
MULTI-VIEW DESCRIPTOR MINING VIA CODEWORD NET FOR ACTION RECOGNITION

Jingyu Liu1, Yongzhen Huang1, Xiaojiang Peng2 and Liang Wang1∗

1National Laboratory of Pattern Recognition, Institute of Automation
Chinese Academy of Sciences, Beijing 100190, China

2Hengyang Normal University
{jingyu.liu,yzhuang,wangliang}@nlpr.ia.ac.cn, xiaojiangp@gmail.com

ABSTRACT
Action recognition is an important yet challenging task in
computer vision. A successful and widely used framework
in this field is the Bag of Visual Words (BoVW), wherein
the first step is to extract local features. One critical prop-
erty of local features is that they are often multi-view, e.g.,
dense trajectory feature includes both appearance and motion
properties. Different types of features are aligned together in
coding and pooling thus leading the process to be heavily en-
tangled. Our motivation is to disentangle each sub-descriptor
and let them contribute to the maximum extent. To achieve
this, a codeword net is constructed via exploiting the relation
between features and codewords. Based on the codeword net,
features from the same viewpoint are pooled together. Exper-
iments on two large scale action recognition datasets, UCF50
and HMDB51, demonstrate that our approach can enhance
the state-of-the-art algorithms.

Index Terms— multi-view descriptor mining, codeword
net, BoVW, action recognition

1. INTRODUCTION

The decreasing cost of camera equipment results in huge vol-
umes of video data nowadays. This excessive amount requires
automatic methods of video processing and analysis, among
which human action recognition is a fundamental part for ap-
plications such as event detection, video indexing, human in-
terface, video description, etc. Though remarkable improve-
ments have been made, action recognition still remains chal-
lenging due to camera motions, view point changing, large
intra-class variations, etc.

The Bag of Visual Words (BoVW) [1] is a popular frame-
work which generates good representation for action recogni-
tion. Leveraging BoVW, researchers mainly explore discrim-
inative representation along two approaches: Sophisticated
hand-crafted local features and elaborately designed encod-
ing methods. As for local feature, early efforts include lo-
cal spatio-temporal features [2] and Spatio Temporal Inter-
est Points (STIP) [3]. Later, Dense Trajectory Feature (DTF)

∗The corresponding author

(a) (b)

Fig. 1: An illustration of our motivation. (a) three similar
action categories from HMDB51 all related with sword-like
weapons. (b) features are more distinctive when projected to
different subspaces of appearance and motion.

[4], outperforms the STIP. DTF densely samples trajectory-
aligned cuboids at regular positions in space and time, then
extracts traditional HOG [5], HOF [6] and MBH [7] features.
For coding methods, LLC [8] based methods and Fisher Ker-
nel [9] methods have been successful. An efficient super vec-
tor based method called VLAD [10] also achieves promising
results.

The BoVW pipeline usually contains five steps: local fea-
ture extraction, codebook generation, feature encoding, pool-
ing and classification. At the coding stage, each descriptor
generates responses on its related codewords. Then pool-
ing accumulates responses of similar features into one value.
However, due to the multi-view property of local descriptor,
features located at the same codeword are not necessarily sim-
ilar. One codeword’s neighboring features may share different
affinities with it if projected to different subspaces. This prop-
erty accords with descriptors applied for action recognition,
e.g., the dense trajectory descriptor includes both appearance
and motion characteristics. More explanation is illustrated
in Figure 1. Figure 1(a) shows “draw sword”, “sword” and
“fencing” from the HMDB51 dataset. They are similar in
that people all act with sword-like weapons. But in partic-
ular, “fencing” is characteristic in appearance compared with
“sword”, and “draw sword” is distinguishable in action com-
pared with “sword”, as illustrated in Figure 1(b). To utilize



the multi-view property of action descriptors, features from
the same view should be pooled together. To this end, we
use a codeword net to separate the feature space into local re-
gions. Accordingly, features located in different local regions
are pooled separately. We call such a process “multi-view
pooling”. One critical step of multi-view pooling is construct-
ing the codeword net. We propose a data-driven approach to
construct the codeword net. The details will be discussed in
Section 2.

