
Shelling Algorithm in Solid Modeling

Dong-Ming Yan, Hui Zhang, Jun-Hai Yong,
Yu Peng, and Jia-Guang Sun

Tsinghua University, Beijing 100084, China
yandm@cg.cs.tsinghua.edu.cn

Abstract. Shelling is a powerful modeling operation in current CAD
/CAM systems. In this paper, we present a new shelling algorithm for
regular B-Rep solids. We first generate an initial offset solid, then cor-
rect the self-intersecting offset solid if necessary. We obtain the resultant
shelling solid through a regularized Boolean operation finally. The al-
gorithm has been implemented in a solid modeling system, and some
examples are given to illustrate it.

1 Introduction

Shelling and offsetting are two related modeling operations widely used in CAD
/CAM systems. Offsetting is a procedure for adding or removing a constant
thickness from a solid model. Shelling is a procedure for turning a solid model
into a thin-walled shell of constant thickness or variable thickness. This “shelled”
solid is a hollowed version of the original model.

The research on offsetting has been carried out for a long time. Lee et al. [8]
classified it into two main categories: offset geometry and offset topology. In
the last decade or so, numerous researchers focused on offsetting curves or sur-
faces [5]. Generating offset solids belongs to the area of offset topology [1, 2, 3].
Satoh et al. [4] developed a Boolean operation algorithm on open sets. They also
presented an algorithm for offset solid generation using their Boolean operation
method. Lee et al. [8] proposed an algorithm for non-manifold offsetting oper-
ation. Recently, Ravi [10] developed an algorithm for the automatic offset of a
NURBS B-Rep solid.

But very few studies focus on shelling a solid. Forsyth [6] presented several
algorithms for offsetting and shelling operations on B-Rep solids, but it must
be ensured that the offset solid does not self-intersect. Zuo [9] also developed
a shelling algorithm in a solid modeling system, but his method has the same
drawback as Forsyth’s .

We present a solid shelling algorithm in this paper, which is more robust
than Zuo’s and Forsyth’s algorithm. Firstly, we compute an initial offset solid
of the original solid, then turn the self-intersecting offset solid into 2-manifold,
if necessary. Finally we compute the shelling body through a Boolean
operation.

J. Zhang, J.-H. He, and Y. Fu (Eds.): CIS 2004, LNCS 3314, pp. 292–297, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

mailto:yandm@cg.cs.tsinghua.edu.cn

Shelling Algorithm in Solid Modeling 293

2 Definition

In this paper, we assume that the solid is 2-manifold and in B-Rep form. Given
a 2-manifold B-Rep solid O ⊆ R3 (three-dimensional Euclidean space). The
boundary ∂O of the body O is the union of a set of faces, denoted by F (O).
Each face in F (O) is a trimmed surface, which includes an underling surface to
represent its geometric shape and a set of loops to define its boundary. A face
must have a counterclockwise outer loop and some clockwise inner loops. All the
loops of a face don’t intersect with each other.

Generally, shelling operation needs to specify one or more pierce faces and
the shelling direction. The offset distances of pierce faces are zero. Each of the
non-pierce faces of the body offsets a user-defined nonzero distance, and the
distances can be varied. If the shelling direction is inward, the offset direction
is opposite to the normal of the face, otherwise the offset direction is along the
normal of the face. The definition of shelling is illustrated in Fig. 1.

(a) (b) (c) (d)

Fig. 1. Illustration of inward shelling operation. (a) The original solid. (b) Only the
top face is a pierce face. (c) Both the top face and the left side face are pierce faces.
(d) The left side, the front side and the cylindrical face are pierce faces

3 Methodology

At the beginning of the shelling operation, user should select the pierce face(s),
set the offset distances of the non-pierce faces(the distances can be varied), and
set the direction of shelling, i.e. inward or outward.

3.1 Initial Offset Solid Generation

In this step, we compute an initial offset solid, which may be topologically ir-
regular in geometric substitution. We will solve the issue in the next step.

