
Automatica, Vol. 26, No. 5, pp. 833-8,14. 1990
Printed in Great Britain.

0(~5-1098/91) $3.00 + 0,00
Pergamon Press plc

~) 1990 International Federation of Automatic Control

A Coordination Theory for Intelligent
Machines*

FEI-YUE WANGt and GEORGE N. SARIDISt~

A coordination theory for intelligent machines based on a Petri net
approach provides an analytical mechanism of control and communication
for various intelligent control systems such as intelligent robotic systems and
computer integrated manufacturing systems.

Key Words--Intelligent control; intelligent machines; robotics; entropy; coordination; coordination
structure; Petri net transducer; Petri net language; synchronous composition.

Abstraet--A formal model for the coordination level of
intelligent machines is established. The framework of the
coordination level investigated consists of one dispatcher and
a number of coordinators. The model called coordination
structure has been used to describe analytically the
information structure and information flow for the
coordination activities in the coordination level. Specifically,
the coordination structure offers a formalism to (1) describe
the task translation of the dispatcher and coordinators; (2)
represent the individual process within the dispatcher and
coordinators; (3) specify the cooperation and connection
among the dispatcher and coordinators; (4) perform the
process analysis and evaluation; and (5) provide a control
and communication mechanism for the real-time monitor or
simulation of the coordination process. A simple procedure
for the task scheduling in the coordination structure is
presented. The task translation is achieved by a stochastic
learning algorithm. The learning process is measured with
entropy and its convergence is guaranteed. Finally, a case
study of the coordination structure with three coordinators
and one dispatcher for a simple intelligent manipulator
system illustrates the proposed model and the simulation of
the task processes performed on the model verifies the
soundness of the theory.

1. INTRODUCTION

I~ rHXS EAgLV stage in the development of
intelligent machines, methodological issues are
both open and central. Different ideas for the
formalization of the definitions and the structure
of intelligent machines have been proposed by
and debated among various researchers (Albus,

* Received 24 June 1989; revised 17 September 1989;
received in final form 17 September 1989. The original
version of this paper was presented at the 1990 IFAC World
Congress which was held in Tailinn, Estonia, U.S.S.R.
during August, 1990. The Published Proceedings of this
IFAC Meeting may be ordered from: Pergamon Press pie,
Headington Hill Hall, Oxford OX3 0BW, U.K. This paper
was recommended for publication in revised form by Editor
A. P. Sage.

t NASA Center for Intelligent Robotic Systems for Space
Exploration and the Department of Electrical, Computer
and Systems Engineering, Rensselaer Polytechnic Institute,
Troy, New York 12180-3590, U.S.A.

.1: Author to whom all correspondence should be
addressed.

833

1975; Saridis, 1977; Bejczy, 1986; Meystel, 1986;
Stephanou, 1986; Pao, 1986; Vamos, 1987;
Antsaklis et al., 1988). The approach proposed
by Saridis (1977) can be thought of as the result
of the intersection of the three major disciplines
of Artificial Intelligence, Operation Research and
Control Theory.

The structure of intelligent machines is defined
by Saridis (1977, 1983, 1986) to be the structure
of hierarchically intelligent control systems,
composed of three levels ordered according to
the principle of Increasing Precision with
Decreasing Intelligence (IPDI) (Saridis, 1989),
namely: the organization level, performing
general information processing tasks in associa-
tion with a long-term memory; the coordination
level, dealing with specific information process-
ing tasks with a short-term memory; and the
execution level, realizing the execution of various
tasks through hardware, using feedback control
methods (Fig. 1). A mathematical formulation
for the organization level of intelligent machines
has been proposed in Saridis and Valavanis
(1988). A survey of recent advances in the
theory of intelligent machines is given by Saridis
(1988a).

The coordination level of intelligent machines
is an intermediate structure serving as an
interface between the organization level and
execution level for dispatching organizational
information to execution devices. It deals with
real-time information of the world by generating
a proper sequence of subtasks pertinent to the
execution of the requested job. The purpose of
this paper is to develop an analytical model for
the coordination level of intelligent machines,
which, with the mathematical formulation for
the organization level and the well-developed
control theory for the execution level, would

834 F.-Y. WANG and G. N. SARIDIS

OAQAN~ZAT~ON L~VEL

COORDIN~,T~C)N Lr~V~L

ENr~CUTQC)N L~VEL

E

¢
{i

o
?i/

FIG. 1. The structure of intelligent machines.

complete A Mathematical Theory for Intelligent
Machines.

Inherently, the coordination level of in-
telligent machines is a distributed problem-
solving system (DPSS) with the achievement of
coherent control and communication of various
diversified processes as its key issue (Saridis,
1988b). A considerable amount of work has
been done in Distributed Artificial Intelligence
(DAI) during the past decade on the organiza-
tion and architecture of DPSS (Decker, 1987).
Multi-agent planning (Georgeff, 1984), nego-
tiation (Smith and Davis, 1983) and the
functionally-accurate, cooperative (FA/C) (Les-
ser and Corkill, 1981) approaches are the three
major important approaches in DAI. Since the
functions of subsystems in intelligent machines
are deterministic, the multi-agent planning
approach is used here in the architecture design
of the coordination level. Various modeling tools
of concurrency in computer science (Peterson,
1981; Hoare, 1985), and of discrete events in
control theory (Ramadge and Wonham, 1982;
Inan and Varaiya, 1988) are useful as the basic
construction module of analytical models of
distributed systems. This paper is focused on
using a Petri net transducer to implement the
linguistic decision schemata (Saridis and Gra-
ham, 1984) for modeling and analyzing the
coordination process in the coordination level of
intelligent machines.

An analytical model for the coordination level
should enable us to have: (1) Formal description
of individual processes within each subsystem of
the coordination level; (2) Formal specification
of the cooperation among subsystems; and (3)
A mechanism of control and communication for
task processes. The Petri net has been chosen
since it can serve all these purposes quite well
and also provide us with a hierarchical and
modular design approach with many stepwise

refinement and modification methods available.
Moreover, the Petri net model offers us
analytical tools for process analysis such as
deadlock-freedom, liveness, boundedness, etc.
and for the process evaluation such as average
execution time, system utilization, etc. for the
whole coordination level.

