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Abstraet--A formal model for the coordination level of 
intelligent machines is established. The framework of the 
coordination level investigated consists of one dispatcher and 
a number of coordinators. The model called coordination 
structure has been used to describe analytically the 
information structure and information flow for the 
coordination activities in the coordination level. Specifically, 
the coordination structure offers a formalism to (1) describe 
the task translation of the dispatcher and coordinators; (2) 
represent the individual process within the dispatcher and 
coordinators; (3) specify the cooperation and connection 
among the dispatcher and coordinators; (4) perform the 
process analysis and evaluation; and (5) provide a control 
and communication mechanism for the real-time monitor or 
simulation of the coordination process. A simple procedure 
for the task scheduling in the coordination structure is 
presented. The task translation is achieved by a stochastic 
learning algorithm. The learning process is measured with 
entropy and its convergence is guaranteed. Finally, a case 
study of the coordination structure with three coordinators 
and one dispatcher for a simple intelligent manipulator 
system illustrates the proposed model and the simulation of 
the task processes performed on the model verifies the 
soundness of the theory. 

1. INTRODUCTION 

I~ rHXS EAgLV stage in the development of 
intelligent machines, methodological issues are 
both open and central. Different ideas for the 
formalization of the definitions and the structure 
of intelligent machines have been proposed by 
and debated among various researchers (Albus, 
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1975; Saridis, 1977; Bejczy, 1986; Meystel, 1986; 
Stephanou, 1986; Pao, 1986; Vamos, 1987; 
Antsaklis et al., 1988). The approach proposed 
by Saridis (1977) can be thought of as the result 
of the intersection of the three major disciplines 
of Artificial Intelligence, Operation Research and 
Control Theory. 

The structure of intelligent machines is defined 
by Saridis (1977, 1983, 1986) to be the structure 
of hierarchically intelligent control systems, 
composed of three levels ordered according to 
the principle of Increasing Precision with 
Decreasing Intelligence (IPDI) (Saridis, 1989), 
namely: the organization level, performing 
general information processing tasks in associa- 
tion with a long-term memory; the coordination 
level, dealing with specific information process- 
ing tasks with a short-term memory; and the 
execution level, realizing the execution of various 
tasks through hardware, using feedback control 
methods (Fig. 1). A mathematical formulation 
for the organization level of intelligent machines 
has been proposed in Saridis and Valavanis 
(1988). A survey of recent advances in the 
theory of intelligent machines is given by Saridis 
(1988a). 

The coordination level of intelligent machines 
is an intermediate structure serving as an 
interface between the organization level and 
execution level for dispatching organizational 
information to execution devices. It deals with 
real-time information of the world by generating 
a proper sequence of subtasks pertinent to the 
execution of the requested job. The purpose of 
this paper is to develop an analytical model for 
the coordination level of intelligent machines, 
which, with the mathematical formulation for 
the organization level and the well-developed 
control theory for the execution level, would 
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FIG. 1. The structure of intelligent machines. 

complete A Mathematical Theory for Intelligent 
Machines. 

Inherently, the coordination level of in- 
telligent machines is a distributed problem- 
solving system (DPSS) with the achievement of 
coherent control and communication of various 
diversified processes as its key issue (Saridis, 
1988b). A considerable amount of work has 
been done in Distributed Artificial Intelligence 
(DAI) during the past decade on the organiza- 
tion and architecture of DPSS (Decker, 1987). 
Multi-agent planning (Georgeff, 1984), nego- 
tiation (Smith and Davis, 1983) and the 
functionally-accurate, cooperative (FA/C) (Les- 
ser and Corkill, 1981) approaches are the three 
major important approaches in DAI. Since the 
functions of subsystems in intelligent machines 
are deterministic, the multi-agent planning 
approach is used here in the architecture design 
of the coordination level. Various modeling tools 
of concurrency in computer science (Peterson, 
1981; Hoare, 1985), and of discrete events in 
control theory (Ramadge and Wonham, 1982; 
Inan and Varaiya, 1988) are useful as the basic 
construction module of analytical models of 
distributed systems. This paper is focused on 
using a Petri net transducer to implement the 
linguistic decision schemata (Saridis and Gra- 
ham, 1984) for modeling and analyzing the 
coordination process in the coordination level of 
intelligent machines. 

An analytical model for the coordination level 
should enable us to have: (1) Formal description 
of individual processes within each subsystem of 
the coordination level; (2) Formal specification 
of the cooperation among subsystems; and (3) 
A mechanism of control and communication for 
task processes. The Petri net has been chosen 
since it can serve all these purposes quite well 
and also provide us with a hierarchical and 
modular design approach with many stepwise 

refinement and modification methods available. 
Moreover, the Petri net model offers us 
analytical tools for process analysis such as 
deadlock-freedom, liveness, boundedness, etc. 
and for the process evaluation such as average 
execution time, system utilization, etc. for the 
whole coordination level. 

The formalism developed in this paper may 
also find applications in the verification of an 
Open System Interconnection (OSI) architec- 
ture. Some such results have been obtained for 
Manufacturing Message Specification (MMS) by 
Wang and Gildea (1988, 1989). 

