
Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Point correspondence by a new third order graph matching algorithm

Xu Yanga, Hong Qiaoa,b,c, Zhi-Yong Liua,b,c,⁎

a State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
b Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
c University of Chinese Academy of Sciences, Beijing 100049, China

A R T I C L E I N F O

Keywords:
Graph matching
Point correspondence
High order constraints
Adjacency tensor

A B S T R A C T

The correspondence between point sets is a fundamental problem in pattern recognition, which is often
formulated and solved by graph matching. In this paper, we propose to solve the correspondence problem by a
new third order graph matching algorithm. Compared with some previous hyper-graph matching algorithms,
the proposed one achieves considerable memory reduction and is applicable to both undirected and directed
graphs. Specifically, the correspondence is formulated by the matching between adjacency tensors encoding the
third order structural information of each graph, which is then transformed to be a tractable matrix form. Two
types of gradient based optimization methods, the graduated nonconvexity and concavity procedure (GNCCP)
and graduated assignment (GA) algorithm, are generalized to solve the problem. Comparative experiments with
state-of-the-art algorithms on both synthetic and real data witness the effectiveness of the proposed method.

1. Introduction

Graph matching, aiming to find the optimal correspondence
between vertices of two graphs, is a fundamental problem in theoretical
computer science, and it also plays an important role in artificial
intelligence. Particularly, Graph matching can be directly applied to
point correspondence which further lays the foundations for many
pattern recognition applications such as object detection [1], classifica-
tion [17] and visual tracking [31]. The correspondence between two
point sets can be well defined by graph matching, by representing the
points with graph vertices and encoding the point relations with graph
edges. Note that although we mainly focus on the point correspondence
problem in this paper, graph matching has more general implications.
For instance, it was shown that the graph matching algorithm can be
generalized to solve the maximum a posteriori (MAP) of Markov
Random Field [20,6].

The graph matching methods can be categorized according to the
constraint order. The first order constraints care only the differences
between vertices without considering the edges. This problem is in
nature a bipartite graph matching problem, which can be formulated as
a linear programming problem and efficiently solved by for example the
Hungarian algorithm [16] or the Volgenant-Jonker algorithm [13] in
polynomial time. However, the first order method may suffer from the
point descriptor ambiguities such as repeated textures [26]. The second
order constraints can overcome this drawback, which preserve the
geometric relations between points by minimizing the edge dissim-

ilarity. The basic idea is, taking the distance constraint for example, if
two points in the first set are close to each other, their corresponding
points in the second set should also be kept close. The problem is often
formulated as the minimization/maximization of a quadratic term.
Since it is an NP-hard combinatorial optimization problem, many
algorithms have been proposed to approximately solve it. However, the
second order constraints still suffer from geometric transformations
such as scale changes and rotations.

Recently, several researchers [36,8,4,22,18,26] have proposed to
tackle the above problem using high order constraints. Most of the
existing high order methods typically extend the spectral decomposi-
tion algorithm [19] to seek the rank-one-approximation of a large
affinity tensor associated with the association hyper-graph of the input
hyper-graphs. These methods have a solid theoretical foundation based
on the tensor decomposition techniques [15] and exhibit superior
matching performance. However, one main obstacle of these methods
is the huge memory expense caused by the large affinity tensor, with
the storage complexity as high as N()6 in the worst case [4]. Besides,
the affinity tensor is required to be super-symmetric, which implies
that the methods [8,4,18,26,22] are only applicable to undirected
hyper-graphs. On the other hand, the third order constraints, which
target at minimizing the discrepancy between the corresponding
triplets, may be enough to deal with some typical limitations encoun-
tered by the second order constraints, because diverse descriptors
could be defined over the triplets, and they are often inherently
invariant to geometric transformations such as affine transformation

http://dx.doi.org/10.1016/j.patcog.2016.12.006
Received 17 June 2015; Received in revised form 9 December 2016; Accepted 10 December 2016

⁎ Corresponding author.
E-mail addresses: xu.yang@ia.ac.cn (X. Yang), hong.qiao@ia.ac.cn (H. Qiao), zhiyong.liu@ia.ac.cn (Z.-Y. Liu).

Pattern Recognition 65 (2017) 108–118

Available online 13 December 2016
0031-3203/ © 2016 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/00313203
http://www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2016.12.006
http://dx.doi.org/10.1016/j.patcog.2016.12.006
http://dx.doi.org/10.1016/j.patcog.2016.12.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2016.12.006&domain=pdf

and reflection transformation, as illustrated in Fig. 1.
In this paper, aiming at the memory expense reduction, we propose

a new third order graph matching method based on adjacency tensor
instead of affinity tensor. Consequently, the proposed method enjoys
an N()3 storage complexity in the worst case, and furthermore, it can
be applied to both undirected hyper-graphs and directed hyper-graphs.
The major novelty of this paper is formulating the third order graph
matching by an adjacency tensor matching problem and further
transforming it to be a tractable matrix form. Meanwhile, different
from the previous spectral decomposition, the problem is approxi-
mately solved by the gradient based optimization methods.

Next after a brief survey on related works, the algorithm is
proposed in Section 2 and discussed in Section 3. The experimental
results are given in Section 4. Finally, Section 5 concludes the paper.

1.1. Related works

Establishing correspondence between point sets has long been a
fundamental problem in pattern recognition. Since earlier works [28]
exploring the first order similarity may fail in the presence of local
appearance ambiguities, most recent methods try to efficiently incor-
porate the structural information by exploring the pairwise consis-
tency, and several more recent methods consider high order con-
straints for the complementary structural information beyond second
order relations.

Since graph matching using pairwise constraints is an NP-hard
problem, some approximations are necessary for efficiency reasons [3].
Some approximate algorithms are based on bipartite graph matching
[27,29], which typically approximates pairwise graph matching by the
linear assignment problem with efficient solutions. An important group
of approximate methods are known to be error-correcting or error-
tolerant by assigning a cost (e.g. graph edit cost) to each type of error
[2]. Another important group of approximate methods are based on
spectral decomposition. Umeyama's algorithm [33] is regarded as the
first spectral method. Leordeanu and Hebert [19] reformulated the
objective function by affinity matrix and aimed for its optimal rank-one
approximation by spectral decomposition. Some other algorithms
[7,21,5] further extended [19] with considerable improvements. By
gradually pushing the relaxed continuous result to be a discrete one,
the GA algorithm [11] was integrated by some other relaxation
algorithms [9,32] to get the matching result. A recently proposed
group of algorithms are based on the convex and concave relaxation

procedure pioneered by [35,25], which is a type of deterministic
annealing method. Zhou and De La Torre [37] generalized it to the
factorized affinity matrix. The recently proposed GNCCP [24] further
simplified it by an implicit construction of the convex and concave
relaxations.