The formalism developed in this paper may
also find applications in the verification of an
Open System Interconnection (OSI) architec-
ture. Some such results have been obtained for
Manufacturing Message Specification (MMS) by
Wang and Gildea (1988, 1989).

2. THE FRAMEWORK OF THE COORDINATION
LEVEL

The topology of the coordination level can be
expressed by a tree structure (D, C), where D is
the root, called dispatcher, and C is the finite set
of the subnodes, called coordinators (Fig. 2). It
is assumed that for each coordinator there exists
a bidirectional link connecting it to the
dispatcher and there is no direct link between
any two individual coordinators.

The dispatcher D will deal with the control
and communication of the coordinators. It
primarily concerns the questions of which
coordinator(s) should be called for tasks (task
sharing) and/or informed by the status of task
execution (result sharing), given a sequence of
primitive events (tasks) by the organizer for
some specific job. The control and communica-
tion can be achieved by translating the given
sequences of primitive events into the sequences
of coordinator-oriented control actions with the
necessary information and dispatching them to
the corresponding coordinators at the appropri-
ate time. The dispatcher is also responsible for

ORQANIZATION LEVEL

COORDINATmON LEVEL

J Dispatcher I D

Coordinator Cl I I c2 I Coordlnlltor [Cn I Coordinator

EXECUTION LEVEL

FIG. 2. The topology of the coordination level.

A coordination theory for intelligent machines 835

formulating the feedback to the organization
level after the completion of the job. To this
end, the dispatcher requires the following
capabilities:

° A communication facility which allows the
dispatcher to receive and send information
from and to the organization level and
coordinators.

• A data processing ability which describes the
command information from the organization
level and the feedback information from
coordinators, updates and provides infor-
mation for the decision-making units of the
dispatcher.

• A task processing ability which identifies
the task to be executed, selects the
appropriate control procedures for the
corresponding coordinators and formulates
the feedback required by the organization
level.

• A learning ability which improves the task
processing ability of the dispatcher by
reducing uncertainties in decision-making
and information processing as more task
execution experience is obtained.

Each coordinator is associated with a number
of devices and will process the operation and
data transfer of these devices. A coordinator can
be considered as an expert of deterministic
functions in some specific field, with the ability
of selecting one among alternative actions that
may accomplish the same task issued by the
dispatcher in different ways, according to the
constraints imposed by the workspace model and
timing requirements. The operation and data
transfer of the devices can be achieved by
translating the given coordinator-oriented control
action sequences into real-time hardware-
oriented operation sequences with the necessary
data, and sending them to the devices. The
coordinator should report the result to the
dispatcher after the execution of a task.
Capabilities required by a coordinator are
exactly the same as that for the dispatcher, but
in a lower and more specific level.

Figure 3 illustrates the language (or task)

The Organization I.tvcl

...... L O

The Dispatcher. ~
el ¢.. c

ul...u q Vl...v r I.~

The Execution Level

F1G. 3. T h e l a n g u a g e t rans la t ion in the coo rd ina t i on level .

The upper level plan The feedback to the upper level

C F

+
I'°""°'1 I I I "°"'t*'l I~'°n"*'l

State Oesorlptlon Tml~ Translation learning
mechanlwrn

Oats OIIGrl priori Talk Formulation

data arocaaaor ta lk o roc l l l o r learning o r a e a l l a r

m. da ta f l o w ~ c o n t r o l f l o w

x v

The feedback from task execution The control command to the lower level

FIo. 4. A uniform architecture for dispatcher and coordinators.

translation process among the dispatcher and the
coordinators. Note that the translation is
achieved interactively and that the dispatcher
and coordinators actually have a different time
scale: one step in the dispatcher may turn out to
be many steps in the coordinators. The
coordinators have to cooperate under the
supervision of the dispatcher in the sense that no
one of them has sufficient ability and information
to accomplish the entire task; mutual sharing of
information is necessary to allow the dispatcher
and the coordinators, as a whole, to attack the
requested jobs.

The above description indicates that the
dispatcher and coordinators may have identical
organization at the different levels of specifica-
tion. A uniform system architecture, consisting
of a data processor, a task processor and a
learning processor, is used for the dispatcher and
coordinators (Fig. 4). This architecture is a
direct extension of the decision module sug-
gested by Graham and Saridis (1982).

The function of the data processor is to
provide the information about the tasks to be
executed and the current system status. It has
been divided into three levels of description: task
description, state description and data descrip-
tion. In the task description, a list of tasks to be
executed from the upper level units is given. The
state description presents the preconditions and
the postconditions for the execution of each task
and the system status in some abstract terms. In
the Petri net model, the preconditions and the
postconditions can be represented in terms of
the input places and the output places,
respectively. The data description gives the
actual value for the abstract terms used in the
state description. Such an information organiza-
tion is very useful for the hierarchical
decision-making in the task processor. The
maintenance and update of the three level

836 F.-Y. WANG and G. N. SARmlS

descriptions is manipulated by a monitor based
on the information from the upper level and the
feedback of task execution from the lower level.
The monitor is also responsible for the
interconnection between the data processor and
task processor.

The function of the task processor is to
formulate the control commands for the lower
level units. The task processor employs a
hierarchical decision-making consisting of three
steps: task scheduling, task translation and task
formulation. Task scheduling identifies the task
to be executed by checking the task description
and the corresponding preconditions and post-
conditions contained in the state description
without referring to the actual values. If no
subtasks can be executed, the task scheduling
has to determine the internal operations which
will make the preconditions for some tasks to
become true. The task translation decomposes
the task or interoperation into the control
actions in an appropriate order based on the
current system status. Finally, the task formula-
tion assigns the actual data to the control
actions by searching in the data description of
the data processor, formulates the final
complete control command, and sends it to the
lower level units. With the hierarchical informa-
tion description in the data processor, such a
hierarchical decision-making should make the
task processing fast and efficient. Upon the
completion of all tasks required, a monitor is
called to organize the feedback information to
the upper level in some specified form. The
monitor is also responsible for the proper
interconnection with the task processor and the
learning processor.