Multi-view pooling can be embedded into different en-
coding methods. In particular, we embed it with two repre-
sentative coding strategies: LLC [11] and FK [9]. We choose
them because LLC is fast and FK is the state-of-the-art cod-
ing method. Our approach is evaluated on two challenging
datasets: UCF50 and HMDB51 with 50 and 51 action classes
respectively. Experimental results demonstrate that our ap-
proach obtains superior recognition performance over current
coding methods.

2. OUR METHOD

To utilize the multi-view property in the BoVW framework,
two main stages, namely “Codeword net construction” and
“Multi-view pooling”, are embedded into the traditional
BoVW framework. Details will be respectively discussed
in Section 2.1 and Section 2.2.

2.1. Construction of codeword net

Let A ∈ RM×M be the adjacency matrix used to represent
the codeword net, where M is the number of codewords.
A(i, j) = 1 means the ith and the jth codewords are linked
and A(i, j) = 0 otherwise. Our aim is to construct an op-
timal A which best describes local features. Let X be a
set of N features in the D-dimensional feature space, i.e.,
X = [x1, x2, · · · , xN ] ∈ RD×N , and C be a codebook con-
sisting of M codewords, i.e., C = [c1, c2, · · · , cM ] ∈ RD×M .

For each local feature, we use its neighboring codewords
to describe the displacement between this feature and its near-
est codeword. The optimization problem is formulated as:

min
wi

‖ri −Zwi‖22 + λ

K∑
k=2

(wi,k̃di,k̃)
2 (1)

s.t. ‖wi‖1 = 1 (2)

where
ri = xi − ci∗

Z = [z2, z3, · · · , zK ], zk = ck̃ − ci∗

di,k̃ = ‖ri − zk‖2 = ‖xi − ck̃‖2,

where ri denotes the displacement between xi and its nearest
codeword ci∗ . k̃ is the index of the kth closest codeword of

xi. The constraint term
K∑

k=2

(wi,k̃di,k̃)
2 indicates that the re-

construction tends to choose the codewords with small di,k̃,
i.e., the nearby codewords of xi. This is called “local” con-
straint and demonstrated to be useful to enhance the robust-
ness of reconstruction [12, 11]. Thus, the optimization result,
i.e., wi, reflects a set of robust codeword links used to solve
ri.

The optimization problem described in Eqn. (1)∼(2) has
an analytical solution:

wi = [(Z − ri1T )T (Z − ri1T ) + λdiag2(di)]
−11. (3)

After obtaining the coefficient matrix w, the adjacency
matrix A is solved in an iterative manner. A is firstly set as a
zero matrix, i.e., no codewords are linked. Then, it is updated
after we solve a reconstruction problem for xi. This process
is iterated N times, and each iteration is formulated as:

A(i∗, Ik) =
{

1, if wi,k ≥ T
unchanged, otherwise

, (4)

I = [I2, I3, · · · , IK ], Ik = 1, 2, · · · ,M

where i∗ denotes the index of the closest codeword of xi. I
is the index of the K − 1 nearest codewords. T is a thresh-
old parameter, which controls the final number of links per
codeword.

Since enumerating each local feature to solve Eqn.(1)∼(2)
is time-consuming, we solve it with respect to codewords. For
each codeword ci, we find all the local features whose nearest
codeword is ci, thus we can optimize the reconstruction pro-
cedure in batches. The algorithm for constructing codeword
net can be summarized as follows:

Algorithm 1 Codeword Net Construction

Input: codebook: C = [c1, c2, · · · , cM ] ∈ RD×M ; a set of
features: X = [x1, x2, · · · , xN ] ∈ RD×N

Output: optimal adjacency matrix: A
1: initial A = 0M,M ;
2: for each codeword ci do
3: find the local feature set Fi whose nearest codewords

are ci;
4: compute the coefficient matrix Wi using Fi via

Eqn.(3);
5: update A via Eqn.(4);
6: end for

2.2. Multi-view pooling (MVP)

In this subsection, we explain how to perform MVP with the
learned codeword net. Figure 2 depicts the difference between
traditional pooling and MVP. Figure 2(a) shows a toy exam-
ple of traditional pooling in a 2-D feature space. c1 ∼ c5



(a) (b) (c)

Fig. 2: An illustration of the proposed MVP.