In spite of a novel research direction, graph matching using high
order constraints has gained interest of many researchers. Zass and
Shashua [36] proposed the first hyper-graph matching based on matrix
Kronecker product and interpreted the graph matching problem in a
probabilistic way. Duchenne et al. [8] extended Leordeanu and
Hebert's spectral method [19] to compute the rank-one approximation
of the affinity tensor. Chertok and Keller [4] independently proposed a
high order spectral algorithm similar to [8] which works on the
unfolded affinity tensor. Leordeanu et al. [22] extend their integer
projected fixed point (IPFP) [21] algorithm to hyper-graphs in a semi-
supervised learning framework. Lee et al. [18] incorporated the
matching constraints in each rank-one approximation iteration by
extending their second order random walk method. Park et al. [26] also
focused on the rank-one approximation of the affinity tensor and
proposed an effective way to reduce the redundancy in it. The main
obstacle of the previous high order algorithms is the huge storage
expense, as also pointed out in [26]. In fact, though the third order
constraints could well deal with the drawbacks of the second order
methods, no previous algorithms are dedicated to it to get a specific
storage saving. Besides, most of these algorithms [8,4,22,18,26] are
limited to the undirected graph.

2. Adjacency tensor matching

When using the third order constraints, a graph is also called
hyper-graph defined by a finite vertex set V N= 1, 2,…, and a hyper-
edge set E V V V= × × . Each edge ijk i j k V, , , ∈ is a triplet, and is
assigned with a weight wijk. The graph is either directed or undirected,
where ‘directed’ means the triplets ijk, ikj, jik, jki, kij and kji are
described respectively, while ‘undirected’ means they are considered as
the same triplet. Though the undirected graph could well express many
matching problems, the directed graph generally owns more distinctive
ability [38]. Hereafter, by the term graph we mean such a weighted
hyper-graph. As a generalization of the concept of adjacency matrix,
adjacency tensor G ∈ N N N× × , which is the multidimensional array of
weights, is used to represent a graph , as shown in Fig. 1.

Given two graphs and , the adjacency tensor based matching

Fig. 1. Adjacency tensor matching. (1) Triplet descriptors are often inherently robust to geometric transformations, such as the directed descriptors θ124 and θ413, or
d
d
12
24

and d
d

41
13
. (2)

The correspondence is represent by a permutation matrix X, and each assignment is denoted by i c i= ()H G such as c4 = (1). (3) The adjacency tensor G (H) is the array of hyper-edge

weights, i.e. triplet descriptors. If permutating H with X, the weights in G and H would be correspondingly located. For example, H413 and G124 would locate in the same position. (4) G
(H) is flattened to G (H) by mode-I matricization, with each submatrix denoted as Gi (Hi).

X. Yang et al. Pattern Recognition 65 (2017) 108–118

109

objective is formulated as

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

∑ ∑

F G H

i j

X X X X X

X X X X

min (, ,) = ∥ − × × × ∥ , s. t. ∈ ,

≔ | = 1, = 1, ∈ {0, 1}, ∀ ,

I J K

i

N

ij
j

N

ij ij

0
2

(1)

is the set of permutation matrices, where correspondence between
vertices under the one-to-one assumption is equivalent to finding a
permutation matrix X. X = 1ij means assigning vertex i in to vertex j
in , as shown in Fig. 1. ∥·∥ denotes the tensor norm. ×I , ×J and ×K

denote the tensor multiplications. Please see Appendix A for a brief
introduction about the tensor notations and operations. In Eq. (1), first
H is permutated by X from mode-I J K, , respectively, and the objective
then measures the dissimilarity between G and permutated H with
respect to X. The objective is abbreviated as F X()0 hereafter. Compared
with the previous methods, the storage saving here is mainly attributed
to representing each graph by an adjacency tensor, without needing to
build the large size association hyper-graph represented by the affinity
tensor. In fact, the adjacency tensor bears close relations to the affinity
tensor, which will be discussed in Section 3.1.

On the other hand, though gaining a considerable storage saving,
the tensor decomposition techniques [15] cannot be directly used to
solve Eq. (1). Here we propose to adopt the gradient based optimiza-
tion methods to solve the problem. To make it easy to manipulate and
get the derivative of the objective, by using the matricization or
unfolding technique (See Appendix A for details) we transform the
tensors in Eq. (1) into matrices as follows:

F X G XH I X X I X() = ∥ − (⊗)(⊗)∥ , ∈ ,T T
F1
2 (2)

where ∥·∥F is the Frobenius matrix norm defined as

G G G G∥ ∥ = ∑ ∑ = tr()F i j ij
T2 , G and H are mode-I matricization

forms of G and H, the sign ⊗ denotes the matrix Kronecker product,
and the pre-multiplied X, post-multiplied I X(⊗)T and X I(⊗)T

correspond to the three tensor multiplications ×I , ×J and ×K respec-
tively. Taking advantage of some properties of the Kronecker product
and permutation matrix, Eq. (2) can be simplified as

F X G XH I X X I G XH X X

G XH X X G XH X X
GG XH X X X X H X XH X X G
G X X H X GG XHH X

G X X H X X

() = ∥ − (⊗)(⊗)∥ = ∥ − (⊗)∥

= tr[(− (⊗))(− (⊗))]

= tr[+ (⊗)(⊗) − (⊗)

− (⊗)] = tr() + tr()

− 2tr((⊗)), ∈ .

T T
F

T T
F

T T T T T

T T T T T T T T

T T T T T

T T

2
2 2

(3)

Similar results can be obtained by mode-J or mode-K matricizations.
By the above transformations, F X()2 is actually a relaxation of F X()0 ,
which means that F X()2 and F X()0 are equivalent in the discrete domain
, but generally inequivalent in the continuous domain. Optimizing

F X()2 may slightly degrade the performance compared with directly
optimizing F X()0 , but with a tractable matrix form.