The function of the learning processor i s to
improve the performance of the task processor
and to reduce the uncertainty in decision-making
and information processing. Information used by
the learning processor is indicated in Fig. 4.
Various learning mechanisms can be employed
by the learning processor to achieve its function.
A simple linear refinement stochastic learning
algorithm is used for task translation in
Section 5.

The fact that the dispatcher and coordinators
have identical system architecture, but at
different levels of specification (or abstraction),
also indicates that the coordination level has a
nested tree topology (Meystel, 1986). This
nested tree topology can be extended further to
include the execution level.

The connection among the dispatcher and
coordinators will be specified in terms of a Petri
net derived from the coordination structure
given in Section 4.

3. THE PETRI NET TRANSDUCER AND
SYNCHRONOUS COMPOSITION

The previous section reveals that the basic
function of the coordination level can be viewed
as the translation of the high level command
language issued by the organizer to the low level
operation language executed by devices; there-
fore, a Petri net transducer has been developed
as the basic construction module for the
coordination level (Wang and Saridis, 1988).

A petri net N is a 4-tuple N = (P, T, I, O)
consisting of a finite set of places P, a finite set of
transitions T, an input function I and an output
function O. The set of places represents the
system's states and the set of transitions
represent events which can occur to change the
state of the system. The input function specifies
the preconditions for each event to occur and the
output function describes the effects of the
occurrence of each event. A place can contain a
non-negative integer number of tokens. The
state of the system modeled by a Petri net is
given by its marking, i.e. the number of tokens
in each of its places. For details of Petri net
theory, a reader is referred to Peterson (1981).

The following notations are used in the sequel.
6(#, t) is the next-state function which gives the
new marking of a Petri net N after firing a
transition t under the marking #. R(N, #) [or
R(#), when N is clear] is the reachability set of
N with the initial marking #. Two transitions t~
and tz are said to be in parallel with respect to #
iff I(h) + I(t2) - #, and in conflict with respect to
iff I(tt)-< # and I(t2)-<# but I(t 0 + I(t2) > #.
By the execution rule of Petri net, two
transitions in parallel can be fired simul-
taneously; however, only one of the two
transitions in conflict can be fired and its firing
will disable the other. A Petri net is live with
respect to /~ if, for any marking in R(#), it is
possible to fire any transition in the net either
immediately or after firing a sequence of other
transitions. Liveness guarantees the absence of
deadlocks. A Petri net is bounded with respect
to # if there exists a finite number k such that for
any marking in R(#) the number of tokens in
each place of the net under that marking is less
than or equal to k. When k = 1, the net is safe.

Definition 1. A Petri net transducer (PNT), M, is
a 6-tuple, M = (N, Z, A, o, #, F), where

(i) N = (P, T, I, O) is a Petri net with the initial
marking #;

(ii) Z is a finite input alphabet;
(iii) A is a finite output alphabet;
(iv) cr is a translation mapping from T × (Z U

{).}) to finite sets of A*; and
(v) F c R(#) is a set of final markings.

A coordination theory for intelligent machines 837

Here A* denotes the set of strings over A and
/1., the empty string.

There are three parts to a PNT: an input tape,
a Petri net controller and an output tape (Fig. 5).
A configuration of PINT M is defined to be a
triple (m, x, y) where m • R(/~) is the current
marking of N; x eZ* is the input string
remaining on the input tape; y • A* is the output
string emitted up to this point. A move by M is
reflected by a binary relation ~M (or ~ , when
M is clear) on configurations. Specifically, for all
m • R (#) , t • T , a • Z U () . } , x • Z * and y • A *
such that 6(m, t) is defined and tr(t, a) contains
z • A*, we write

(m, ax, y) ~ (6(m, t), x, yz).

The transitive and reflexive closure of ~ is
denoted by ~ * . Note PNTs defined here are
nondeterministic in both the firing of transitions
and the emitting of output strings. The
translation defined by M is the set ~(M)=
{(x, y) t (/~, x, A) ::>* (m, ~., y) for some m e F}
The input language and the output language of
M are

a~(M) = {x [(x, y) • r(M) for some y • A*} and

to(M) = {y] (x, y) e r(M) for some x • Z*},

respectively.
A PNT halts at configuration (m, ax, y) when

no transition for which tr(t, a) is defined are
enabled at the marking m. We call m the
deadlock marking of the PNT. When a deadlock
marking occurs, the input string will be rejected.
Note that a deadlock marking of PNT is not
necessarily a deadlock marking of its Petri net.

For any x = xtala2x 2 • Y~* with (/~, x, A) ~ *
(m, ata2x2, y), symbols at and a2 are said to be
parallel (or in conflict) iff there exist tt and t 2 in
T such that both tr(h, at) and o(t2, a2) are
defined and h and t2 are parallel (or in conflict)
with respect to the marking m. Two symbols
in parallel can be translated simultaneously;
however, only one of the two symbols in conflict

,.,i..ij..i i..,

i j co_ I ion._
P,l',l

FIG. 5. The Petri net transducer (PNT).

can be translated and its translation will disable
the translation of the other.

To verify the validity of PNT being a
consistent model for the dispatcher and
coordinators, the possibility that the output
language of some PNT cannot be translated
further by any PNT has to be excluded. Let us
consider a special class of PNTs, called Simple
PNT (SPNT), with the property that for any
t • T there exists one and only one a • Z tO {;t}
such that tr(t, a) is defined. The following
theorem indicates the importance of this type of
PNTs:

Theorem 1. For any PNT M, there exists a
SPNT M' such that ~-(M') = r(M).

Based on this result, it is easy to show the
language property of PNT can be characterized
by:

Theorem 2. The input and output languages of a
PNT are both Petri net languages (PNL).

This theorem guarantees that PNT can be
used as a consistent model for the dispatcher and
coordinators. The proofs for all the theorems in
this paper are given in Wang and Saridis (1989).