2. THE FRAMEWORK OF THE COORDINATION 
LEVEL 

The topology of the coordination level can be 
expressed by a tree structure (D, C), where D is 
the root, called dispatcher, and C is the finite set 
of the subnodes, called coordinators (Fig. 2). It 
is assumed that for each coordinator there exists 
a bidirectional link connecting it to the 
dispatcher and there is no direct link between 
any two individual coordinators. 

The dispatcher D will deal with the control 
and communication of the coordinators. It 
primarily concerns the questions of which 
coordinator(s) should be called for tasks (task 
sharing) and/or informed by the status of task 
execution (result sharing), given a sequence of 
primitive events (tasks) by the organizer for 
some specific job. The control and communica- 
tion can be achieved by translating the given 
sequences of primitive events into the sequences 
of coordinator-oriented control actions with the 
necessary information and dispatching them to 
the corresponding coordinators at the appropri- 
ate time. The dispatcher is also responsible for 

ORQANIZATION LEVEL 

COORDINATmON LEVEL 

J Dispatcher I D 

Coordinator Cl I I  c2 I Coordlnlltor [ Cn I Coordinator 

EXECUTION LEVEL 

FIG. 2. The topology of the coordination level. 
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formulating the feedback to the organization 
level after the completion of the job. To this 
end, the dispatcher requires the following 
capabilities: 

° A communication facility which allows the 
dispatcher to receive and send information 
from and to the organization level and 
coordinators. 

• A data processing ability which describes the 
command information from the organization 
level and the feedback information from 
coordinators, updates and provides infor- 
mation for the decision-making units of the 
dispatcher. 

• A task processing ability which identifies 
the task to be executed, selects the 
appropriate control procedures for the 
corresponding coordinators and formulates 
the feedback required by the organization 
level. 

• A learning ability which improves the task 
processing ability of the dispatcher by 
reducing uncertainties in decision-making 
and information processing as more task 
execution experience is obtained. 

Each coordinator is associated with a number 
of devices and will process the operation and 
data transfer of these devices. A coordinator can 
be considered as an expert of deterministic 
functions in some specific field, with the ability 
of selecting one among alternative actions that 
may accomplish the same task issued by the 
dispatcher in different ways, according to the 
constraints imposed by the workspace model and 
timing requirements. The operation and data 
transfer of the devices can be achieved by 
translating the given coordinator-oriented control 
action sequences into real-time hardware- 
oriented operation sequences with the necessary 
data, and sending them to the devices. The 
coordinator should report the result to the 
dispatcher after the execution of a task. 
Capabilities required by a coordinator are 
exactly the same as that for the dispatcher, but 
in a lower and more specific level. 

Figure 3 illustrates the language (or task) 
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FIo. 4. A uniform architecture for dispatcher and coordinators. 

translation process among the dispatcher and the 
coordinators. Note that the translation is 
achieved interactively and that the dispatcher 
and coordinators actually have a different time 
scale: one step in the dispatcher may turn out to 
be many steps in the coordinators. The 
coordinators have to cooperate under the 
supervision of the dispatcher in the sense that no 
one of them has sufficient ability and information 
to accomplish the entire task; mutual sharing of 
information is necessary to allow the dispatcher 
and the coordinators, as a whole, to attack the 
requested jobs. 

The above description indicates that the 
dispatcher and coordinators may have identical 
organization at the different levels of specifica- 
tion. A uniform system architecture, consisting 
of a data processor, a task processor and a 
learning processor, is used for the dispatcher and 
coordinators (Fig. 4). This architecture is a 
direct extension of the decision module sug- 
gested by Graham and Saridis (1982). 

The function of the data processor is to 
provide the information about the tasks to be 
executed and the current system status. It has 
been divided into three levels of description: task 
description, state description and data descrip- 
tion. In the task description, a list of tasks to be 
executed from the upper level units is given. The 
state description presents the preconditions and 
the postconditions for the execution of each task 
and the system status in some abstract terms. In 
the Petri net model, the preconditions and the 
postconditions can be represented in terms of 
the input places and the output places, 
respectively. The data description gives the 
actual value for the abstract terms used in the 
state description. Such an information organiza- 
tion is very useful for the hierarchical 
decision-making in the task processor. The 
maintenance and update of the three level 
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descriptions is manipulated by a monitor based 
on the information from the upper level and the 
feedback of task execution from the lower level. 
The monitor is also responsible for the 
interconnection between the data processor and 
task processor. 

The function of the task processor is to 
formulate the control commands for the lower 
level units. The task processor employs a 
hierarchical decision-making consisting of three 
steps: task scheduling, task translation and task 
formulation. Task scheduling identifies the task 
to be executed by checking the task description 
and the corresponding preconditions and post- 
conditions contained in the state description 
without referring to the actual values. If no 
subtasks can be executed, the task scheduling 
has to determine the internal operations which 
will make the preconditions for some tasks to 
become true. The task translation decomposes 
the task or interoperation into the control 
actions in an appropriate order based on the 
current system status. Finally, the task formula- 
tion assigns the actual data to the control 
actions by searching in the data description of 
the data processor, formulates the final 
complete control command, and sends it to the 
lower level units. With the hierarchical informa- 
tion description in the data processor, such a 
hierarchical decision-making should make the 
task processing fast and efficient. Upon the 
completion of all tasks required, a monitor is 
called to organize the feedback information to 
the upper level in some specified form. The 
monitor is also responsible for the proper 
interconnection with the task processor and the 
learning processor. 