Then to calculate F X∇ ()2 , the gradient T∇ of
T X G X X H X() = tr((⊗))T T in the third term of Eq. (3) is needed.
Though it can be obtained by formula deviation, it is better to expand
X X⊗ as a sum for efficiency reasons as

∑ ∑T X X G XH X() = (tr())
i

N

i

N

ij i j
T T

(4)

where Gi is the ith N N× submatrix in G shown in Fig. 1. Hj has similar
definition. Then the gradient is

∑ ∑ ∑ ∑F X XHH S G XH X G XH

G XH

∇ () = 2 − 2 tr() − 2 (

+)

T

i

N

j

N
ij

i j
T T

i

N

j

N

i
T

j

i j
T

2

(5)

where S ∈ij N N× is the matrix with full of ‘0’s except one ‘1’ locating at

the ith row and jth column.
Next the GNCCP [24] and GA [11], two typical gradient based

optimization frameworks over the set of permutation matrices, are
generalized to minimize F X()2 . Similar to the spectral decomposition
algorithms, the GNCCP and GA also belong to the group of continuous
methods, which typically involve relaxing the discrete problems to be
continuous and then projecting the continuous solutions back to
discrete domains.

Algorithm 1. Adjacency tensor matching Algorithm 1 (ATM1)

Input: Two matricized tensors Gand H
Initialize NX 1= /NN , ζ = 1
repeat

repeat (Begin Frank-Wolfe iterations:)
Compute the search direction Y Xd = −
Compute the step size α
Update αX X= + d
until X converges or maximal iteration number is reached
ζ ζ dζ= −

until ζ < − 1 or X ∈
Output: A permutation matrix X

Specifically, the GNCCP has its root in the path following algorithm
[35,25,37] which first relaxes the discrete domain to its convex hull and
then gradually projects the continuous solution to the discrete domain
following a path, by optimizing a series of linear combination of the
convex relaxation and concave relaxation of the original objective. The
GNCCP realizes the linear combination in a implicit way without
needing to explicitly construct the convex or concave relaxations,
which are task dependent and often difficult to construct. For the
adjacency tensor matching problem, it takes the following form:

⎧⎨⎩

∑ ∑

F
ζ F ζ ζ
ζ F ζ ζ

i j

X X X X
X X X

X

X X X X

min () =
(1 −) () + tr if1 ≥ ≥ 0,
(1 +) () + tr if0 > ≥ −1,

s. t. ∈ ,

≔{ | = 1, = 1, ≥ 0, ∀ , , }

ζ

T

T

i

N

ij
j

N

ij ij

2

2

(6)

where , known as Birkhoff polytope, is the convex hull of . As ζ
decreases from 1 to 0 (graduated nonconvexity) and to −1 (graduated
concavity), the minimum point is finally pushed into which is the
extreme point set of . The GNCCP based optimization is summarized
in Algorithm 1. For each specific ζ, F X()ζ is minimized by the simple yet
effective Frank-Wolfe (FW) algorithm [10,12], also known as condi-
tional gradient method. The gradient F X∇ ()ζ is given as follows:

⎧⎨⎩F
ζ F ζ ζ
ζ F ζ ζ

X X X
X X X∇ () =

(1 −)∇ () + 2 if1 ≥ ≥ 0,
(1 +)∇ () + 2 if0 > ≥ −1, ∈ .ζ

2

2 (7)

Please see Appendix B for some implementation details.
The GA [11,32] is also a continuous method with an annealing

parameter to gradually discretize the softassign matrix. Based on GA,
the adjacency tensor matching is summarized in Algorithm 2. The key
step in each iteration is a softassign procedure incorporating the
mapping constraints, which is realized by Sinkhorn's bistochastic
normalization [30] (repeated row and column normalizations). The
gradient F X∇ ()2 is given in Eq. (5).

Algorithm 2. Adjacency tensor matching Algorithm 2 (ATM2)

Input: Two matricized tensors Gand H
Initialize NX 1= /NN , β β= 0
repeat

repeat
Compute the gradient F X∇ ()2

X. Yang et al. Pattern Recognition 65 (2017) 108–118

110

Update β FX X= exp(∇ ())2

repeat (Begin bistochastic normalization:)

Normalize across rows: X′ =ij
X

X
′

∑ ′
ij

j ij

Normalize across rows: X′ =ij
X

X
′

∑ ′
ij

i ij

until X′ Converges or maximal iteration number is
reached

until X converges or maximal iteration number is reached
β ρβ ρ= , > 1
until β β> max or X ∈

Output: A permutation matrix X

3. Discussions and extensions

3.1. Relations and differences between adjacency tensor and affinity
tensor

In this subsection we intend to discuss the relations and differences
between affinity tensor A based objective and ours. The former
objective usually takes the following form

F x A x x xmax () = ⊗ ⊗ ⊗ ,I J K3 (8)

where A ∈ NN NN NN× × and x ∈ {0, 1}NN is the row-wise vectorized
replicas of X1

A is usually constructed by projecting a dissimilarity tensor D into the
interval [0, 1] by for example A D= exp(−) where

G TD D d= = (,).i j k i N i j N j k N k i j k i j k′, ′, ′ (−1) + ,(−1) + ,(−1) +G H G H G H G G G H H H (9)

Without considering the nonlinear projection effect of exp(·), Eq. (8) is
equivalent to

F x D x x xmin () = ⊗ ⊗ ⊗ .I J K4 (10)

We show below that Eq. (10) is equivalent to Eq. (1) in case

G T G Td(,) = (−) ,i j k i j k i j k i j k
2

G G G H H H G G G H H H (11)

which is a frequently used dissimilarity measure. With the assignment
notation i c i= ()H G shown in Fig. 1, it can be easily checked by
expanding both formulas as

∑ ∑ ∑

∑ ∑ ∑

G H

G H

D x x x d⊗ ⊗ ⊗ = (,)

= (−) ,

I J K
i

N

j

N

k

N

ijk c i c j c k

i

N

j

N

k

N

ijk c i c j c k

() () ()

() () ()
2

(12)

and

∑ ∑ ∑

G H G H

G H

X X X∥ − × × × ∥ = ∥ − { } ∥

= (−) .

I J K c i c j c k
N N N

i

N

j

N

k

N

ijk c i c j c k

2
() () ()

× × 2

() () ()
2

(13)

Therefore, Eq. (1) could be treated as a special case of Eq. (10).
On the other hand, the affinity tensor pre-computes the affinities of

all triplet combinations between graphs and stores them, while the
adjacency tensor only needs to store the triplet descriptors. In general,
the affinity tensor is more flexible on the dissimilarity measure, while
the adjacency tensor enjoys a much smaller storage load, on which a
detailed discussion is given in next subsection.

