Fs′ =
g

∑
i=1

V(pcr,i)
TV(pcr,i), (15)

where{pcr,i}, i = 1,2, ...,g, are the crease vertices of the
control mesh. HereV(·) is a discrete version of Laplacian
operator. Only consecutive crease vertices are consideredto
be neighbors ofpcr,i in this case.

The energy function for fitting a subdivision surface with
features is finally given by

F = Fdist +αFs+βFf t + γFs′ (16)

whereα,β, γ are constants. Our tests show thatα in the range
of [0.1,0.5] leads to good results. We useβ = 1.0 in all our
experiments. The selection ofγ will be discussed in next sec-
tion. Since a foot point{D(si , ti)} and sampled points on
crease edges{pf t,i} are linear combinations of the control
points {pi}, the updated control points{pi} can be com-
puted by solving a linear system of equations.

Because only a small number of control points contribute
to D(si , ti) or pf t,i , the matrix for the linear system of equa-
tions is sparse. For efficiency, the conjugate gradient method
is used to exploit the sparsity of the coefficient matrix to
solve the linear system of equations. The conjugate gradi-
ent solver is terminated if the relative error improvement is
less than a specific small value or the number of iterations
exceeds a pre-specified number.

If the fitting result is not satisfied in a region due to too
few control vertices or local minima in that region, we use
local refinement operator to add new vertices. This strategy
is fully discussed in [CWQ∗04,MK05].

6. Results

In this section, we present some results to demonstrate the
effectiveness of our fitting method. All experiments were
conducted on a PC with Intel Duo Core2 2.8 GHz CPU and
2GB RAM. The fitting errors are obtained after normalizing
the input dense mesh in the cube[0,1]3.

Fig. 11 shows a mechanical model, Fandisk. We useγ =
1.0 for Eq.16. Fig. 11 (bottom left) shows the initial error
distribution. We see that most of large initial errors lie in
smooth regions with higher curvature. The averageL2 fitting
error (i.e.,(Fdist/n)1/2) decreases quickly in the first 3 it-
erations of optimization, beginning to decrease only slowly
afterwards. The ratio between the number of vertices in the
final control mesh and the initial dense mesh is 1.42% and
the averageL2 fitting error is 5.81× 10−4. The total time
consumed in the 22 iterations of optimization is 141 sec-
onds.

Fig.12shows a model twisted in two directions. Since the
feature curves have larger curvature and torsion, extra effort
on smoothing the feature curves is needed by settingγ = 5.0
for this model. Fig.13 shows another mechanical part. The
optimized control mesh is generated usingγ = 1.0. From the
close-up views of the results, we see that the sharp features
are well reconstructed. The total time of the optimization is
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Table 1: Statistics of the results

Fandisk D.twist Mechpart

Vert# of dense mesh 24322 32002 46076
Initial avgL2 err 5.64e-3 5.99e-3 1.02e-2
Iteration# 22 7 9
Total time (sec) 141 165 127
Vert# of final mesh 346 1202 520
Fitting avgL2 err 5.81e-4 1.07e-3 6.17e-4
Max fitting err 1.35e-2 1.49e-2 1.32e-2
Min fitting err 4.68e-6 1.29e-5 7.52e-6

165 and 127 seconds, respectively. The ratios between the
vertex counts of the input dense mesh and the final control
mesh are 3.75% and 1.13%, respectively.

Appendix A: Basis functions of regular cases

The basis functions [Sta99] for smooth internal face (Fig.6),
wherebI = (bI ,1, ...bI ,12)
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bI ,1 = (u4 +2u3v)/12
bI ,2 = (u4 +2u3w)/12
bI ,3 = (u4 +2u3w+6u3v+6u2vw+12u2v2 +6uv2w+

6uv3 +2v3w+v4)/12
bI ,4 = (6u4 +24u3w+24u2w2 +8uw3 +w4 +24u3v+

60u2vw+36uvw2 +6vw3 +24u2v2 +36uv2w+

12v2w2 +8uv3 +6v3w+v4)/12
bI ,5 = (u4 +6u3w+12u2w2 +6uw3 +w4 +2u3v+

6u2vw+6uvw2 +2vw3)/12
bI ,6 = (2uv3 +v4)/12
bI ,7 = (u4 +6u3w+12u2w2 +6uw3 +w4 +8u3v+

36u2vw+36uvw2 +8vw3 +24u2v2 +60uv2w+

24v2w2 +24uv3 +24v3w+6v4)/12
bI ,8 = (u4 +8u3w+24u2w2 +24uw3 +6w4 +6u3v+

36u2vw+60uvw2 +24vw3 +12u2v2 +36uv2w+

24v2w2 +6uv3 +8v3w+v4)/12
bI ,9 = (2uw3 +w4)/12
bI ,10 = (2v3w+v4)/12
bI ,11 = (2uw3 +w4 +6uvw2 +6vw3 +6uv2w+12v2w2