Firstly, we use Forsyth’s method [6] to create an offset face F ′ of each face
F . An offset surface is defined as the locus of points, which are at a constant
distance d along the normal from the base surface [10]. Secondly, offset curve for
each edge E is obtained by intersecting two offset surfaces of E’s two adjacent
faces. And then we use offset surfaces of E’s two section faces to trim the in-
tersecting curve. Thus the trimmed curve is between the two section faces. We
denote edge E’s offset edge as E′, and attach the trimmed curve to the related off-
set edge E′. Then the offset edges of each offset face are connected to form offset
loops L′, which have the same direction as their original corresponding loops L,

294 D.-M. Yan et al.

respectively, and the offset loops are attached to their corresponding offset faces.
Finally we sew all the offset faces together to obtain an initial offset solid.

3.2 Facial Error Management

In the following step, we should judge whether the faces of the offset solid is
valid. Several cases may occur on a single face. First of all, we judge whether
a loop of face is self-intersecting, then we detect whether some loops of a face
intersect with each other, and finally we judge whether a face has a clockwise
outer loop. The offset solid becomes illegal if one or more cases occur.

(a) (b) (c)

+

(d)

Fig. 2. Illustration of loop self-intersection

Fig. 2 illustrates the loop self-intersection problem in 2D. Fig. 2(a) is the
original loop. The offset loop in Fig. 2(b) is self-intersecting(The dashed denotes
the original loop). It is detected by intersecting every two edges of the loop. If the
intersection point is not the endpoint of an edge, the loop is self-intersecting. We
split the intersected edges at the intersection points, as shown in Fig. 2(c), and
partition the loop into several sub-loops, as shown in Fig. 2(d). If the original
loop is counterclockwise, we create a new face whose direction is reversed from
the original face for each clockwise sub-loop. Otherwise, the original loop is
clockwise, and we create a new reversed face for each counterclockwise sub-loop.

(a) (b) (c) (d)

Fig. 3. Illustration of inner-inner loop intersection

Two or more loops of an offset face may intersect with each other if the face
has any inner loops. Fig. 3 and 4 illustrate two cases of loop intersection. One is
that several inner loops intersect with each other, and the other is that one or
more inter loops intersect with the outer loop.

Firstly, we compute the intersection points among all inner loops, and then
spilt the intersected edges with those points, as shown in Fig. 3 and 4. At last,
we merge the intersected inner loops into one inner loop(for example, the inner
loops in Fig. 3 and a 3D example in Fig. 6).

Shelling Algorithm in Solid Modeling 295

(a) (b) (c)

+

(d)

Fig. 4. Illustration of inner-outer loop intersection

L 1 L 2

(a)

L 1
'L 2

'

(b)

Fig. 5. Illustration of loop direction error

After merging all the intersected inner loops, we compute the intersection
between the outer loop and inner loops, and then split edges similar to the
above case. We partition the intersected loops into several sub-loops, which don’t
intersect with each other. Then create a new face for the clockwise loop with the
reversed direction of the original face. Fig. 7 gives a 3D example.

Each face must contain a counterclockwise outer loop and some clockwise
inner loops. The loops don’t intersect with each other. Fig. 5(a) shows an original
face with an outer loop L1 and an inner loop L2. Fig. 5(b) shows the offset face
of Fig. 5(a), where L′

1 and L′
2 are the offset loops of L1 and L2, respectively.

The offset face is topologically incorrect. We deal with this problem by simply
reversing the direction of the face. Fig. 8 gives an example for this case in 3D.

3.3 Solid Correction and Shelling

The cases discussed above only deal with the single face of the offset solid.
Moreover we should judge whether the faces of the offset solid intersect with
each other. Therefore, we apply a face-face intersection procedure in this step
which partitions the intersection faces by intersection curves.