3.2. Storage complexity analysis

The proposed adjacency tensor matching algorithm involves an
N()3 storage complexity in the worst case, when the graph is

constructed in a complete manner, that is any three different vertices
are connected by a triplet. In this case, the affinity tensor based
algorithms would theoretically involve a storage complexity as high as

N()6 [4].
Fortunately, in practical tasks the affinity tensor could be very

sparse by elaborately designing the graph structure [22,26] or directly
applying sparsification techniques to it [4]. Given the triplet numbers P
and Q respectively in and , the affinity tensor based algorithms
would at least involve a PQ Nmax((), ())2 storage complexity, while
that of the proposed adjacency tensor based algorithm would be

P Q Nmax((), (), ())2 , usually much smaller than the previous one
in real application.2 In the two complexity measures, PQ() is related
to sparse affinity tensor, P() and Q() are related the sparse
adjacency tensors, and N()2 is related to the matrix X ∈ (or vector
x in Eq. (8)) and other intermediate matrices.

3.3. Multigraph situation, the first and second order constraints

It is straightforward to extend the proposed method to multigraph,
in which each hyper-edge is assigned with more than one types of
triplet descriptors. It is realized by the convex combination of the
objectives for all types of descriptors as

∑ ∑F λ G H λX X X X() = ∥ − × × × ∥ , = 1.
i

i
i i

I J K
i

i5
2

(14)

and the gradient is modified accordingly.
It is also convenient to include the first and second order

constraints in the proposed objective as

F μ F μ A A A A

μ μ

X X X X X X

C X

() = () + tr((−) (−))

+ (1 − −)tr()
G H

T
G H

T

6 1 2 2

1 2 (15)

A A, ∈G H
N N× are the adjacency matrices storing pairwise descriptors

for graphs and respectively [25,35], and C in the unary term is a
cost matrix with cij denoting the difference between appearance
descriptors of i in and j in .

The proposed optimization algorithms can be directly applied to
F X()6 where the gradient is given as

F μ F μ A A A A A A

μ μ

X X X X X X

C

∇ () = ∇ () + 2 (− − +)

+ (1 − −) .
G G

T
H
T

G H H6 1 2 2
2 2

1 2 (16)

4. Simulations

In this section, we evaluate the proposed algorithms by comparing
them with some state-of-the-art algorithms in both synthetic point
matching and real image matching, and also validate their applicability
on the directed graph. Though incorporating the first and second order
constraints may improve matching performance, they are not included
in the following experiments because we want to focus on the
comparison of high order algorithms.

The algorithms included for comparison are: probabilistic hyper-
graph matching (PHM) [36], tensor matching (TM) [8], efficient high-
order matching (EHM) [4], integer projected fixed point method for
third-order graph matching (IPFP-3D) [22], reweighted random walks
for hyper-graph matching (RRWHM) [18]. The algorithms PHM, TM,

1 Following the definition of ⊗M in Appendix A, it should be
F x A x x x() = ⊗ ⊗ ⊗I

T
J

T
K

T3 . However, given x is a vector, the transpose symbol is
usually omitted [15].

2 Please see Appendix C for the comparison between P Q Nmax((), (), ())2 and
PQ Nmax((), ())2 . The key point of the comparison is that to guarantee every vertex

being associated with at least one triplet, the triplet number P and Qmust increase super-
linear, or at least linearly, with respect to N.

X. Yang et al. Pattern Recognition 65 (2017) 108–118

111

RRWM, and IPFP-3D are implemented by public codes,3 and EHM is
implemented by ourselves. Some default parameters for the proposed
algorithms ATM1 and ATM2 are dζ = 0.001, β = 0.5, ρ = 1.075 and
β = 20max .

Both matching error and matching accuracy are used as compar-
ison criterions, where matching error refers to the objective value
calculated by Eq. (1) or Eq. (10). In the matching error comparison,
the affinity tensor and adjacency tensor are constructed in an equiva-
lent way based on the same triplet dissimilarity measure Eq. (11). In
the matching accuracy comparison, to avoid any underestimate of the
affinity tensor based algorithms, the affinity tensor is also constructed
following the way in each paper [36,8,4,18,22], which typically involves
the exponential scaling operator exp(·) in computing the triplet
dissimilarity. Accordingly, the related algorithms are denoted by
appending “-E”, e.g. PHM-E.

4.1. Synthetic point matching

The synthetic points are generated following a similar way as in
[5,8]. The first point set of size N is randomly and uniformly sampled in
2D-plane, and then it is permutated by a randomly generated
permutation matrix and disturbed by Gaussian noise σ(0,)2 to get
the second point set. The undirected triplet descriptor is defined by

G
d d

d
d d

d
d d

d
= 1

6
(

+
+

+
+

+
),ijk

ij ik

jk

ij jk

ik

ik jk

ij

1

(17)

where dij denotes the distance between vertices i and j. The graph
structure is either full connection or sparse connection where the
triplet density for the latter one is fixed as 0.1.

The performance is compared with respect to σ and N. In the full
connection situation, σ is increased from 0 to 0.1 by a step size 0.01,
and N is increased from 10 to 40 by a step size 3. However, for the
affinity tensor based algorithms our RAM capacity (2 GB) could at most
afford the matching of 16 points, so the comparison is further carried
out as N is increased from 10 to 16 by a step size 1. In the sparse
connection situation, σ is increased from 0 to 0.2 by a step size 0.02.
The noise also disturbs the sparse graph structure following a similar
way as in [35], by randomly adding and removing σ Tri#1

2 triplets to
each sparse graph, where Tri# denotes the number of triplets. N is still
increased from 10 to 40 by a step size 3, while for the affinity tensor
based algorithms N is increased to at most 34.

The results are depicted in Fig. 2. It can be observed that when
using the same triplet dissimilarity Eq. (11), the proposed method
ATM1 outperforms the affinity tensor based algorithms from both the
matching accuracy and matching error aspects. By introducing the
nonlinear scaling operator exp (·), significant matching accuracy im-
provements for all the affinity tensor based algorithms are obtained,
which may be attributed to the better discriminative ability of such a
nonlinear transformation than using only the least-square measure Eq.
(11). In this case, ATM1 and IPFP-3D-E achieve comparable perfor-
mance, and respectively outperform ATM2 and other affinity tensor
based algorithms. Their superiorities may be due to the soft projection
strategy in their optimization processes.

The running time is compared in Fig. 3, in which the growth rates
indicate the computational complexity. we can observe that the
running times of both ATM1 and ATM2 grow slower than the other
five competitors. Specifically, in the full connection situation, the
growth rates are generally 3.8 ± 0.5 for ATM1 and ATM2, and
6.1 ± 0.5 for PHM, TM, EHM, IPFP-3D and RRWHM, while in the
sparse connection situation, the growth rates are respectively 3.5 ± 0.5
and 5.7 ± 0.5.