The synchronous composition of PNTs is
introduced to describe and specify the coopera-
tion among the coordinators in task processing.
The project of a string x on a language L is
defined by

Zl'L=L
f undefined ifx 1' g L L

a(xa)~L=~ (xTL)a i f a • Z
X1'L i fa ~Y.

where s 1' L denote the project of s on language
L, Y is the alphabet of L, and L is the closure
of L.

Definition 2. The synchronous composition of
two PNTs Mi = (Ni, Zi, Ai, tri,/~i, Fi), i = 1, 2, is a
PNT, denoted by M = M111 M2. A move by M is
defined to be

((ml, m2), ax, y)::~

l(6(ml, tl), mz), x, yz 0 if a • Y~l - Z2

(ml, 6(m2, t2)), x, yz2) if a • Z2 - Z~

((6(ml, tl), 6(m2, t2)), x, yzlz2 or yz2zl)
if a • Z~ fq Z2

where zl • trl(tl, a) and zz • 0"2(t2, a).

That is, the input symbols in the alphabet of one

838 F.-Y. WANG and G. N. SARIDIS

PNT but not the alphabet of the other are
translated by that PNT alone, and the input
symbols in the alphabet of both PNTs are
translated by two PNTs simultaneously in an
arbitrary order. A string x can be translated
by M = M~ II M2 if ((/~,/~2), x, ~.) i f*
((ml, m2),)., y) with m~ e F~ and m2 ~ F~.

By doing induction on the length of a string,
we can prove the following important result:

t, t ' e Td such that (t, f[)~ SD and (t'. f~_~)
RD.

(v) The coordinator receiving mapping Rc and
sending mapping Sc are mappings from T~
to subsets of F. Rc and Sc satisfy the
following connection constraints:

(t, fb) ~ Sc¢:¢'(t, f~o) e Rc and (t, fat) ~ Sc;

(t, f3) $ R o (t, f~I) ~ R o (t, f}) ~ S o (t, f~o) ~ Sc.

a~(M, II M2) =

at(Mr) II a:(Mz) when Y t n Z : =

{X I x '~ ot(M,) E or(M1) and x T o,(M~) e a ' (M 2) }

when Z1 A Z2 ~ q~

where the operator "[[" on the right side of the
equation is the concurrent operator of two
languages defined in formal languages. The
synchronous composition can be extended to
more than two PNTs by defining

M1 IIM2II """ IIMk-lll Mk

= (MI IIM211 ° "° IIM~-011Mk.

4. THE COORDINATION STRUCTURE AND
PROCESS PROPERTIES

Now we introduce the formal model for the
coordination level of intelligent machines.

Definition 3. A coordination structure, CS, is
defined to be a 7-tuple,

CS = (D, C, F, RD, SD, R o Sc) where

(i) D = (Nd, Zo, Ao, crd, #d, Fd) is a PNT, the
dispatcher, with Nd = (Pd, Td, Id, Od).

(ii) C = (C1, C2 C,} is the set of
coordinators, n - 1. Each coordinator is a
S P N T C i - i i i i i

- (N¢, Z¢, A¢, cry, #¢, F'c) with N¢-i -
(P~, T~, I~, O~). Define T¢ = UP=I TiC and
Pc = U['= I e l .

(iii) F = Un=l (~I, taSl, taO, fiso} is the set of
connection points: fl, fsi, fo, and Pso are
called the input point, input semaphore,
output point and output semaphore of C,,
respectively.

(iv) The dispatcher receiving mapping RD and
sending mapping SD are mappings from Td
tO subsets of F. Ro and SD satisfy the
following connection constraints: (t, fD
SD ¢:> (t, i fs,) ~ RD, (t, f~) ~ RD 4:~ (t, ' fso)
So; (t, fDSRD, (t , f~o)~RD, (t , f~)~SD,
(t, f~I) gSD; if (t, f ~) ¢ R o then t is not
initially enabled and in any firing sequence
enabling t, the number of t' with (t', ~)
SD is greater than the number of t" with
(t", f ~) e R D by one (Ci is activated
sufficient times before t receiving result
from it); for any f[and fb, there exists

The configuration of coordination structure is
shown in Fig. 6. The notation of connection
point is similar to the concept of port in network
theory. The connection constraints indicate that
each coordinator is connected with D bidirec-
tionally and that D can issue tasks to a
coordinator only if there is a token in the
corresponding input semaphore (i.e. the coor-
dinator is available for the task) and a
coordinator can report the execution result to D
only if there is a token in the corresponding
output semaphore (i.e. the communication
facility is ready for information transferring).

Various complex connection patterns among
the dispatcher and coordinators can be specified
by designing different receiving and sending
mappings. One of the basic connection patterns
can be defined to be: (i) Ci only accesses its own
connection points; (ii) there is only one initially
enabled transition in Ci and it takes input from
the input point; (iii) only one transition in Ci
sends information to its output point. A CS with
this type of connection pattern is called a simple
coordination structure. We will concentrate on
the simple coordination structure in this paper.

The behaviours of the dispatcher and the
coordinators are specified by their transition
firing sequence sets. As in program verification,
these sequence sets can be used for designing,
analyzing, implementing and simulating the
models for the dispatcher and coordinators. In
order to process the tasks from the dispatcher by
C~, we must have the following relationship:

0t(Ci) D U {O'd(t, a) T (T~d)" [t ~ T~ and a ~ Y0},

Td _ i _ {t [t ~ T d and (t, f'0 ~ SD}, i = 1, . . . , n

FIG. 6. The coordination structure.

A coordination theory for intelligent machines 839

which means C, should be capable of processing
all the possible task strings issued by the
dispatcher. This relationship is guaranteed to be
able to be satisfied by the closure property of
PNL under the union operation and Theorem 2.

The operation of a CS can be described in
terms of the Petri net underlying CS,

N = (P, T, I, O), where P = Pd t2 Pc N F,

T = Td U T¢,

[I.(t) u (f l• (t, f) e Ro} if t ~ Ta
I(t)=tI (t)u(f] (t,f) Rc) if t ~ T ~

O(t)= j 'Od(t)u (f t . (t ,f)~SD} if t~Td
tO~¢(t) U { f l (t , f) e S c } if t~T~"

The initial marking of N is:

=

or ~i(p) for p ~ Pa or p e pi

1 for p = t~s, or f'so
0 otherwise.