The offset solid may be non-manifold now. We should eliminate the illegal
parts to obtain a 2-manifold solid. For each face of offset solid, we get an arbitrary
reference point p on the face, which does not lie on the boundary of the face. The
normal of the face at the point p is denoted by N. We create a ray line by using
p as start point and N as its direction, and then calculate the intersection points
between the ray line and all other faces. We mark the current face as undesired
if the number of intersection points is odd, otherwise mark the face as reserved.
We delete the undesired faces and the open faces (one or more edges of this face
have only one adjacent face). The remaining faces will be sewed together to form
the final offset solid. The offset solid will be NULL if no face is left.

296 D.-M. Yan et al.

pierce face

(a)

no n-manifo ld part

(b) (c) (d)

Fig. 6. Example of Inner-Inner loop intersection

pierce face

(a)

nonm anifold parts

(b) (c) (d)

Fig. 7. Example of Outer-Inner loop intersection

pierce face

(a)

non-m anifo ld parts

(b) (c) (d)

Fig. 8. Example of facial direction error

pierce faces

Fig. 9. Chair example

Shelling Algorithm in Solid Modeling 297

We denote the offset body after correction by O′. The shelling result of solid
O is formed by the following regularized Boolean operation rules:

Shell(O) =

⎧⎨
⎩

O, if O′ = NULL,
O − O′, if inward shelling,
O′ − O, if outward shelling.

4 Results and Conclusion

Fig. 6 - 8 give some examples of our algorithm. In each example, (a) shows the
original solid, (b) shows the initial offset solid after loop splitting operations, (c)
shows the offset solid after correction, and (d) shows the final shelling result.
Fig. 9 gives a chair example using our shelling algorithm.

We present a new shelling algorithm for B-Rep solids. The loop operation
used in our algorithm is similar to Gardan’s algorithm [7], which reduces the
complexity of the algorithm from 3D to 2D. Our algorithm has been implemented
in a solid modeling system TiGems.

Acknowledgements

The research was supported by Chinese 973 Program (2002CB312106) and Chi-
nese 863 Program (2003AA4Z3110).

References

1. Farouki, R.T.: Exact Offset Procedures for Simple Solids, Computer Aided Geo-
metric Design. 2 (1985) 257-279

2. Rossignac, J. R., Requicha, A. A. E.: Offsetting Operations in Solid Modelling,
Computer Aided Geometric Design. 3 (1986) 129-148

3. Saeed, S. E. O., de Pennington, A. and Dodsworth, J. R.: Offsetting in geometric
modeling, Computer-Aided Design, 20 (1988) 50-62

4. Satoh, T., Chiyokura, H.: Boolean Operations on Sets Using Surface Data, ACM
SIGGRAPH: Symposium on Solid Modeling Foundations and CAD/CAM Appli-
cations. (1991) 119-127

5. Pham, B.: Offset Curves and Surfaces: a Brief Survey, Computer-Aided Design. 24
(1992) 223-229

6. Forsyth, M.: Shelling and offsetting bodies, Proceedings of the third ACM sympo-
sium on Solid modeling and applications. (1995) 373-381

7. Gardan, Y., Perrin, E.: An algorithm reducing 3D Boolean operations to a 2D
problem: concepts and results. Computer Aided Design, 28 (1996) 277-287

8. Lee, S. H.: Offsetting operations on non-manifold boundary representation models
with simple geometry. Proceedings of the fifth ACM symposium on Solid modeling
and applications, (1999) 42-53

9. Zuo, Z., Hu, S. M. and Sun, J. G.: A shell algorithm for solid on boundary repre-
sentation. Journal of Software. 10 (1999) 761-765 (In Chinese)

10. Ravi Kumar, G. V. V., Shastry, K. G. and Prakash, B. G.: Computing constant
offsets of a NURBS B-Rep. Computer-Aided Design. 35 (2003) 935-944

	Introduction
	Definition
	Methodology
	Initial Offset Solid Generation
	Facial Error Management
	Solid Correction and Shelling

	Results and Conclusion