The function of the learning processor i s  to 
improve the performance of the task processor 
and to reduce the uncertainty in decision-making 
and information processing. Information used by 
the learning processor is indicated in Fig. 4. 
Various learning mechanisms can be employed 
by the learning processor to achieve its function. 
A simple linear refinement stochastic learning 
algorithm is used for task translation in 
Section 5. 

The fact that the dispatcher and coordinators 
have identical system architecture, but at 
different levels of specification (or abstraction), 
also indicates that the coordination level has a 
nested tree topology (Meystel, 1986). This 
nested tree topology can be extended further to 
include the execution level. 

The connection among the dispatcher and 
coordinators will be specified in terms of a Petri 
net derived from the coordination structure 
given in Section 4. 

3. THE PETRI NET TRANSDUCER AND 
SYNCHRONOUS COMPOSITION 

The previous section reveals that the basic 
function of the coordination level can be viewed 
as the translation of the high level command 
language issued by the organizer to the low level 
operation language executed by devices; there- 
fore, a Petri net transducer has been developed 
as the basic construction module for the 
coordination level (Wang and Saridis, 1988). 

A petri net N is a 4-tuple N = (P, T, I, O) 
consisting of a finite set of places P, a finite set of 
transitions T, an input function I and an output 
function O. The set of places represents the 
system's states and the set of transitions 
represent events which can occur to change the 
state of the system. The input function specifies 
the preconditions for each event to occur and the 
output function describes the effects of the 
occurrence of each event. A place can contain a 
non-negative integer number of tokens. The 
state of the system modeled by a Petri net is 
given by its marking, i.e. the number of tokens 
in each of its places. For details of Petri net 
theory, a reader is referred to Peterson (1981). 

The following notations are used in the sequel. 
6(#, t) is the next-state function which gives the 
new marking of a Petri net N after firing a 
transition t under the marking #. R(N, #) [or 
R(#), when N is clear] is the reachability set of 
N with the initial marking #. Two transitions t~ 
and tz are said to be in parallel with respect to # 
iff I(h) + I(t2) - #, and in conflict with respect to 
# iff I(tt)-< # and I(t2)-<# but I(t 0 + I(t2) > #. 
By the execution rule of Petri net, two 
transitions in parallel can be fired simul- 
taneously; however, only one of the two 
transitions in conflict can be fired and its firing 
will disable the other. A Petri net is live with 
respect to /~ if, for any marking in R(#),  it is 
possible to fire any transition in the net either 
immediately or after firing a sequence of other 
transitions. Liveness guarantees the absence of 
deadlocks. A Petri net is bounded with respect 
to # if there exists a finite number k such that for 
any marking in R(#) the number of tokens in 
each place of the net under that marking is less 
than or equal to k. When k = 1, the net is safe. 

Definition 1. A Petri net transducer (PNT), M, is 
a 6-tuple, M = (N, Z, A, o, #, F), where 

(i) N = (P, T, I, O) is a Petri net with the initial 
marking #; 

(ii) Z is a finite input alphabet; 
(iii) A is a finite output alphabet; 
(iv) cr is a translation mapping from T × (Z U 

{).}) to finite sets of A*; and 
(v) F c R(#) is a set of final markings. 
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Here A* denotes the set of strings over A and 
/1., the empty string. 

There are three parts to a PNT: an input tape, 
a Petri net controller and an output tape (Fig. 5). 
A configuration of PINT M is defined to be a 
triple (m, x, y) where m • R(/~) is the current 
marking of N; x eZ* is the input string 
remaining on the input tape; y • A* is the output 
string emitted up to this point. A move by M is 
reflected by a binary relation ~M (or ~ ,  when 
M is clear) on configurations. Specifically, for all 
m • R ( # ) ,  t • T ,  a • Z U ( ) . } ,  x • Z *  and y • A *  
such that 6(m, t) is defined and tr(t, a) contains 
z • A*, we write 

(m, ax, y) ~ (6(m, t), x, yz). 

The transitive and reflexive closure of ~ is 
denoted by ~ * .  Note PNTs defined here are 
nondeterministic in both the firing of transitions 
and the emitting of output strings. The 
translation defined by M is the set ~(M)= 
{(x, y) t (/~, x, A) ::>* (m, ~., y) for some m e F} 
The input language and the output language of 
M are 

a~(M) = {x [ (x, y) • r(M) for some y • A*} and 

to(M) = {y ] (x, y) e r(M) for some x • Z*}, 

respectively. 
A PNT halts at configuration (m, ax, y) when 

no transition for which tr(t, a) is defined are 
enabled at the marking m. We call m the 
deadlock marking of the PNT. When a deadlock 
marking occurs, the input string will be rejected. 
Note that a deadlock marking of PNT is not 
necessarily a deadlock marking of its Petri net. 

For any x = xtala2x 2 • Y~* with (/~, x, A) ~ *  
(m, ata2x2, y), symbols at and a2 are said to be 
parallel (or in conflict) iff there exist tt and t 2 in 
T such that both tr(h, at) and o(t2, a2) are 
defined and h and t2 are parallel (or in conflict) 
with respect to the marking m. Two symbols 
in parallel can be translated simultaneously; 
however, only one of the two symbols in conflict 

,.,i..ij..i i.., 

i j  co_ I ion._ 
P,l',l 

FIG. 5. The Petri net transducer (PNT). 

can be translated and its translation will disable 
the translation of the other. 