To start operation, a CS receives a string (task
plan) from the organizer, puts it on the input
tape of the dispatcher D, and begins the process
of translating (or dispatching). Once a transition
t of D with fi', • • •, f~ as its output places in F is
fired with respect to the current marking of the
underlying Petri net N to execute a primitive
event a, it will send the selected control string
z ~ ed(t, a) to the coordinators Ci,, C~,,
and activate the synchronous composition
Ci, II " * • II Ci, . Upon completion of the task by a
coordinator Ci, it will displace a token
(feedback) to f~. If it is enabled with respect to
the current marking of N at the time, the
feedback will be taken by the dispatcher to
continue the process, and Cj will become idle
again. Once the dispatcher reaches its final
marking and the coordinators are either in the
initial marking (i.e. no task processing for a
while) or the final marking, the entire task
process is completed successfully.

A string s ~ Z~ is said to be executable by the
CS if (/~d, s, ~.) ::), *(m, ~., y), m e Fd and the final
configuration of each of coordinators is either

i i (/~ic,/l, Yic) or (m~, ~., y~), mc ~ Ft. It should be
pointed out that not every string in o~(D) is
executable by the CS, because the additional
connection restrictions imposed by the receiving
and sending mappings. However, we can show
that a transition enabled in Nd after finite step
firing can also be enabled in N after the same
steps of firing (generally by a different path,
however). In any case, it has to be guaranteed
that every string (or task plan) in the set of task
plans ~ (a subset of at(D)) should be executable
by CS during its design phase.

Clearly, the synchronous composition provides
the dispatcher with a mechanism to synchronize
the task execution of the coordinators and the
Petri net N specifies the precedence relation
among the activities in the dispatcher and
coordinators and therefore defines the
information structure of the CS. From the point
of view of execution of N, a string issued by the
organization level can be considered as a path
specification in the Nd, and, in turn, strings
selected by transitions of D can be thought of as
the path specifications in the Petri nets of the
coordinators.

The underlying Petri net N also enables us to
use the Petri net concepts and analysis methods
to study the process properties of the
coordination level, such as liveness, bounded-
ness, reversibility, consistency, repetitiveness,
etc. The following theorem presents the
results about the boundedness and liveness of
the coordination structure, which guarantee the
structural stability of the structure and the
absence of deadlock in the coordination.

Theorem 3. The Petri net N underlying CS is
bounded (live) if all the Petfi nets of the
dispatcher and coordinators are bounded (live).

For the construction of coordination struc-
tures, the methods of building the bounded and
live Petri net models for manufacturing systems
would be very useful. The stepwise refinement
approaches developed in Valette (1979) and
Suzuki and Murata (1983) can be easily adapted
for PNTs.

5. D E C I S I O N M A K I N G IN T H E C O O R D I N A T I O N
S T R U C T U R E

The decision-making in the coordination level
is achieved through two steps: task scheduling
and task translation. Task scheduling is the
process of identifying the appropriate tasks to be
executed for the requested job. Once a task is
located, task translation takes place by
decomposing the task into a subtask sequence
and, after being assigned with real-time informa-
tion (task formulation), executing subtasks or
sending them to the corresponding infimal units.
In terms of PNT, the problem of task scheduling
and translation for a given task a is to find an
enabled t such that a(t, a) is defined, and then
select the right translation string from o(t, a) for
the transition t.

A simple and uniform scheduling procedure
can be designed based on the execution rule of
Petri net. Let M = (N, X, A, o,/~, F) be a PNT
representing the dispatcher or a coordinator.
For any a ~X, we define T (a) = (t I e (t , a) is

840 F.-Y. WANG and G. N. SARIDIS

defined} and Tz = T(A) = {t I o(t, ~) is defined}
(the set of internal operations). Let QT and QD
be two queues, QT store the unexecuted tasks
and QD the tasks delayed for execution due to
their processing transitions not being enabled at
the appropriate time. Function F(Q) deletes and
returns the first element of Q, I(Q, a), inserts a
to Q at the end, U(Q1, Q2) unifies QI and Q2 by
placing Q2 at the end of Q~, and N(Q) empties
Q. Let v = a ~ a 2 . . , a , • b* be a task string to
be executed; the scheduling procedure for M can
be described as:

Scheduling Procedure (SP):
(1) QT:= (al, a: a,}, QD := q);
(2) IF QT is empty T H E N STOP;
(3) U := F(QT);
(4) IF there exists a t • T(u) and t is

enabled T H E N firing t, G O T O 7;
(5) IF there exists an internal operation

sequence e •T~. such that t • T (u) is
enabled by firing e T H E N firing et,
G O T O 7;

(6) I(QD, U), IF QT is empty T H E N
QT: = QD and N(QD), G O T O 2;

(7) IF QD is not empty T H E N QT:=
U(Qo, QT) and N(QD), G O T O 2.

In SP, each task is examined in the order
appearing in the task string v. If a task is
executable at the time, it will be executed right
away. Otherwise an effort is made to find a
sequence of internal operations which will
enable the task. If the effort fails, the task will
be removed from QT and added to QD- Once
there is a change in the state of M, all the
delayed tasks in QD will be moved back to QT in
their original order and be examined again, since
it is desired to keep the task order as specified as
much as possible. For a large and complex PNT,
the heuristic search algorithm (Passino and
Antsaklis, 1988) may be used to find the internal
operation sequence. For a bounded, average size
PNT, however, the simple breadth-first search
along the reachability tree of PNT by firing only
the internal operations under the current mark-
ing can serve the purpose quite well. The SP
will terminate finitely since it is assumed that the
task strings issued are compatible and complete.

Task translation can be achieved in either an
active or a passive fashion. In the active
approaches, the translation of a task is
accomplished on-line based on a set of rules and
a data base which describes the related
environment and system status information. In
the passive approaches, a fixed number of
translations for a task are pre-specified and the
translating is to select one of them according to
the current situations. For a PNT, the way of
translating is indicated by how the translation

mapping a is generated. We will consider the
passive approach here by assuming a fixed
number of translations available for each
transition, and use the learning algorithm to
learn the best translation for a task in a
particular situation.