4.2. Real image matching

The real image matching experiment is first carried out on the
House sequence.4 The dataset contains 111 frames sampled from a 3D-
rotating House video clip, and a larger frame number separation
implies in general a more difficult matching task. Each frame is
manually labeled with 30 points as in [37]. Besides Eq. (17), a second
undirected triplet descriptor is defined as follows:

G sin i sin j sin k= 1
3

((∠) + (∠) + (∠)).ijk
2

(18)

Either type of descriptors are normalized by a global constant to make
them range from 0 to 1, and the descriptor weights are set to be equal,
i.e. λ λ= = 0.51 2 . The graph structure is constructed by Delaunay
triangulation as in [22,37]. In Fig. 4, the matching accuracy and
matching error are respectively compared with respect to frame
number separation, which witnesses some algorithms, including
ATM1, achieve perfect matching performance even when the frame
number separation is 100. Two typical House matching samples are
also provided in Fig. 4.

The comparisons are also carried out on a benchmark matching
dataset of real-world images [21], which contains 20 pairs ofMotorbike
images and 30 pairs of Car images taken from Pascal 2007 Challenge.
These images are labeled with 15 ∼ 52 ground truth assignments. The
descriptor and graph structure settings are the same with House
matching. The average matching accuracy and matching error are
summarized in Table 1, which witness the state-of-the-art performance
of ATM1. Besides, the inconsistency between matching accuracy and
matching error is observed. For instance, in Motorbike matching TM
achieves lower matching error than EHM, while its matching accuracy
is unexpectedly lower than the latter one. Besides the influence of
massive local optimum points, another possible reason for the incon-
sistency is that the manually labeled ground truth assignments do not
always correspond to the lowest matching error. Some matching
samples obtained by the proposed algorithms are shown in Fig. 5.

4.3. Directed graph matching

It has been observed that the directed graph owns more invariance
against geometric transformations in the second order graph matching
[34,38]. We next show that a similar conclusion could be drawn for the
third order graph matching. Since TM, EHM, IPFP-3D and RRWHM
are inapplicable to the directed graph, only PHM, ATM1 and ATM2 are
applied to the directed graph. A handwritten Chinese character dataset
is used, which contains four characters with each one consisting of 10
samples [23], as illustrated in Fig. 6. For each character, we manually
label 28, 23, 28, 23 ground truth points respectively and build the

graph structure roughly according to the character skeletons. G =ijk
d
d

1′ ij

jk

and G j= sin(∠)ijk
2′ are utilized as the directed descriptors, and the

undirected descriptors are the same with the above experiment. The
descriptor weights are λ λ= = 0.51 2 . All the 4 × C10

2 possible matching
pairs are tested on, and the results are given in Table 2 and 3, with
some typical matching samples shown in Fig. 7. Despite the same
algorithms, ATM1 and ATM2 in general both achieve considerable
performance improvements by the directed graph, compared with the
undirected graph.

5. Conclusions

A novel graph matching method using the third order constraints is
proposed to tackle point correspondence problem. Compared with
previous hyper-graph matching algorithms, it achieves considerable
memory expense reduction and is applicable to both undirected and

3 Codes for PHM and RRWHM are available at cv.snu.ac.kr/research/∼RRWHM/.
Codes for TM are available at www.cs.cmu.edu/olivierd/. Codes for IPFP-3D are kindly
provided by Prof. Leordeanu (leordeanu@gmail.com), the first author of [22]. 4 Available at http://vasc.ri.cmu.edu//idb/html/motion/house/index.html.

X. Yang et al. Pattern Recognition 65 (2017) 108–118

112

Fig. 2. Synthetic point matching results. The matching accuracy and matching error are compared with respect to noise level and problem scale. The upper two rows and the lower two
rows respectively correspond to full and sparse connection situations.

X. Yang et al. Pattern Recognition 65 (2017) 108–118

113

Fig. 3. Running time comparison results. The left plot and right plot respectively correspond to full and sparse connection situations.

Fig. 4. House matching results. In the upper row, the matching accuracy and matching error are respectively compared with respect frame number separation. Typical House matching
samples are in the lower row, where green/red lines denote correct/wrong assignments, and yellow lines denote graph structures. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article).

Table 1
Average matching accuracy and matching error in Motorbike and Car matching.

Motorbike PHM TM EHM IPFP-3D RRWHM ATM1
0.439 0.799 0.812 0.954 0.956 1.000
436.32 200.06 183.63 11.03 26.06 0.97
PHM-E TM-E EHM-E IPFP-3D-E RRWHM-E ATM2
0.508 0.964 0.899 1.000 0.979 0.965
– – – – – 16.83

Car PHM TM EHM IPFP-3D RRWHM ATM1
0.411 0.732 0.716 0.959 0.960 1.000
548.64 292.50 307.74 17.39 22.37 1.31
PHM-E TM-E EHM-E IPFP-3D-E RRWHM-E ATM2
0.424 0.950 0.894 1.000 1.000 0.973
– – – – – 18.51

Fig. 5. Typical Motorbike matching and Car matching samples. Green/red lines denote
correct/wrong assignments, and yellow lines denote graph structures. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of
this article).

X. Yang et al. Pattern Recognition 65 (2017) 108–118

114

directed graphs. Different from the affinity tensor based algorithms, the
problem is formulated by matching two adjacency tensors and solved
by two gradient based optimization algorithms. The effectiveness of the
proposed scheme is verified by experiments on both synthetic and real
data.

Acknowledgement

The authors would like to thank the associate editor and anon-
ymous reviewers whose comments have greatly improved the manu-
script. This work is supported partly by the National Key Research and

Fig. 6. The handwritten Chinese character dataset.

Table 2
Average matching accuracy and matching error in handwritten Chinese character matching: on undirected graph.