To verify the validity of PNT being a 
consistent model for the dispatcher and 
coordinators, the possibility that the output 
language of some PNT cannot be translated 
further by any PNT has to be excluded. Let us 
consider a special class of PNTs, called Simple 
PNT (SPNT), with the property that for any 
t • T there exists one and only one a • Z tO {;t} 
such that tr(t, a) is defined. The following 
theorem indicates the importance of this type of 
PNTs: 

Theorem 1. For any PNT M, there exists a 
SPNT M' such that ~-(M') = r(M). 

Based on this result, it is easy to show the 
language property of PNT can be characterized 
by: 

Theorem 2. The input and output languages of a 
PNT are both Petri net languages (PNL). 

This theorem guarantees that PNT can be 
used as a consistent model for the dispatcher and 
coordinators. The proofs for all the theorems in 
this paper are given in Wang and Saridis (1989). 

The synchronous composition of PNTs is 
introduced to describe and specify the coopera- 
tion among the coordinators in task processing. 
The project of a string x on a language L is 
defined by 

Zl'L=L 
f undefined ifx 1' g L  L 

a(xa)~L=~ (xTL)a i f a • Z  
X1'L i fa  ~Y. 

where s 1' L denote the project of s on language 
L, Y is the alphabet of L, and L is the closure 
of L. 

Definition 2. The synchronous composition of 
two PNTs Mi = (Ni, Zi, Ai, tri,/~i, Fi), i = 1, 2, is a 
PNT, denoted by M = M111 M2. A move by M is 
defined to be 

((ml, m2), ax, y)::~ 

l(6(ml, tl), mz), x, yz 0 if a • Y~l - Z2 

(ml, 6(m2, t2)), x, yz2) if a • Z2 - Z~ 

((6(ml, tl), 6(m2, t2)), x, yzlz2 or yz2zl) 
if a • Z~ fq Z2 

where zl • trl(tl, a) and zz • 0"2(t2, a). 

That is, the input symbols in the alphabet of one 
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PNT but not the alphabet of the other are 
translated by that PNT alone, and the input 
symbols in the alphabet of both PNTs are 
translated by two PNTs simultaneously in an 
arbitrary order. A string x can be translated 
by M = M~ II M2 if ((/~,/~2), x, ~.) i f*  
((ml, m2), )., y)  with m~ e F~ and m2 ~ F~. 

By doing induction on the length of a string, 
we can prove the following important result: 

t, t ' e  Td such that (t, f[)~ SD and (t'. f~_~) 
RD. 

(v) The coordinator receiving mapping Rc and 
sending mapping Sc are mappings from T~ 
to subsets of F. Rc  and Sc satisfy the 
following connection constraints: 

(t, fb) ~ Sc¢:¢'( t, f~o) e Rc  and (t, fat) ~ Sc; 

(t, f3) $ R o  (t, f~I) ~ R o  (t, f}) ~ S o  (t, f~o) ~ Sc. 

a~(M, II M2) = 

at(Mr) II a:(Mz) when Y t n Z :  = 

{X I x  '~ ot(M,) E or(M1) and x T o,(M~) e a ' ( M 2 ) }  

when Z1 A Z2 ~ q~ 

where the operator "[[" on the right side of the 
equation is the concurrent operator of two 
languages defined in formal languages. The 
synchronous composition can be extended to 
more than two PNTs by defining 

M1 IIM2II """ IIMk-lll Mk 

= (MI IIM211 ° "° IIM~-011Mk. 

4. THE COORDINATION STRUCTURE AND 
PROCESS PROPERTIES 

Now we introduce the formal model for the 
coordination level of intelligent machines. 

Definition 3. A coordination structure, CS, is 
defined to be a 7-tuple, 

CS = (D, C, F, RD, SD, R o  Sc) where 

(i) D = (Nd, Zo, Ao, crd, #d, Fd) is a PNT, the 
dispatcher, with Nd = (Pd, Td, Id, Od). 

(ii) C = (C1, C2 . . . .  C,} is the set of 
coordinators, n -  1. Each coordinator is a 
S P N T  C i - i i i i i 

- (N¢, Z¢, A¢, cry, #¢, F'c) with N¢-i - 
(P~, T~, I~, O~). Define T¢ = UP=I TiC and 
Pc = U[ '= I  e l .  

(iii) F = Un=l (~I, taSl, taO, fiso} is the set of 
connection points: fl, fsi, fo, and Pso are 
called the input point, input semaphore, 
output point and output semaphore of C,, 
respectively. 

(iv) The dispatcher receiving mapping RD and 
sending mapping SD are mappings from Td 
tO subsets of F. Ro  and SD satisfy the 
following connection constraints: (t, fD 
SD ¢:> (t, i fs,) ~ RD,  (t, f~ )  ~ RD 4:~ (t, ' fso) 
So; (t, fDSRD,  ( t , f~o )~RD,  ( t , f~ )~SD,  
(t, f~I) gSD; if (t, f ~ ) ¢ R o  then t is not 
initially enabled and in any firing sequence 
enabling t, the number of t' with (t', ~) 
SD is greater than the number of t" with 
(t", f ~ ) e R D  by one (Ci is activated 
sufficient times before t receiving result 
from it); for any f[ and fb, there exists 

The configuration of coordination structure is 
shown in Fig. 6. The notation of connection 
point is similar to the concept of port in network 
theory. The connection constraints indicate that 
each coordinator is connected with D bidirec- 
tionally and that D can issue tasks to a 
coordinator only if there is a token in the 
corresponding input semaphore (i.e. the coor- 
dinator is available for the task) and a 
coordinator can report the execution result to D 
only if there is a token in the corresponding 
output semaphore (i.e. the communication 
facility is ready for information transferring). 