Let t be a transition of a PNT M =
(N, Y, A, a,/~, F). The number of translations
designed for t is Mt = Y la(t, a)[. Let x, represent
the information about the system status and
temporal constraints provided in the input places
of t (token color) and u t • U t - = { a • Y U
(~.}1 a(t, a) is defined} represent a task to be
translated by t. A situation is defined to be a
combination of x, and u , i.e., (u,, x,). The
number of situation distinguished by t is
designated as N t. Now consider a matrix of
subjective properties, (Pii)Mt×Nt- The decision
rule of the probabilistic method for choosing a
translation is:

Decision Rule (DR): When situation (ut, x,)j is
observed, choose a translation si

using a random strategy with the subjective
probability Pii, i = 1 Mr.

A random performance index is associated with
each translation. After the execution of the
action specified by si for situation (ut, xt)j, update
the performance estimate using the algorithm:

Jij(kij + 1) = J,j(k,j) + 3(k. + 1)

× [Job,(kii + 1) - .J i j (kih)]

where Job, is the observed performance
value, J the performance estimate, and kij
the number of times the event ((ut, xt)isi)
has occurred.

After updating the performance estimate,
update the subjective probabilities by the
algorithm:

p~j(k + 1) = pit(k) + 7(k + 1)[~k(k) - p~i(k)],
where ~ij(k) = 1 i f Jij ~-" min Jlj, ~i/(k) = 0

1
otherwise.

When fl(kij) and y(k) satisfy Dvoretsky's
convergence condition, we have

Prob {lim [J~j(k) - J,j] = 0} = 1,
k ~

Prob [~im= Pii(k) = 6,p] = 1,

where]~j is the expected value of J~j,
Jpj = min Jlj, and 6~p = 1 if i = p or 0 if i g= p.

The proof of convergence is given in Saridis and
Graham (1984).

Assuming that the initial performance estim-
ate for a transition is available, we can find the
most conservative initial subjective probabilities
by Jaynes' Maximum Entropy Principle (Wang
and Saridis, 1989).

A coordination theory for intelligent machines 841

6. ENTROPY MEASURE OF UNCERTAINTY
AND LEARNING

The learning process can be measured by the
entropy associated with the subjective probabil-
ities. For a PNT M, its translation uncertainty is
defined to be the total entropy of subjective
probabilities assigned to the transitions of M,
that is,

H(M) -= Et,TH(t) = XteT(H[(ut, Xt)] + H[t/(ut, xt)])

= - - E t s T ' E j p j In Pi - E t e T E J P J E i P i j In P~i,

where pj is the objective probability of the
situation (ut, xt)j occurring. Define

H(E) = - ~ t e T Z j p j In Pi,

H(T/E) = - - ~ t ~ T E j p i ~ . i P i j In Pij,

then,
H(M) = H(E) + H(T/E).

The expression indicates that the translation
uncertainty H(M) can be divided into two parts:
the environment uncertainty H(E), caused by
the uncertainty of the environment (include the
uncertainty in task assignment); the pure
translation uncertainty H(T/E), the uncertainty
in translation with the given environment.
Clearly, only the pure translation uncertainty
can be reduced by learning. The uncertainty in
the whole coordination structure CS is

H(CS) = H(Ecs) + H(Tcs/Ecs), where

H(Ecs) = H(ED) + Y-~=~H(Ea) and

H(Tcs/Ecs) = H(TD/ED) + E~=~H(Tci/Eci).

It is clear now that t he coordination structure
is a Petri net implementation of the (embedded)
decision schema (Saridis and Graham, 1984).
The whole learning process bears the similar
structure to that of the hierarchical learning
automata (Mandyam et al., 1981). For the case
of the small number of situations, a learning by
recording the conditional probabilities under
specific situations will not cause a serious
problem in memory space and learning speed.
As the number of situations and tasks to be
processed is increasing, however, the prob-
lem of memory space and learning speed
becomes more and more serious. For the case of
the larger number of situations, the pattern-
recognizing learning algorithm developed by
Barto and Anandan (1985), which avoids the
maintenance of separate selection probabilities
of each situation by parameterizing the condi-
tional probabilities and constructing a mapping
from the situations to the parameter, should be
used.

In the limit case when the pure translation
uncertainty of a PNT is reduced to zero, the

optimal translation is found for all transitions in
the PNT. However, in general, this does not
necessarily imply that a global optimal transla-
tion is achieved for the PNT, simply because the
optimal translations of a transition might cause
worse situations for the subsequent transitions,
and thus increase the total task execution cost.
To achieve the global optimal translation, it is
imperative to specify the influences of the
translation of a transition to others, and use a
learning algorithm based on global information.
This is especially true for cases when the
dependent tasks or events are processed by
several transitions. However, in some cases, an
analytical expression for such influences may be
too complex to be established for the transitions
with diversified functions.

The pure translation uncertainty of a PNT
indicates how knowledgeable the PNT is about
its task execution. Since learning from the
execution can reduce the pure translation
uncertainty, learning can make a PNT more
knowledgeable on its task execution. This
observation reveals that decision-making in the
coordination level bears "dual" character: on
one side, the decisions made have to make the
dispatcher or coordinators to accomplish the
requested task with some optimization criterion;
on the other side, these decisions should also
make it more knowledgeable about its task
execution in the future by reducing its pure
translation uncertainty. The trade-off between
the two sides should be judged by some
criterion.

7. A CASE STUDY

The model developed has been applied to
construct the coordination level of a simple
intelligent manipulator system composed of a
general-purpose manipulator of six degrees of
freedom with a gripper, a vision system that
recognizes various objects and provides visual
information about their position and orientation,
and a sensor system that provides all kinds of
sensory information. The coordination structure
designed consists of a dispatcher, a motion
coordinator, a vision coordinator and a sensor
coordinator (Fig. 7, where, for the sake of
brevity, the connection points are pictured
together for all the coordinators).