C1 PHM TM EHM IPFP-3D RRWHM ATM1
0.445 0.735 0.736 0.835 0.725 0.845
323.44 77.74 71.07 16.13 64.15 15.85
PHM-E TM-E EHM-E IPFP-3D-E RRWHM-E ATM2
0.451 0.837 0.767 0.841 0.805 0.713
– – – – – 81.74

C2 PHM TM EHM IPFP-3D RRWHM ATM1
0.460 0.762 0.746 0.852 0.732 0.893
239.34 64.17 104.94 18.83 64.91 7.99
PHM-E TM-E EHM-E IPFP-3D-E RRWHM-E ATM2
0.473 0.889 0.775 0.883 0.851 0.714
– – – – – 68.69

C3 PHM TM EHM IPFP-3D RRWHM ATM1
0.531 0.876 0.834 0.960 0.841 0.949
460.12 153.62 157.27 21.09 158.32 25.31
PHM-E TM-E EHM-E IPFP-3D-E RRWHM-E ATM2
0.564 0.954 0.879 0.961 0.864 0.852
– – – – – 158.24

C4 PHM TM EHM IPFP-3D RRWHM ATM1
0.621 0.788 0.803 0.988 0.877 0.999
252.33 141.84 138.63 2.47 32.15 1.61
PHM-E TM-E EHM-E IPFP-3D-E RRWHM-E ATM2
0.640 0.992 0.889 0.996 0.946 0.900
– – – – – 21.52

Table 3
Average matching accuracy and matching error in handwritten Chinese character matching: on directed graph.

PHM PHM-E ATM1 ATM2

C1 0.519 0.544 0.959 0.929
174.89 – 9.90 10.85

C2 0.657 0.745 0.915 0.909
121.80 – 4.63 5.69

C3 0.663 0.682 0.992 0.907
199.05 – 4.81 18.98

C4 0.814 0.821 0.998 0.956
88.23 – 1.42 1.96

Fig. 7. Typical handwritten Chinese character matching results. Green/red lines denote correct/wrong assignments, and yellow lines denote graph structures. Appending “-U”/“-D”
means undirected/directed graph matching. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

X. Yang et al. Pattern Recognition 65 (2017) 108–118

115

Development Plan of China (Grant 2016YFC0300801), partly by the
National Natural Science Foundation (NSFC) of China (Grants
61503383, 61633009, 61375005, U1613213, 61303174, 61210009,

and 61305137), and partly by the Strategic Priority Research Program
of the Chinese Academy of Sciences (Grant XDB02080003).

Appendix A. Tensor notations and operations used in the paper

We adopt similar notations as in [14,15]. A tensor is an M-dimensional array or formally defined as the tensor product of M vector spaces. The
number of tensor modes (dimensions) is called order. The first and second order tensors are called vector and matrix. In this paper we focus on the
third order tensor abbreviated as tensor hereafter, of which an example is given in Fig. 1 in the main manuscript.

Notations: given mode (dimension)-I J K, , , an item in a tensor T ∈ I J K× × is denoted by Tijk. A colon is used to indicate all the items in one
mode. For example, Tjk: is a vector and T k:: is a matrix. The mode-M M I J K, = { , , } fiber is a generalized concept of row (column) in matrix, which is
defined by fixing all the mode coordinates but mode-M. For example, Tjk: denotes a mode-I fiber.

Operations: Matricization is the process that reshapes a tensor into a matrix. We focus on the mode-M matricization which rearranges the
mode-M fibers to be the columns of a matrix. Instead of formal definition, we give the following example to illustrate the concept. Let a tensor

T ∈ 2×2×2 be T T= [], = []:: 1
1
2

3
4 :: 2

5
6

7
8 , and then the mode-I matricization of T is M = []I

1
2

3
4

5
6

7
8 . Similarly, M = []J

1
3

2
4

5
7

6
8 , M = []K

1
5

2
6

3
7

4
8
.

Tensor norm∥·∥ is defined by T T∥ ∥ = ∑ ∑ ∑i j k ijk
2 . Tensor multiplication, or say the mode-M product of a tensor T and a matrix U, is denoted by

T U⊗M and defined by pre-multiplying each mode-M fiber with U. It can be explained with the help of the tensor matricization as

B A U UB A= × ⇔ =M M M (A.1)

where AM and BM are the mode-M matricization forms of tensors A and B respectively.

Appendix B. Some implementation details

In each iteration, once known the gradient F∇ ζ , the main operation is to find the optimal descent direction Y Xd = − with
FY Y X Y≔argmin〈 , ∇ ()〉, ∈ζ where 〈·〉 denotes matrix Frobenius inner product. The linear programming problem can be efficiently solved by

the Hungarian algorithm [16]. The step size α can be determined by inexact line search, e.g. backtracking method, or directly by the iteration serial
number l, e.g. α =

l
2
+ 2 . The termination criterion can be constructed as F ε F Fif Y X X X Y X X〈 − , −∇ ()〉 < | () − 〈 − , −∇ ()〉|ζ ζ ζ , or the maximal

iteration number L is reached, then terminate, where ε is a small number.

Appendix C. Comparison between P Q Nmax((), (), ())2 and PQ Nmax((), ())2

On sparse hyper-graphs, the proposed algorithm involves a S P Q N= max((), (), ())adj
2 storage complexity5 given the vertex number N and

triplet numbers P and Q of two hyper-graphs. It is still smaller, at least not greater than the storage complexity S PQ N= max((), ())aff
2 of affinity

tensor based algorithms, i.e. S S≤adj aff .
The comparison between Sadj and Saff mainly depends on the increase rate of triplet number P(N) (Q(N)) w.r.t. vertex number N. Supposing

P N Q N() = (()), if P(N) increases sub-linearly w.r.t. N, i.e. P N N() < (), there is S N S= () =adj aff
2 . Once P N N() ≥ (), the term PQ() takes

effect and there is S S PQ≤ = ()adj aff . On the other hand, by generalizing the concept of degree to hyper-degree (third order for convenience), i.e.,
the number of triplets incident to a vertex, a hyper-degree sum formula can be straightforward generalized as follows:

∑P N d i3 () = (),
i

N
H

(C.1)

where d i()H denotes the hyper-degree of vertex i. To guarantee every vertex being associated with at least a triplet, there must be d i i() ≥ 1, ∀H , and
thus

∑P N d i N3 () = () ≥ ,
i

N
H

(C.2)

which implies

P N N() ≥ (), (C.3)

and thus we have S S≤adj aff . For instance, if P N N() = ()2 , there is S N S N= () < = ()adj aff
2 4 .

The key point of the above discussion is that to guarantee every vertex being associated with at least one triplet, P(N) must increase super-linear,
or at least linearly, w.r.t. N. Since triplets are often generated from second order edges, below we also try to make an investigation on triplet
formation from random undirected second order graphs, and obtain a similar point from the statistic sense. Specifically, it begins with the degree
sum formula:

∑E d i2| | = (),
i

N

(C.4)

where d(i) denotes the degree of vertex i and E| | denotes the edge number. By denoting the average degree as D(N), there is

5 As commonly used, F N G N() = (()) is used to represent F N G N() ∈ (()) for convenience. Below a similar usage F N G N() ≤ (()) implies a smaller or equal complexity of F(N)
than G(N).

