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ABSTRACT 
 

A new index is proposed for describing the degree of folding of a planar curve segment.  Based on 
a basic concept from integral geometry, the Curve Folding Index (CFI) of a curve segment is 
defined to be the expected number of intersections that a random line has with the curve.  The CFI 
provides a simple measure to characterize planar curves in terms of the degree of folding, and is 
shown to be invariant under the similitude transformations.  We show by experiments that the CFI 
conforms to the intuitive perception of folding complexity. 
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1. INTRODUCTION 
Planar curves have extensively been studied in geometry. 
Many geometric properties of a curve, either local or 
global, e.g. curvature and length, are quantifiable and 
computable. Yet there are characteristics of a curve that 
is not easy to quantify. For example, it is of interest to 
characterize the degree of folding of a curve. We 
consider in this paper a new index to describe the 
degree of folding of a planar curve segment. For brevity, 
a curve segment will be called a curve.  
 
Intuitively, there are many turns and twists in a highly 
folded curve. In contrast, an unfolded or mildly folded 
curve is one that is straightened out and is close to a 
straight line. Human cognition can exploit this 
conceptual information to differentiate and identify a 
curve from another. In applications such as curve 
matching, the degree of folding may serve as a good 
starting point to quickly eliminate some curves from 
considerations. There are also applications of folding 
complexity in 3D space, such as in the studies of protein 
folding [1]. In this case, we may model the backbone 
chain of a protein by a space curve. 
 
Probability distributions obtained from geometric 
properties of objects have been used for 3D shape 
matching [4]. For a curve, the distribution of the number 
of intersections of randomly distributed lines intersecting 
the curve can be extracted. We define the Curve Folding 
Index (CFI) of a 2D curve by the expected number of 
intersection points that a random line has with the curve. 

While the distribution encapsulates a more 
comprehensive view on the degree of folding of a curve, 
the CFI gives a handy single-number index to represent 
the distribution. 
 
2. Preliminaries 
We first review some basic facts from integral     
geometry [5] about lines in 2D plane. Integral geometry 
is the study of the measure of a set of geometric figures 
and is closely related to combinatorial geometry, convex 
geometry, and geometric probability. A basic definition, 
called measure, gives a description for a set of geometric 
entities such as points, lines, chords of curve, etc., which 
is invariant under the group of rigid motions. 
 
Consider a set of straight lines S  in 2E . Each straight 
line G can be represented by its normal          
coordinates ( , )p ψ and the equation of G is 

cos sin 0x y pψ ψ+ − = . The density of S  is given by 

 
dG dp dψ= ∧ , 
 
where ∧  stands for the exterior product of two 
differential forms. The measure of S  is defined by  
 

( )m dG= ∫S
S  (1) 

 
which is invariant under Euclidean transformations in 

2E  up to a constant factor. 
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The density of a set of straight lines intersecting a curve is 
shown [5] to be equal to  
 

sindG ds dθ θ=| | ∧ , 
 
where θ  is the angle between a line G and the tangent 
at a point p, and ds is the differential arc element at  p 
on the curve. For any rectifiable curve C, i.e. a curve of 
finite length, there is 
 

2n dG l=∫ , (2) 
 
where n is the number of intersection points each straight 
line has with the curve C and l is the length of C. This is 
the Cauchy-Crofton formula [2]. Since a straight line 
must either intersect a convex closed curve K at exactly 
two contact points or it does not intersect K at all, we 
have  
 

G K
dG l

∩ ≠∅
=∫  (3) 

 
where K is a convex closed curve of length l. This means 
that the measure of the set of straight lines which 
intersect a convex closed curve equals to the length of 
the curve. Detailed derivation of the above formulas can 
be found in [5, 6]. 
 
Suppose a curve C of length Cl  is enclosed by a convex 

closed curve K of length Kl . If we consider all lines 
intersecting K, the expected number of intersection 
points of these lines with C would be given by  
 

2 C

K

ln dG
n

ldG
= =

∫
∫

. (4) 

 
Consider a set L  of N lines that are randomly sampled 
from the set of lines intersecting a convex closed curve K 
that encloses C. Suppose that the length Kl  of the curve 

K is known. Let Kn  and Cn  be the total number of 

intersection points of L  with K and C, respectively. By 
Eq. (2), with integration approximation, we have 
 

2K
K

n
wl

N
≈   and  2C

C

n
wl

N
≈  

 
where w is a constant of proportionality. Therefore, 

C
C K

K

n
l l

n
≈ . 