The task plans from the Organization Level is
assumed to be generated by the grammar

G = (N, Eo, P, S),

where N = {S, M, Q, H}, Yo = {el, e2 , e3 , e4}, and

P = {S---~ elM, M--* e2S [e2Q, Q

--~ e3H, H---~ e4Q leaS[e4}.

842 F.-Y. WANG and G. N. SARIOIS
1..

t4 t r t l [i-- + "- i

Couand I~ ~C ~ L.I I , - ~ ~'~ f^ I Communication

I ,,I
t 2 t I t

The Vision Coordinator The Motion Coordinator The Sensor Coordinator

FIG. 7. The coordinat ion structure of an intelligent manipulator system.

The primitive events el, e2, e3 are tasks involved
with the vision, motion and sensor coordinators,
respectively; ea is the task of grasping or putting
down objects. The input alphabets of the vision,
the motion and the sensor coordinators are
Zv={c , r , av, i , f } , Z m = { m , h , i , f } , and Zs =
{s, as, i, f}, respectively.

The final markings of the dispatcher and
coordinators are reached when there is a token
in the corresponding place p+. Their translation
mappings are defined to be:

Dispatcher:

ad(tt, eO = ad(tl, ;t) = {it, calf, crca, f } ,

ad(tZ, e2) = {mr, (mcaj)" f , n > 0},

ad(tS, e3) = ad(ts, it) = {it, sa f f },

ad(/6, e4) = {gf, (gsafi)"f, n > 0}.

Vision: Ov(tl, c) = {instructions to control
camera and take picture}, or(t2, r)=
{instructions to change the lighting
condition}, av(t3, av) = {algorithms of
image processing and analysis},
av(t4, f) = Or(t6, f) = {formulating the
feedback information}, a,(ts, i)=
{sending the visual information to the
motion coordinator}.
as(q, s) = {instructions to control sen-
sors and take data}, as(t2, as) =
{algorithms of data processing and
analysis}, o~(t3, f) = a~(ts, f) = {formu-
lating the feedback information},
o~(t+, i) = {sending the sensory infor-
mation to the motion coordinator}.
am(q, m) = {algorithms of path plan-
ning and motion control for the arm},
O'm(t3, i) = {receiving the visual infor-

Sensor:

Motion;

marion}, O'm(t6, g) = {algorithms of fine
path planning and grasping or putting
down objects for the hand}, am(ts, i)=
{receiving the sensory information},
O'm(t2, f) ----" Otto(t4 ' f) = Ore(t7, f) =

Om(t9, f) = {formulating the feedback
information}.

All other transitions of the dispatcher and
coordinators are internal operations.

Clearly, the input language of the dispatcher is
exactly the task plans issued by the organizer.
The empty string it in the translation mapping ad
means no action since the required visual or
sensory information is already available. The
interactive motion control strings (mca, i)"f and
(gsasj)"f of the dispatcher involve the synchro-
nous composition of two coordinators, i.e.
motion II vision and motion II sensor, respec-
tively. When these control strings are issued for
motion or grasp tasks, the motion and vision or
sensor coordinators have to work cooperatively
to achieve the tasks. That is, the arm (or hand)
moves step by step with the assistance of the
cameras (or sensors) until the specified position
and orientation are reached.

The task simulation of picking up PC boards
and inserting them into slots is performed. The
task plan assigned is ete2e3e4ete2e3e 4. It is
assumed that there are, respectively, two
algorithms for image processing and analysis,
data processing and analysis, the arm path
planning and motion control, and the hand path
planning and grasp and insertion control. A
coordinator has to learn which of the two
algorithms is best for the corresponding tasks.
The learning for the dispatcher is to decide the
way to accomplish the arm and hand motion.

A coordination theory for intelligent machines 843

0.9

O.g

-~ 0.7
i .

~ 0,61-

0.5 .. / / /

02~- '"',..~.~=
Or; " :'

. . . . ° -

. . . - ' "
. . o "

/

. htz~me'=ve i ' . I~d MoQon

I n u : r a ~ v e A r m Mot ion

5 t0 t5 20 25

N ~ o f T a . ~ ~ r i o a

Flo. 8. The learning curves of t 2 and t 6 in the dispatcher.

When the PC boards or the slots are moving
during the task process, the interactive arm
motion control (mca~i)"f should be used,
otherwise mf should be the better choice.
Similarly, depending on the degree of the
uncertainty of the visual information provided by
the vision about the PC board and slot location,
either (gsasi)"f or gf should be the optimal
approach of gripping and inserting.

The zero initial cost and the uniform initial
subjective probabilities are used for all the
translations in the simulation. Figure 8 gives the
learning curves of transitions t 2 and t6 in the
dispatcher upon executing the task 30 times.
Figure 9 gives the corresponding pure translation
entropies of the dispatcher and coordinators.
The entropy curves indicate clearly that the
learning speeds in the coordinators are much
faster than the learning speeds in the dispatcher.
This is because the learning in the dispatcher
depends on the learning in the coordinators and
that one step of execution in the dispatcher may
correspond to many steps in the coordinators.

An example with the detail specification of the
situations and the performance indices for each
transition of the dispatcher and coordinators is
given in Wang and Saridis (1989).

1.4 , , , , , \
t .~ ~ , ~_%.~n,ker

. . . . Mot ion C t x x d i t m ~

>, I ~ = Vi l ion C o o r d i m u ~

L
~ 0.6 / " " ~

e 0.,k : ,/

02l '. 'i '.

0 5 10 I J 20 25 30

N~-abc~" o f Task Execuaon

FIG. 9. Pure translation entropies of the dispatcher and
coordinators.

8. CONCLUSION

A coordination theory for intelligent machines
has been developed by establishing an analytical
model for their coordination level. PNT plays
the role of basic module for the description of
task translation and task process in our model.
The cooperation and connection among the
dispatcher and coordinators are specified by the
synchronous composition of PNTs and receiving
and sending of mappings of the coordination
structure. The process analysis is achieved within
the context of Petri net theory since various
concepts and methods have been developed for a
Petri net to serve such purposes. Moreover,
process evaluation, like average execution time,
can be performed by using a timed Petri net.
The execution rule of a Petri net provides the
base for designing the task scheduling procedure
and the learning algorithm gives an adaptive
approach for finding the optimal task translation
in the uncertain environment. This model of
coordination provides an analytical mechanism
of control and communication for autonomous
intelligent control systems in various fields of
modern industry such as intelligent robotic
systems and computer integrated manufacturing
systems.