Various complex connection patterns among 
the dispatcher and coordinators can be specified 
by designing different receiving and sending 
mappings. One of the basic connection patterns 
can be defined to be: (i) Ci only accesses its own 
connection points; (ii) there is only one initially 
enabled transition in Ci and it takes input from 
the input point; (iii) only one transition in Ci 
sends information to its output point. A CS with 
this type of connection pattern is called a simple 
coordination structure. We will concentrate on 
the simple coordination structure in this paper. 

The behaviours of the dispatcher and the 
coordinators are specified by their transition 
firing sequence sets. As in program verification, 
these sequence sets can be used for designing, 
analyzing, implementing and simulating the 
models for the dispatcher and coordinators. In 
order to process the tasks from the dispatcher by 
C~, we must have the following relationship: 

0t(Ci) D U {O'd(t, a) T (T~d)" [ t ~ T~ and a ~ Y0}, 

Td _ i  _ {t [ t ~ T d and (t, f'0 ~ SD}, i = 1, . . . , n 

FIG. 6. The coordination structure. 
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which means C, should be capable of processing 
all the possible task strings issued by the 
dispatcher. This relationship is guaranteed to be 
able to be satisfied by the closure property of 
PNL under the union operation and Theorem 2. 

The operation of a CS can be described in 
terms of the Petri net underlying CS, 

N = (P, T, I, O), where P = Pd t2 Pc N F, 

T = Td U T¢, 

[I.(t) u (f l• (t, f) e Ro} if t ~ Ta 
I(t)=tI (t)u(f] (t,f) Rc) if t ~ T ~  

O(t )= j 'Od( t )u ( f t .  ( t ,f)~SD} if t~Td 
tO~¢(t) U { f l ( t , f ) e S c }  if t~T~" 

The initial marking of N is: 

= 

or ~i(p) for p ~ Pa or p e pi 

1 for p = t~s, or f'so 
0 otherwise. 

To start operation, a CS receives a string (task 
plan) from the organizer, puts it on the input 
tape of the dispatcher D, and begins the process 
of translating (or dispatching). Once a transition 
t of D with fi', • • •, f~ as its output places in F is 
fired with respect to the current marking of the 
underlying Petri net N to execute a primitive 
event a, it will send the selected control string 
z ~ ed(t, a) to the coordinators Ci,, . . . .  C~,, 
and activate the synchronous composition 
Ci, II " * • II Ci, .  Upon completion of the task by a 
coordinator Ci, it will displace a token 
(feedback) to f~. If it is enabled with respect to 
the current marking of N at the time, the 
feedback will be taken by the dispatcher to 
continue the process, and Cj will become idle 
again. Once the dispatcher reaches its final 
marking and the coordinators are either in the 
initial marking (i.e. no task processing for a 
while) or the final marking, the entire task 
process is completed successfully. 

A string s ~ Z~ is said to be executable by the 
CS if (/~d, s, ~.) ::), *(m, ~., y), m e Fd and the final 
configuration of each of coordinators is either 

i i (/~ic,/l, Yic) or (m~, ~., y~), mc ~ Ft. It should be 
pointed out that not every string in o~(D) is 
executable by the CS, because the additional 
connection restrictions imposed by the receiving 
and sending mappings. However, we can show 
that a transition enabled in Nd after finite step 
firing can also be enabled in N after the same 
steps of firing (generally by a different path, 
however). In any case, it has to be guaranteed 
that every string (or task plan) in the set of task 
plans ~ (a subset of at(D)) should be executable 
by CS during its design phase. 

Clearly, the synchronous composition provides 
the dispatcher with a mechanism to synchronize 
the task execution of the coordinators and the 
Petri net N specifies the precedence relation 
among the activities in the dispatcher and 
coordinators and therefore defines the 
information structure of the CS. From the point 
of view of execution of N, a string issued by the 
organization level can be considered as a path 
specification in the Nd, and, in turn, strings 
selected by transitions of D can be thought of as 
the path specifications in the Petri nets of the 
coordinators. 

The underlying Petri net N also enables us to 
use the Petri net concepts and analysis methods 
to study the process properties of the 
coordination level, such as liveness, bounded- 
ness, reversibility, consistency, repetitiveness, 
etc. The following theorem presents the 
results about the boundedness and liveness of 
the coordination structure, which guarantee the 
structural stability of the structure and the 
absence of deadlock in the coordination. 

Theorem 3. The Petri net N underlying CS is 
bounded (live) if all the Petfi nets of the 
dispatcher and coordinators are bounded (live). 

For the construction of coordination struc- 
tures, the methods of building the bounded and 
live Petri net models for manufacturing systems 
would be very useful. The stepwise refinement 
approaches developed in Valette (1979) and 
Suzuki and Murata (1983) can be easily adapted 
for PNTs. 