X. Yang et al. Pattern Recognition 65 (2017) 108–118

116

E D N N2| | = () . (C.5)

Based on the random graph assumption, the probability for an arbitrary triplet ABC (A, B, and C are different vertices) Pr(ABC) is

Pr ABC Pr AB BC CA Pr AB Pr BC Pr CA Pr AB() = (, ,) = () () () = (),3 (C.6)

where the edge probability Pr(AB) is given by

Pr AB E
C

D N
N

() = | | = ()
− 1N

2 (C.7)

The combination CN
2 refers to the number of all possible edges.6 Thus P(N) (with a slight abuse of notation w.r.t. its estimate P) is

P N C Pr ABC N N N
N

D N D N() = () = (− 1)(− 2)
6(− 1)

() = (()).N
3

3
3 3

(C.8)

where CN
3 refers to the number of all possible triplets. On the other hand, since for two edges incident to a vertex, the probability of them being in a

triplet is the edge probability Pr(AB), to guarantee a vertex being associated with at least a triplet, from the statistical sense there must be

C Pr AB() ≥ 1.D N()
2

(C.9)

where CD N()
2 refers to the number of all possible pairs of edges incident to the vertex. Then there is

D N D N N()(() − 1) ≥ 2(− 1),2 (C.10)

which implies

D N N() ≥ ()
1
3 (C.11)

and then based on Eq. (C.8) it finally deduces Eq. (C.3), i.e.

P N N() ≥ (). (C.12)

When D N N() = ()
1
3 , there is P N N() = () and S N S= () =adj aff

2 . However, once D(N) becomes larger, PQ() would be much greater. For

instance, when D N N() = ()
2
3 , there is P N N() = ()2 and S P N S PQ N= () = () < = () = ()adj aff

2 4 .

References

[1] A.C. Berg, T.L. Berg, J. Malik, Shape matching and object recognition using low
distortion correspondences, in: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2005, pp. 26–33.

[2] H. Bunke, Error correcting graph matching: on the influence of the underlying cost
function, IEEE Trans. Pattern Anal. Mach. Intell. 21 (9) (1999) 917–922.

[3] H. Bunke, G. Allermann, Inexact graph matching for structural pattern recognition,
Pattern Recognit. Lett. 1 (4) (1983) 245–253.

[4] M. Chertok, Y. Keller, Efficient high order matching, IEEE Trans. Pattern Anal.
Mach. Intell. 32 (12) (2010) 2205–2215.

[5] M. Cho, J. Lee, K.M. Lee, Reweighted random walks for graph matching, in:
Proceedings of the European Conference on Computer Vision, 2010, pp. 492–505.

[6] T. Cour, J.B. Shi, Solving markov random fields with spectral relaxation, in:
Proceedings of the International Conference on Artificial Intelligence and Statistics,
2007, pp. 75–82.

[7] T. Cour, P. Srinivasan, J.B. Shi, Balanced graph matching, in: Proceedings of the
Advances in Neural Information Processing Systems, 2006, pp. 313–320.

[8] O. Duchenne, F. Bach, I. Kweon, J. Ponce, A tensor-based algorithm for high-order
graph matching, IEEE Trans. Pattern Anal. Mach. Intell. 33 (12) (2011)
2383–2395.

[9] A. Egozi, Y. Keller, H. Guterman, A probabilistic approach to spectral graph
matching, IEEE Trans. Pattern Anal. Mach. Intell. 35 (1) (2013) 18–27.

[10] M. Frank, P. Wolfe, An algorithm for quadratic programming, Nav. Res. Logist. Q. 3
(1–2) (1956) 95–110.

[11] S. Gold, A. Rangarajan, A graduated assignment algorithm for graph matching,
IEEE Trans. Pattern Anal. Mach. Intell. 18 (4) (1996) 377–388.

[12] M. Jaggi, Revisiting Frank-Wolfe: projection-free sparse convex optimization, in:
Proceedings of the International Conference on Machine Learning, 2013, pp. 427–
435.

[13] R. Jonker, A. Volgenant, A shortest augmenting path algorithm for dense and
sparse linear assignment problems, Computing 38 (4) (1987) 325–340.

[14] H.A.L. Kiers, Towards a standardized notation and terminology in multiway
analysis, J. Chemom. 14 (3) (2000) 105–122.

[15] T.G. Kolda, B.W. Bader, Tensor decompositions and applications, SIAM Rev. 51 (3)
(2009) 455–500.

[16] H.W. Kuhn, The hungarian method for the assignment problem, Nav. Res. Logist.
Q. 2 (1–2) (1955) 83–97.

[17] S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid
matching for recognizing natural scene categories, in: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
volume 2, 2006, pp. 2169–2178.

[18] J. Lee, M. Cho, K.M. Lee, Hyper-graph matching via reweighted random walks, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2011, pp. 1633–1640.

[19] M. Leordeanu, M. Hebert, A spectral technique for correspondence problems using
pairwise constraints, in: Proceedings of the IEEE International Conference on
Computer Vision, 2005, pp. 1482–1489.

[20] M. Leordeanu, M. Hebert, Efficient map approximation for dense energy functions,
in: Proceedings of the International Conference on Machine learning, 2006, pp.
545–552.

[21] M. Leordeanu, R. Sukthankar, M. Hebert, Unsupervised learning for graph
matching, Int. J. Comput. Vis. 96 (1) (2012) 28–45.

[22] M. Leordeanu, A. Zanfir, C. Sminchisescu, Semi-supervised learning and optimi-
zation for hypergraph matching, in: Proceedings of the IEEE International
Conference on Computer Vision, 2011, pp. 2274–2281.

[23] C.L. Liu, F. Yin, D.H. Wang, Q.F. Wang, CASIA online and offline chinese
handwriting databases, in: Proceedings of the International Conference on
Document Analysis and Recognition, 2011, pp. 37–41.

[24] Z.Y. Liu, H. Qiao, GNCCP – graduated nonconvexity and concavity procedure,
IEEE Trans. Pattern Anal. Mach. Intell. 36 (6) (2014) 1258–1267.

[25] Z.Y. Liu, H. Qiao, L. Xu, An extended path following algorithm for graph-matching
problem, IEEE Trans. Pattern Anal. Mach. Intell. 34 (7) (2012) 1451–1456.