REFERENCES
Albus, J. S. (1975). A new approach to manipulation

control: The cerebetlar model articulation controller.
Trans. ASME J. Dynarn. Syst., Meas. Control, 97,
220-227.

Antsaklis, P. J., K. M. Passino and S. J. Wang (1988).
Automonous control systems: Architecture and fun-
damental issues. Prec. Amer. Control Conf., 1, 602-607.

Barto, A. G. and P. Anandan (1985). Pattern-recognizing
stochastic learning automata. IEEE Trans. Syst. Man
Cybern., SMC-15, 360-375.

Bejczy, A. (1986). Task driven control. IEEE Workshop on
Intelligent Control, p. 38. Rensselaer Polytechnic Institute
(RPI), Troy, New York.

Decker, K. S. (1987). Distributed problem-solving tech-
niques: A survey. IEEE Trans. Syst. Man Cybern.,
SMC-17, 729-740.

Georgeff, M. (1984). A theory of action for multi agent
planning. Prec. 9th IJCA1, 121-125.

Graham, J. H. and G. N. Saridis (1982). Linguistic decision
structures for hierarchical systems. IEEE Trans. Syst. Man
Cybern., SMC-12, 323-333.

Hoare, C. A. R. (1985). Communicating Sequential
Processes. Prentice-Hall, Englewood Cliffs, NJ.

Inan, K. and P. Varaiya (1988). Finitely recursive process
models for discrete event systems. IEEE Trans. Aut.
Control, AC-33, 626-639.

Lesser, V. R. and D. D. Corkill (1981). Functionally-
accurate, cooperative distributed systems. [EEE Trans.
Syst. Man Cybern., SMC-11, 81-96.

Mandyam, A. L., M. A, L. Thathachar and K. R.
Ramakrishnan (1981). A hierarchical system of learning
automata. IEEE Trans. Syst. Man Cybern., SMC-I1,
236-241.

Meystel, A. (1986). Nested Hierarchical Control: Theory of
Team Control Applied to Autonomous Robots. Lab.
Applied Machine Intelligence and Robotics, ECE Dept,
Drexel University, PA.

Pao, Y. H. (1986). Some views on analytic and artificial

844 F . - Y . WANG and G . N. SARIDIS

intelligence approaches. Proc. IEEE Workshop on
Intelligent Control p. 29 RPI, Troy, NY.

Passino, K. M. and P. J. Antsaklis (1988). Planning via
heuristic search in a Petri net framework. Proc. 3rd IEEE
Int. Intelligent Control Syrup, Arlington, VA.

Peterson, J. L. (1981). Petri Net Theory and the Modeling of
Systems. Prentice-Hall, Englewood Cliffs, NJ.

Ramadge, P. J. and W. M. Wonham (1982). Supervision of
discrete event processes. Proc. 21st IEEE Conf. on
Decision and Control, 1228-1229.

Saridis, G. N. (1977). Self-organization Controls of
Stochastic Systems. Marcel Dekker, N.Y.

Saridis, G. N. (1983). Intelligent robotic control. IEEE
Trans. Aut. Control, AC-28, 547-557.

Saridis, G. N. (1986). Foundations of intelligent controls.
Proc. IEEE Workshop on Intelligent Control, pp. 23-27.
RPI, Troy, NY.

Saridis, G. N. (1988a). On the theory of intelligent
machines: A survey. Proc. 27th IEEE Conf. on Decision
and Control, Austin, Texas, 1799-1804.

Saridis, G. N. (1988b). Intelligent Machines: distributed vs
hierarchical intelligence. Proc. IFAC/IMACS Symp. on
Distributed Intelligence Syst., Varna, Bulgaria, 34-39.

Saridis, G. N. (1989). Analytic formulation of the principle
of increasing precision with decreasing intelligence' for
Intelligent Machines. Autornatica, 25, 461-467.

Saridis, G. N. and J. H. Graham (1984). Lingusitic decision
schemata for intelligent robots, Automatica, 121-126.

Saridis, G. N. and K. P. Valavanis (1988). Analytic design of
Intelligent Machines. Automatica, 24, 123-133.

Smith, R. D. and R. Davis, (1983). Negotiation as a

metaphor for distributed problem solving. Artificial
Intelligence, 20, 63-109.

Stephanou, H. E. (1986). Knowledge based control systems.
Proc. IEEE Workshop on Intelligent Control. p. 116- RPI,
Troy, NY.

Suzuki, I. and T. Murata (1983). A method for stepwise
refinements and abstractions of Petri nets. J. Comput.
Syst. Sci., 27, 51-76.

Valette, R. (1979). Analysis of Petri Nets by stepwide
refinements. J. Comput. Syst. Sci., 18, 35-46.

Vamos, T. (1987). Metalanguages---Conceptual model:
Bridge between machine and human intelligence. Proc. 1st
Int. Syrup. on AI and Expert Syst., 237-287.

Wang, F. Y. and K. Gildea (1988). MMS design and
implementation using Petri nets, DOC~CIMMN88TR178.
CIM Program, Center for Manufacturing Productivity and
Technology Transfer, RPI, Troy, N.Y. Also (1990), Proc.
First Int. Workshop on Formal Methods in Engng Design,
Man@ and Assembly, Colorado Springs, CO, pp.
184-201.

Wang, F. Y. and K. Gildea (1989). A colored Petri net
model for connection management services in MMS.
Comput. Communic. Rev., 19, 76-98.

Wang, F. Y. and G. N. Saridis (1988). A formal model for
coordination of Intelligent Machines using Petri nets.
Proc. 3rd IEEE Int. Intelligent Control Symp., Arlington,
VA, pp. 28-33.

Wang, F. Y. and G. N. Saridis (1989). A Coordination
Model for Intelligent Machines, TR~tl4. Center of
Intelligent Robotic Systems for Space Exploration, RPI,
Troy, NY.