5. D E C I S I O N  M A K I N G  IN T H E  C O O R D I N A T I O N  
S T R U C T U R E  

The decision-making in the coordination level 
is achieved through two steps: task scheduling 
and task translation. Task scheduling is the 
process of identifying the appropriate tasks to be 
executed for the requested job. Once a task is 
located, task translation takes place by 
decomposing the task into a subtask sequence 
and, after being assigned with real-time informa- 
tion (task formulation), executing subtasks or 
sending them to the corresponding infimal units. 
In terms of PNT, the problem of task scheduling 
and translation for a given task a is to find an 
enabled t such that a(t, a) is defined, and then 
select the right translation string from o(t, a) for 
the transition t. 

A simple and uniform scheduling procedure 
can be designed based on the execution rule of 
Petri net. Let M = (N, X, A, o,/~, F) be a PNT 
representing the dispatcher or a coordinator. 
For any a ~X, we define T ( a ) =  ( t I e ( t  , a) is 
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defined} and Tz = T(A) = {t I o(t, ~) is defined} 
(the set of internal operations). Let QT and QD 
be two queues, QT store the unexecuted tasks 
and QD the tasks delayed for execution due to 
their processing transitions not being enabled at 
the appropriate time. Function F(Q) deletes and 
returns the first element of Q, I(Q, a), inserts a 
to Q at the end, U(Q1, Q2) unifies QI and Q2 by 
placing Q2 at the end of Q~, and N(Q) empties 
Q. Let v = a ~ a 2 . . ,  a , •  b* be a task string to 
be executed; the scheduling procedure for M can 
be described as: 

Scheduling Procedure (SP): 
(1) QT:=  (al, a:  . . . . .  a,}, QD := q); 
(2) IF QT is empty T H E N  STOP; 
(3) U := F(QT); 
(4) IF there exists a t •  T(u) and t is 

enabled T H E N  firing t, G O T O  7; 
(5) IF there exists an internal operation 

sequence e •T~. such that t • T ( u )  is 
enabled by firing e T H E N  firing et, 
G O T O  7; 

(6) I(QD, U), IF QT is empty T H E N  
QT: = QD and N(QD), G O T O  2; 

(7) IF QD is not empty T H E N  QT:=  
U(Qo,  QT) and N(QD), G O T O  2. 

In SP, each task is examined in the order 
appearing in the task string v. If a task is 
executable at the time, it will be executed right 
away. Otherwise an effort is made to find a 
sequence of internal operations which will 
enable the task. If the effort fails, the task will 
be removed from QT and added to QD- Once 
there is a change in the state of M, all the 
delayed tasks in QD will be moved back to QT in 
their original order and be examined again, since 
it is desired to keep the task order as specified as 
much as possible. For a large and complex PNT, 
the heuristic search algorithm (Passino and 
Antsaklis, 1988) may be used to find the internal 
operation sequence. For a bounded,  average size 
PNT, however, the simple breadth-first search 
along the reachability tree of PNT by firing only 
the internal operations under the current mark- 
ing can serve the purpose quite well. The SP 
will terminate finitely since it is assumed that the 
task strings issued are compatible and complete. 

Task translation can be achieved in either an 
active or a passive fashion. In the active 
approaches, the translation of a task is 
accomplished on-line based on a set of rules and 
a data base which describes the related 
environment and system status information. In 
the passive approaches, a fixed number of 
translations for a task are pre-specified and the 
translating is to select one of them according to 
the current situations. For a PNT, the way of 
translating is indicated by how the translation 

mapping a is generated. We will consider the 
passive approach here by assuming a fixed 
number of translations available for each 
transition, and use the learning algorithm to 
learn the best translation for a task in a 
particular situation. 

Let t be a transition of a PNT M =  
(N, Y, A, a,/~, F). The number of translations 
designed for t is Mt = Y la(t, a)[. Let x, represent 
the information about the system status and 
temporal constraints provided in the input places 
of t (token color) and u t • U t - = { a • Y U  
(~.}1 a(t, a) is defined} represent a task to be 
translated by t. A situation is defined to be a 
combination of x, and u ,  i.e., (u,, x,). The 
number of situation distinguished by t is 
designated as N t. Now consider a matrix of 
subjective properties, (Pii)Mt×Nt- The decision 
rule of the probabilistic method for choosing a 
translation is: 

Decision Rule (DR): When situation (ut, x,)j is 
observed, choose a translation si 

using a random strategy with the subjective 
probability Pii, i = 1 . . . . .  Mr. 

A random performance index is associated with 
each translation. After the execution of the 
action specified by si for situation (ut, xt)j, update 
the performance estimate using the algorithm: 

Jij(kij + 1) = J,j(k,j) + 3(k. + 1) 

× [Job,(kii + 1) - .J i j (kih)]  

where Job, is the observed performance 
value, J the performance estimate, and kij 
the number of times the event ((ut, xt)isi) 
has occurred. 

After updating the performance estimate, 
update the subjective probabilities by the 
algorithm: 

p~j(k + 1) = pit(k) + 7(k + 1)[~k(k) - p~i(k)], 
where ~ij(k) = 1 i f  Jij ~-" min Jlj, ~i/(k) = 0 

1 
otherwise. 