 
This gives us a combinatorial way of computing the 
length of a curve C. The extension to this idea to 
computing surface area is presented in [3]. 
 
3. THE 2D CURVE FOLDING INDEX 
We give the definition for the 2D Curve Folding Index, 
which provides a quantitative description of the degree 
of folding for a 2D curve.   
 
Definition: Given a curve C in 2E , the Curve Folding 
Index (CFI) of C, denoted by fi(C), is defined as the 
expected number of intersections with C of all straight 
lines intersecting C, i.e.  

( )
G C

n dG
fi C

dG
∩ ≠∅

=
∫

∫
. 

 
The CFI of a 2D curve is invariant under Euclidean 
transformations due to the same property possessed by 
the measure of a set of straight lines. We also have the 
following  
 
Proposition 1 The CFI of a curve is invariant under 
uniform scaling. 
 
PROOF.  Let C be a curve of length Cl . Let C ′  be a 
scaled copy of C obtained by uniform scaling of factor k 
such that its length is C Cl k l′ = , where 0k >  is a 

constant. Let CH  of length 
CHl  be the closed boundary 

curve of the convex hull of C and let CH ′  of length 
CHl ′

 

be the closed boundary curve of the convex hull of C ′ . 
The measure of lines intersecting C is equal to the 
measure of lines intersecting CH , and therefore 
 

C
C

HG C G H
dG dG l

∩ ≠∅ ∩ ≠∅
= =∫ ∫ , 

 
where the second equality follows from Eq. (3). Similarly, 

we have 
CHG C

dG l
′′∩ ≠∅

=∫ . Also, by Eq. (2), we have 

2C Cn dG l=∫  and 2C Cn dG l′ ′=∫ . Hence,  
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2 2
( )

2
                                  ( )

C C

C

C C C

H H
G C

C C

H
G C

n dG l k l
fi C

l k ldG

l n dG
fi C

l dG

′

′ ′

′∩ ≠∅

∩ ≠∅

′ = = =

= = = ,

∫
∫

∫
∫

        

 
i.e. the CFI of a curve is invariant under uniform 
scaling.W  
 
Hence, the CFI of a curve is invariant under the 
similitude transformations, i.e. Euclidean transformations 
together with uniform scaling.  
 
Since 0n =  for any line G without an intersection with 
C, the CFI is different from n  of Eq. (4) in that the 
index ignores those straight lines not intersecting the 
curve under consideration; otherwise, its value would 
only depend on the curve length. 
 
Intuitively, the CFI of a curve C gives the expected 
number of intersections that a straight line segment may 
have with C by considering only those lines that are in 
contact with C.  In general, the CFI of a highly tangled 
curve would be greater than the CFI of a less tangled 
curve; and in particular, the CFI of a straight line is 1 and 
that of a convex closed curve is 2. 
 
4. COMPUTING THE INDEX 
To compute the CFI of a 2D curve, we use a similar 
method to that for computing the curve length as 
described in section 2. Given a 2D curve C, the 
algorithm for computing fi(C) is as follows:  
 
1. Determine a bounding circle B that encloses C. 

 The role of B is to assist in generating a set of 
lines which intersect the curve C. 

2. Generate a set L  of N random lines that intersect 
the bounding circle B. 

 The lines in L  sample the set L  of all lines 
intersecting B.   

3. Compute the number of lines ( n′ ) in L  that 
intersect C and the total number of intersections 
( n ) of these lines with C. 

4. Compute the CFI of the curve C. By integration 
approximation, the CFI of the curve C is given by 

( )
n

fi C
n

≈
′

. 

 

It is crucial that the set L  of N lines is a good sampling 
of the set L  of all lines intersecting the bounding circle 
B, so as to ensure that the computed CFI is invariant 
under the similitude transformations. The approximation 
error introduced in the last step of the algorithm depends 
not only on the number of lines intersecting C (and 
therefore the number of lines generated in L ), but also 
on whether the lines in L  are evenly distributed. In our 
testing, we employ the chord model [7] in which a 
random line is defined by its two end points which are 
uniformly distributed points on a circle B. Therefore, all 
these lines are guaranteed to intersect the circle B and 
they are shown to be uniformly distributed [7]. 
 