[26] S. Park, S.K. Park, M. Hebert, Fast and scalable approximate spectral matching for
higher-order graph matching, IEEE Trans. Pattern Anal. Mach. Intell. 36 (3) (2014)
479–492.

[27] K. Riesen, H. Bunke, Approximate graph edit distance computation by means of
bipartite graph matching, Image Vis. Comput. 27 (7) (2009) 950–959.

[28] G.L. Scott, H.C. Longuet-Higgins, An algorithm for associating the features of two
images, Proc. R. Soc. Lond. Ser. B: Biol. Sci. 244 (1309) (1991) 21–26.

[29] F. Serratosa, Fast computation of bipartite graph matching, Pattern Recognit. Lett.
45 (2014) 244–250.

[30] R. Sinkhorn, A relationship between arbitrary positive matrices and doubly
stochastic matrices, Ann. Math. Stat. (1964) 876–879.

[31] J. Sullivan, S. Carlsson, Recognizing and tracking human action, in: Proceedings of
the European Conference on Computer Vision, 2002, pp. 629–644.

[32] Y. Tian, J. Yan, H. Zhang, Y. Zhang, X. Yang, H. Zha, On the convergence of graph
matching: graduated assignment revisited, in: Proceedings of the European
Conference on Computer Vision, 2012, pp. 821–835.

[33] S. Umeyama, An eigendecomposition approach to weighted graph matching
problems, IEEE Trans. Pattern Anal. Mach. Intell. 10 (5) (1988) 695–703.

[34] X. Yang, H. Qiao, Z.Y. Liu, Feature correspondence based on directed structural
model matching, Image Vis. Comput. 33 (2015) 57–67.

[35] M. Zaslavskiy, F. Bach, J.P. Vert, A path following algorithm for the graph matching
problem, IEEE Trans. Pattern Anal. Mach. Intell. 31 (12) (2009) 2227–2242.

6 The combination CN
2 is also denoted by N()2 or

⎛
⎝⎜

⎞
⎠⎟.N

2

X. Yang et al. Pattern Recognition 65 (2017) 108–118

117

http://refhub.elsevier.com/S0031-16)30393-sbref1
http://refhub.elsevier.com/S0031-16)30393-sbref1
http://refhub.elsevier.com/S0031-16)30393-sbref2
http://refhub.elsevier.com/S0031-16)30393-sbref2
http://refhub.elsevier.com/S0031-16)30393-sbref3
http://refhub.elsevier.com/S0031-16)30393-sbref3
http://refhub.elsevier.com/S0031-16)30393-sbref4
http://refhub.elsevier.com/S0031-16)30393-sbref4
http://refhub.elsevier.com/S0031-16)30393-sbref4
http://refhub.elsevier.com/S0031-16)30393-sbref5
http://refhub.elsevier.com/S0031-16)30393-sbref5
http://refhub.elsevier.com/S0031-16)30393-sbref6
http://refhub.elsevier.com/S0031-16)30393-sbref6
http://refhub.elsevier.com/S0031-16)30393-sbref7
http://refhub.elsevier.com/S0031-16)30393-sbref7
http://refhub.elsevier.com/S0031-16)30393-sbref8
http://refhub.elsevier.com/S0031-16)30393-sbref8
http://refhub.elsevier.com/S0031-16)30393-sbref9
http://refhub.elsevier.com/S0031-16)30393-sbref9
http://refhub.elsevier.com/S0031-16)30393-sbref10
http://refhub.elsevier.com/S0031-16)30393-sbref10
http://refhub.elsevier.com/S0031-16)30393-sbref11
http://refhub.elsevier.com/S0031-16)30393-sbref11
http://refhub.elsevier.com/S0031-16)30393-sbref12
http://refhub.elsevier.com/S0031-16)30393-sbref12
http://refhub.elsevier.com/S0031-16)30393-sbref13
http://refhub.elsevier.com/S0031-16)30393-sbref13
http://refhub.elsevier.com/S0031-16)30393-sbref14
http://refhub.elsevier.com/S0031-16)30393-sbref14
http://refhub.elsevier.com/S0031-16)30393-sbref15
http://refhub.elsevier.com/S0031-16)30393-sbref15
http://refhub.elsevier.com/S0031-16)30393-sbref15
http://refhub.elsevier.com/S0031-16)30393-sbref16
http://refhub.elsevier.com/S0031-16)30393-sbref16
http://refhub.elsevier.com/S0031-16)30393-sbref17
http://refhub.elsevier.com/S0031-16)30393-sbref17
http://refhub.elsevier.com/S0031-16)30393-sbref18
http://refhub.elsevier.com/S0031-16)30393-sbref18
http://refhub.elsevier.com/S0031-16)30393-sbref19
http://refhub.elsevier.com/S0031-16)30393-sbref19
http://refhub.elsevier.com/S0031-16)30393-sbref20
http://refhub.elsevier.com/S0031-16)30393-sbref20
http://refhub.elsevier.com/S0031-16)30393-sbref21
http://refhub.elsevier.com/S0031-16)30393-sbref21
http://refhub.elsevier.com/S0031-16)30393-sbref22
http://refhub.elsevier.com/S0031-16)30393-sbref22

[36] R. Zass, A. Shashua, Probabilistic graph and hypergraph matching, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–
8.

[37] F. Zhou, F. De la Torre, Factorized graph matching, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2012, pp. 127–134.

[38] F. Zhou, F. De la Torre, Deformable graph matching, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2013, pp. 2922–2929.

Xu Yang is an assistant professor at the State Key Laboratory of Management and
Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing, China. His research interests include computer vision, pattern recognition and

robotics.

Hong Qiao is a professor at the State Key Laboratory of Management and Control for
Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
Her research interests include robotics, machine learning, and computer vision.

Zhi-Yong Liu is a professor at the State Key Laboratory of Management and Control for
Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
His research interests include machine learning, pattern recognition, computer vision,
and bioinformatics.

X. Yang et al. Pattern Recognition 65 (2017) 108–118

118

	Point correspondence by a new third order graph matching algorithm
	Introduction
	Related works

	Adjacency tensor matching
	Discussions and extensions
	Relations and differences between adjacency tensor and affinity tensor
	Storage complexity analysis
	Multigraph situation, the first and second order constraints

	Simulations
	Synthetic point matching
	Real image matching
	Directed graph matching

	Conclusions
	Acknowledgement
	Tensor notations and operations used in the paper
	Some implementation details
	Comparison between max(O(P),O(Q),O(N2)) and max(O(PQ),O(N2))
	References