When fl(kij) and y(k) satisfy Dvoretsky's  
convergence condition, we have 

Prob {lim [J~j(k) - J,j] = 0} = 1, 
k ~  

Prob [~im= Pii(k) = 6,p] = 1, 

where ]~j is the expected value of J~j, 
Jpj = min Jlj, and 6~p = 1 if i = p or 0 if i g= p. 

The proof of convergence is given in Saridis and 
Graham (1984). 

Assuming that the initial performance estim- 
ate for a transition is available, we can find the 
most conservative initial subjective probabilities 
by Jaynes' Maximum Entropy Principle (Wang 
and Saridis, 1989). 



A coordination theory for intelligent machines 841 

6. ENTROPY MEASURE OF UNCERTAINTY 
AND LEARNING 

The learning process can be measured by the 
entropy associated with the subjective probabil- 
ities. For a PNT M, its translation uncertainty is 
defined to be the total entropy of subjective 
probabilities assigned to the transitions of M, 
that is, 

H(M) -= Et,TH(t) = XteT(H[(ut, Xt) ] + H[t/(ut, xt)]) 

= - - E t s T ' E j p  j In Pi - E t e T E J P J E i P i j  In P~i, 

where pj is the objective probability of the 
situation (ut, xt)j occurring. Define 

H(E) = - ~ t e T Z j p j  In Pi, 

H(T/E) = - - ~ t ~ T E j p i ~ . i P i j  In Pij, 

then, 
H(M) = H(E) + H(T/E).  

The expression indicates that the translation 
uncertainty H(M) can be divided into two parts: 
the environment uncertainty H(E), caused by 
the uncertainty of the environment (include the 
uncertainty in task assignment); the pure 
translation uncertainty H(T/E),  the uncertainty 
in translation with the given environment. 
Clearly, only the pure translation uncertainty 
can be reduced by learning. The uncertainty in 
the whole coordination structure CS is 

H(CS) = H(Ecs) + H(Tcs/Ecs),  where 

H(Ecs) = H(ED) + Y-~=~H(Ea) and 

H(Tcs/Ecs) = H(TD/ED) + E~=~H(Tci/Eci). 

It is clear now that t he  coordination structure 
is a Petri net implementation of the (embedded) 
decision schema (Saridis and Graham, 1984). 
The whole learning process bears the similar 
structure to that of the hierarchical learning 
automata (Mandyam et al., 1981). For the case 
of the small number of situations, a learning by 
recording the conditional probabilities under 
specific situations will not cause a serious 
problem in memory space and learning speed. 
As the number of situations and tasks to be 
processed is increasing, however, the prob- 
lem of memory space and learning speed 
becomes more and more serious. For the case of 
the larger number of situations, the pattern- 
recognizing learning algorithm developed by 
Barto and Anandan (1985), which avoids the 
maintenance of separate selection probabilities 
of each situation by parameterizing the condi- 
tional probabilities and constructing a mapping 
from the situations to the parameter, should be 
used. 

In the limit case when the pure translation 
uncertainty of a PNT is reduced to zero, the 

optimal translation is found for all transitions in 
the PNT. However, in general, this does not 
necessarily imply that a global optimal transla- 
tion is achieved for the PNT, simply because the 
optimal translations of a transition might cause 
worse situations for the subsequent transitions, 
and thus increase the total task execution cost. 
To achieve the global optimal translation, it is 
imperative to specify the influences of the 
translation of a transition to others, and use a 
learning algorithm based on global information. 
This is especially true for cases when the 
dependent tasks or events are processed by 
several transitions. However, in some cases, an 
analytical expression for such influences may be 
too complex to be established for the transitions 
with diversified functions. 

The pure translation uncertainty of a PNT 
indicates how knowledgeable the PNT is about 
its task execution. Since learning from the 
execution can reduce the pure translation 
uncertainty, learning can make a PNT more 
knowledgeable on its task execution. This 
observation reveals that decision-making in the 
coordination level bears "dual" character: on 
one side, the decisions made have to make the 
dispatcher or coordinators to accomplish the 
requested task with some optimization criterion; 
on the other side, these decisions should also 
make it more knowledgeable about its task 
execution in the future by reducing its pure 
translation uncertainty. The trade-off between 
the two sides should be judged by some 
criterion. 

7. A CASE STUDY 

The model developed has been applied to 
construct the coordination level of a simple 
intelligent manipulator system composed of a 
general-purpose manipulator of six degrees of 
freedom with a gripper, a vision system that 
recognizes various objects and provides visual 
information about their position and orientation, 
and a sensor system that provides all kinds of 
sensory information. The coordination structure 
designed consists of a dispatcher, a motion 
coordinator, a vision coordinator and a sensor 
coordinator (Fig. 7, where, for the sake of 
brevity, the connection points are pictured 
together for all the coordinators). 

The task plans from the Organization Level is 
assumed to be generated by the grammar 

G = (N, Eo, P, S), 

where N = {S, M, Q, H}, Yo = {el, e2 ,  e3 ,  e4}, and 

P = {S---~ elM, M--* e2S [ e2Q, Q 

--~ e3H, H---~ e4Q leaS[ e4}. 
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FIG. 7. The coordinat ion structure of an intelligent manipulator  system. 