5. DISCUSSIONS 
In this section, we show how the CFI and the intersection 
distribution are used to describe the degree of folding of 
various curves.  
 
Fig. 1 shows four curves with different degrees of 
tangling. The CFI and the intersection distributions are 
also given alongside with the corresponding curves. In 
computing the CFI of each curve presented here, a total 
of 100,000 random and uniformly distributed chords of 
a bounding circle are generated. From the figures, we 
see that the CFI generally reflects the degree of folding of 
a curve:  the CFI of a highly folded curve is greater than 
the CFI of a mildly folded one. However, it should be 
noted that although the CFI is a useful indicator to 
characterize the distribution of intersection points, there 
are other statistical characteristics about the distribution, 
e.g. variance, that a single index may not represent. For 
example, consider two curves C and C ′  of the same 
length. Then by Eq. (2), the total number of intersections 
that they have with all the lines in the plane would be the 
same. Now, if the perimeters of the convex hulls of the 
two curves are also of the same length, it is easy to show 
by Eq. (3) that the measures of the lines intersecting the 
two curves are the same as well. In this case, the two 
curves have the same CFI, no matter how different the 
degrees of folding they may possess within their convex 
hulls (Fig. 2). This example shows that while the CFI 
allows us to have a glance at the degree of the curve 
folding, a better understanding can be gained by a 
detailed analysis of the intersection distribution. 
 
More properties of a curve are revealed by its 
intersection distribution. In Fig. 3(a) and (b), we have 
two similar curves with the only difference that one is a 
close curve and the other one is open. The intersection 
distributions of the two curves are quite different in that 
the frequencies of the odd number of intersections are all 
zero for the close curve. It indeed reveals the fact that a 
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(c) (d) 

Fig. 1. Intersection distributions and CFI of different curves. The CFI in general reflects the degree of curve folding. 
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Fig. 2. The two curves in (a) and (b) are of the same length and the perimeters of their convex hulls are also of the 
same length.  The CFI of the two curves are theoretically the same. 

 

 
line must intersect a close curve at an even number of 
contact points. Moreover, the percentage of lines with 
only one intersection suggests that there is a significant 
portion of the curve that is open or stays loose from the 
rest of the curve (Fig. 3(c) and (d)). Also, the maximum 
number of intersections that a line can have with a curve 
may also tell the complexity of the curve folding. 
Therefore, the CFI and the intersection distribution can 
be used together to effectively characterize the degree of 

folding of a curve, depending on what level of detail one 
would like to attain in describing the folding complexity. 
 
6. CONCLUSION 
In this paper, we have presented a novel method to 
describe the degree of folding of a given planar curve 
quantitatively. The 2D Curve Folding Index (CFI) is 
based on the theory of integral geometry and is shown to 
be invariant under similitude transformations, i.e. 
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Fig. 3. Curve properties revealed by the intersection distributions; (a) & (b): open vs. closed curves. For a closed 
curve, there is no line with odd numbers of intersections with the curve; (c) & (d): open portion of the curve in (d) is 
indicated by having more lines intersecting the curve at only one point in the distribution. 
 

 
Euclidean transformations as well as uniform scaling. 
This provides with us a simple and convenient tool to 
characterize a curve based on its degree of folding. 
 
The CFI of a curve is defined to be the expected number 
of intersections that a random line has with the curve. It 
may be computed by generating random chords of a 
bounding circle of the curve and calculating the expected 
number of intersections that the curve may have with 
those lines intersecting the curve. It is shown that the 
intersection distribution of the curve obtained by the 
above method demonstrates distinguishable properties of 
the curve's folding complexity. 
 
There are more problems about the description and 
analysis of the degree of curve folding in the three 
dimensional space, e.g. in protein folding problems by 
representing the backbone chain with a 3D space curve. 
Therefore, an extension of the CFI to three dimensional 
space is a problem for further research. Also, it would be 
interesting to study the relationship of the CFI with the 
integral of the curvature of a planar curve.  
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