+2uv3 +6v3w+v4)/12
bI ,12 = (w4 +2vw3)/12

(17)

The basis functions for regular feature case 1 (Fig.7
(left)), wherebII = (bII ,1, ...bII ,9)

T :






















bII ,1 = bI ,1 +bI ,2 bII ,2 = bI ,1 +bI ,3 +bI ,4
bII ,3 = bI ,5−bI ,1 bII ,4 = bI ,3 +bI ,6 +bI ,7
bII ,5 = bI ,8−bI ,3 bII ,6 = bI ,9
bII ,7 = bI ,6 +bI ,10 bII ,8 = bI ,11−bI ,6
bII ,9 = bI ,12

(18)

The basis functions for regular feature case 2 (Fig.7

(right)), wherebIII = (bIII ,1, ...bIII ,10)
T :























bIII ,1 = bI ,1 bIII ,2 = bI ,2
bIII ,3 = bI ,3 bIII ,4 = bI ,4−bI ,9
bIII ,5 = bI ,5 +bI ,9 bIII ,6 = bI ,6
bIII ,7 = bI ,7−bI ,12 bIII ,8 = bI ,8 +bI ,9 +bI ,12
bIII ,9 = bI ,10 bIII ,10 = bI ,11+bI ,12

(19)

The basis functions for regular feature case 3 (Fig.6
(left)), wherebIV = (bIV,1, ...bIV,6)

T :






























bIV,1 = bI ,1 +bI ,2
bIV,2 = bI ,1 +bI ,3 +bI ,4−bI ,10−bI ,11
bIV,3 = bI ,5−bI ,1−bI ,12
bIV,4 = bI ,3 +bI ,7 +2bI ,6 +2bI ,10+bI ,11
bIV,5 = bI ,8 +bI ,11+bI ,12−bI ,3−bI ,6
bIV,6 = bI ,9 +bI ,12

(20)

The basis functions for regular feature case 4 (Fig.6
(right)), wherebV = (bV,1, ...bV,8)

T :






















bV,1 = bI ,1 bV,2 = bI ,2 bV,3 = bI ,3 +bI ,6
bV,4 = bI ,4−bI ,6−bI ,9 bV,5 = bI ,5 +bI ,9
bV,6 = bI ,6 +bI ,7 +bI ,10−bI ,12
bV,7 = bI ,8 +bI ,9 +bI ,12−bI ,10
bV,8 = bI ,10+bI ,11+bI ,12

(21)

Appendix B: Types of irregular feature faces

Besides the case shown in Fig.9, Fig. 10 lists all other fea-
ture types.

(a) Vertices: one crease vertex with valenceN and two
regular smooth vertex.Edges: three smooth edges.

(b) Vertices: one crease vertex with valence 2 and two reg-
ular crease vertices.Edges: two crease edges and one smooth
edge.

(c) Vertices: one dart vertex with valenceN, one regu-
lar crease vertex and one regular smooth vertex. Edges: one
crease edge and two smooth edges.

(d) Vertices: one dart vertex with valenceN and two reg-
ular smooth vertices.Edges: three smooth edges.

(e) Vertices: one corner vertex with valenceN and two
regular smooth vertices.Edges: three smooth edges.

(f) Vertices: two regular crease vertices and one regular
smooth vertices.Edges: three smooth edges. The orange ver-
tex is either a corner vertex or a crease vertex.

(g) Vertices: one corner vertex with valenceN, one regu-
lar crease vertex and one regular smooth vertex.Edges: one
crease edge and two smooth edges.
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Figure 10: The other seven cases of irregular feature faces
besides Fig.9, where blue edges are crease edges; purple,
blue, red vertices are dart, crease, corner vertices, respec-
tively.
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Figure 11: Fan disk. Top row: input dense mesh; initial control mesh; optimized control mesh; subdivision surface. Bottom row:
initial error distribution; final error distribution; average L2 error curve; close-up view of the subdivision surface.

Figure 12: Double twist. Top row: input dense mesh; initial
control mesh. Second row: optimized control mesh; subdivi-
sion surface. Bottom row: average L2 error curve; close-up
view of the subdivision surface.

Figure 13: Mechanical part. Top row: input dense mesh;
initial control mesh. Second row: optimized control mesh;
subdivision surface. Bottom row: average L2 error curve;
close-up view of the subdivision surface.
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