The primitive events el, e2, e3 are tasks involved 
with the vision, motion and sensor coordinators, 
respectively; ea is the task of grasping or putting 
down objects. The input alphabets of the vision, 
the motion and the sensor coordinators are 
Zv={c , r ,  av, i , f } ,  Z m = { m , h , i , f } ,  and Zs = 
{s, as, i, f},  respectively. 

The final markings of the dispatcher and 
coordinators are reached when there is a token 
in the corresponding place p+. Their translation 
mappings are defined to be: 

Dispatcher: 

ad(tt, eO = ad(tl, ;t) = {it, calf,  crca, f } ,  

ad(tZ, e2) = {mr, (mcaj)" f ,  n > 0}, 

ad(tS, e3) = ad(ts, it) = {it, sa f f  }, 

ad(/6, e4) = {gf, (gsafi)"f, n > 0}. 

Vision: Ov(tl, c) = {instructions to control 
camera and take picture}, or(t2, r )= 
{instructions to change the lighting 
condition}, av(t3, av) = {algorithms of 
image processing and analysis}, 
av(t4, f )  = Or(t6, f )  = {formulating the 
feedback information}, a,(ts, i )= 
{sending the visual information to the 
motion coordinator}. 
as(q, s ) =  {instructions to control sen- 
sors and take data}, as(t2, as) = 
{algorithms of data processing and 
analysis}, o~(t3, f )  = a~(ts, f )  = {formu- 
lating the feedback information}, 
o~(t+, i ) =  {sending the sensory infor- 
mation to the motion coordinator}. 
am(q, m) = {algorithms of path plan- 
ning and motion control for the arm}, 
O'm(t3, i) = {receiving the visual infor- 

Sensor: 

Motion; 

marion}, O'm(t6, g) = {algorithms of fine 
path planning and grasping or putting 
down objects for the hand}, am(ts, i )=  
{receiving the sensory information}, 
O'm(t2, f )  ----" Otto(t4 ' f )  = Ore(t7,  f )  = 

Om(t9, f )  = {formulating the feedback 
information}. 

All other transitions of the dispatcher and 
coordinators are internal operations. 

Clearly, the input language of the dispatcher is 
exactly the task plans issued by the organizer. 
The empty string it in the translation mapping ad 
means no action since the required visual or 
sensory information is already available. The 
interactive motion control strings (mca, i)"f and 
(gsasj)"f of the dispatcher involve the synchro- 
nous composition of two coordinators, i.e. 
motion II vision and motion II sensor, respec- 
tively. When these control strings are issued for 
motion or grasp tasks, the motion and vision or 
sensor coordinators have to work cooperatively 
to achieve the tasks. That is, the arm (or hand) 
moves step by step with the assistance of the 
cameras (or sensors) until the specified position 
and orientation are reached. 

The task simulation of picking up PC boards 
and inserting them into slots is performed. The 
task plan assigned is ete2e3e4ete2e3e 4. It is 
assumed that there are, respectively, two 
algorithms for image processing and analysis, 
data processing and analysis, the arm path 
planning and motion control, and the hand path 
planning and grasp and insertion control. A 
coordinator has to learn which of the two 
algorithms is best for the corresponding tasks. 
The learning for the dispatcher is to decide the 
way to accomplish the arm and hand motion. 
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Flo. 8. The learning curves of t 2 and t 6 in the dispatcher. 

When the PC boards or the slots are moving 
during the task process, the interactive arm 
motion control (mca~i)"f should be used, 
otherwise mf should be the better choice. 
Similarly, depending on the degree of the 
uncertainty of the visual information provided by 
the vision about the PC board and slot location, 
either (gsasi)"f or gf should be the optimal 
approach of gripping and inserting. 

The zero initial cost and the uniform initial 
subjective probabilities are used for all the 
translations in the simulation. Figure 8 gives the 
learning curves of transitions t 2 and t6 in the 
dispatcher upon executing the task 30 times. 
Figure 9 gives the corresponding pure translation 
entropies of the dispatcher and coordinators. 
The entropy curves indicate clearly that the 
learning speeds in the coordinators are much 
faster than the learning speeds in the dispatcher. 
This is because the learning in the dispatcher 
depends on the learning in the coordinators and 
that one step of execution in the dispatcher may 
correspond to many steps in the coordinators. 

An example with the detail specification of the 
situations and the performance indices for each 
transition of the dispatcher and coordinators is 
given in Wang and Saridis (1989). 
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FIG. 9. Pure translation entropies of the dispatcher and 
coordinators. 

8. CONCLUSION 

A coordination theory for intelligent machines 
has been developed by establishing an analytical 
model for their coordination level. PNT plays 
the role of basic module for the description of 
task translation and task process in our model. 
The cooperation and connection among the 
dispatcher and coordinators are specified by the 
synchronous composition of PNTs and receiving 
and sending of mappings of the coordination 
structure. The process analysis is achieved within 
the context of Petri net theory since various 
concepts and methods have been developed for a 
Petri net to serve such purposes. Moreover, 
process evaluation, like average execution time, 
can be performed by using a timed Petri net. 
The execution rule of a Petri net provides the 
base for designing the task scheduling procedure 
and the learning algorithm gives an adaptive 
approach for finding the optimal task translation 
in the uncertain environment. This model of 
coordination provides an analytical mechanism 
of control and communication for autonomous 
intelligent control systems in various fields of 
modern industry such as intelligent robotic 
systems and computer integrated manufacturing 
systems. 
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