are five codewords, and x1 ∼ x6 are six features around c1.
In traditional codeword-oriented pooling, these features will
be assigned to c1, i.e., all coding responses will be pooled to
one value. Figure 2(b) shows the codeword net resolved by
Eqn.(1)∼(2). Figure 2(c) illustrates the subarea related with
features assigned to c1, which is further divided by the code-
word links into four local regions. Features assigned to each
local regions are pooled separately. We take MAX pooling as
an example to formulate this process. After applying MVP,
the response on the region q of cp is:

rp,q = max
i
{vi,p}, (5)

i ∈ {argmax
j∈R(p)

Vcpxi
· Vcpcq

‖Vcpxi‖‖Vcpcq‖
= q} (6)

where cp is an active codeword of xi, vi,p is the coding value
of xi on cp,R(p) is the set that contains all codewords linking
with cp in the codeword net, and Vxy denotes the vector from
x to y.

3. EXPERIMENT

In this section, we evaluate our approach on two challenging
datasets, i.e., UCF50 [13] and HMDB51 [14]. Datasets and
settings will be detailed in Section 3.1. Experimental results
will be shown and analyzed in Section 3.2.

3.1. Datasets and settings

UCF50 [13] is an action recognition dataset with 50 action
categories, consisting of 6681 realistic videos from YouTube.
HMDB51 [14] is an action recognition dataset with 51 ac-
tion categories, consisting of 6766 manually annotated clips
from movies and YouTube. It is more challenging due to large
inter-class ambiguity and intra-class diversity. Examples of
some categories of the two datasets are shown in Figure 3.

We conduct three experiments on the two datasets. De-
tails of the three experiments are as follows: (i) MVP with
different codebook sizes on UCF50. (ii) MVP with different
codebook sizes on HMDB51. (iii) MVP with different aver-
age linking number per codeword on UCF50. In the first and

the second experiment, for a consistent comparision, we tune
the threshold T in Eqn.(1) to assure that the average linking
number per codeword is two. In the third experiment, we fix
the codebook size to 400 and test the accuracy with different
average linking numbers per codeword of 2,4,8 and 16.

For UCF50, We follow the recommended evaluation pro-
tocols of Leave One Group Out cross validation (LOGO) and
report the average accuracy. For HMDB51, We follow the
experimental settings in [14] with three train/test splits pro-
vided, and report the mean average accuracy over three splits.
For both datasets, we use Wang’s code [15] to extract HOG,
HOF and MBH features along the improved dense trajecto-
ries. Linear SVM is implemented with LIBSVM [16] and the
one-vs-rest strategy is used for multi-class classification.

3.2. Experimental results

EXPERIMENT I: Results of LLC and LLC+MVP with dif-
ferent codebook sizes on UCF50 are shown in Table 1. The
experimental results show that LLC+MVP obtains a signifi-
cant improvement on LLC itself. It is reasonable to expect
that Multi-view Pooling can also work well with other sparse
coding based methods. However, one can also observe that
the improvement becomes a little slighter with the codebook
size becoming larger. We believe that this is mainly due to the
over-fitting effect, i.e., with a larger codebook size, pooling
views of each codeword would be overlapped to some extent.

Table 1: Results of LLC and LLC+MVP with different code-
book sizes on UCF50.

Codebook size LLC LLC+MVP
400 64.03% 71.37%
800 72.47% 78.25%

1,600 78.09% 82.68%
3,200 81.71% 85.77%
6,400 83.86% 87.19%

EXPERIMENT II: Results of LLC and LLC+MVP with dif-
ferent codebook sizes on HMDB51 are shown in Table 2.



Fig. 3: Samples from two datasets. The top row is UCF50 and the bottom row is HMDB51.

The experimental results show that on a much more challenge
dataset, LLC+MVP also obtains significant improvement on
LLC itself.

Table 2: Results of LLC and LLC+MVP of different code-
book sizes on HMDB51.

Codebook size LLC LLC+MVP
1,000 35.42% 41.87%
2,000 41.22% 45.90%
4,000 44.42% 48.76%
8,000 47.63% 49.95%

EXPERIMENT III: Results of LLC+MVP with different av-
erage linking numbers are shown in Tabel 3. The results show
that accuracy can be improved by separating more views for
each codeword. We believe that this is mainly due to the high
dimensional representation of action descriptors, leading to
multiple views of each codeword.

Table 3: Results of LLC+MVP of different average linking
numbers on UCF50.

Linking
number 2 4 8 16

accuracy 71.37% 73.33% 77.20% 78.60%

4. CONCLUSION

In this paper, we have analyzed the multi-view property of
local descriptors in action recognition. To make it more com-
patible with the current Bag of Visual Words (BoVW) frame-
work, we have proposed multi-view pooling (MVP), which
accumulates responses of features from the same view. A
codeword net is constructed to guide the process of MVP by

exploiting the relations between features and codewords. We
have applied our algorithm in action recognition on two stan-
dard datasets of UCF50 and HMDB51. Results show that the
proposed method improves the state-of-the-art algorithms.

5. ACKNOWLEDGMENTS

This work is jointly supported by National Basic Research
Program of China (2012CB316300), and National Natu-
ral Science Foundation of China (61175003, 61202328,
61420106015, U1435221).

6. REFERENCES

[1] G. Csurka, C. Dance, L.X. Fan, J. Willamowski, and
C. Bray, “Visual categorization with bags of keypoints,”
in European Conference on Computer Vision (ECCV),
2004.

[2] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie, “Be-
havior recognition via sparse spatio-temporal features,”
in Visual Surveillance and Performance Evaluation of
Tracking and Surveillance, 2005. 2nd Joint IEEE Inter-
national Workshop on.

[3] I. Laptev, “On space-time interest points,” International
Journal of Computer Vision, vol. 64, no. 2-3, pp. 107–
123, 2005.

[4] H. Wang, A. Klaser, C. Schmid, and C.L. Liu, “Action
recognition by dense trajectories,” in Computer Vision
and Pattern Recognition (CVPR), 2011.

[5] N. Dalal and B. Triggs, “Histograms of oriented gra-
dients for human detection,” in Computer Vision and
Pattern Recognition (CVPR), 2005.



[6] N. Dalal, B. Triggs, and C. Schmid, “Human detec-
tion using oriented histograms of flow and appearance,”
in European Conference on Computer Vision (ECCV),
2006.

[7] I. Laptev, M. Marszalek, C. Schmid, and B. Rozen-
feld, “Learning realistic human actions from movies,”
in Computer Vision and Pattern Recognition (CVPR),
2008.

[8] J.C. Yang, K. Yu, Y.H. Gong, and T. Huang, “Linear
spatial pyramid matching using sparse coding for image
classification,” in Computer Vision and Pattern Recog-
nition (CVPR), 2009.

[9] F. Perronnin and C. Dance, “Fisher kernels on visual
vocabularies for image categorization,” in Computer Vi-
sion and Pattern Recognition (CVPR), 2007.

[10] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez,
and C. Schmid, “Aggregating local image descriptors
into compact codes,” Pattern Analysis and Machine In-
telligence,, vol. 34, no. 9, pp. 1704–1716, 2012.

[11] J.J. Wang, J.C. Yang, K. Yu, F.J. Lv, T. Huang, and Y.H.
Gong, “Locality-constrained linear coding for image
classification,” in Computer Vision and Pattern Recog-
nition (CVPR), 2010.

[12] K. Yu, T. Zhang, and Y.H. Gong, “Nonlinear learning
using local coordinate coding,” in Advances in Neural
Information Processing Systems (NIPS), 2009.

[13] K.K. Reddy and M. Shah, “Recognizing 50 human ac-
tion categories of web videos,” Machine Vision and Ap-
plications, vol. 24, no. 5, pp. 971–981, 2013.

[14] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and
T. Serre, “Hmdb: a large video database for human mo-
tion recognition,” in International Conference on Com-
puter Vision (ICCV), 2011.

[15] H. Wang and C. Schmid, “Action recognition with im-
proved trajectories,” in International Conference on
Computer Vision (ICCV), 2013.

[16] C.C. Chang and C.J. Lin, “Libsvm: a library for sup-
port vector machines,” ACM Transactions on Intelligent
Systems and Technology (TIST),, vol. 2, no. 3, pp. 27,
2011.


